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Generation of neuronal diversity is a biological strategy widely used in the brain to
process complex information. The olfactory bulb is the first relay station of olfactory
information in the vertebrate central nervous system. In the olfactory bulb, axons of
the olfactory sensory neurons form synapses with dendrites of projection neurons
that transmit the olfactory information to the olfactory cortex. Historically, the olfactory
bulb projection neurons have been classified into two populations, mitral cells and
tufted cells. The somata of these cells are distinctly segregated within the layers of
the olfactory bulb; the mitral cells are located in the mitral cell layer while the tufted
cells are found in the external plexiform layer. Although mitral and tufted cells share
many morphological, biophysical, and molecular characteristics, they differ in soma size,
projection patterns of their dendrites and axons, and odor responses. In addition, tufted
cells are further subclassified based on the relative depth of their somata location in
the external plexiform layer. Evidence suggests that different types of tufted cells have
distinct cellular properties and play different roles in olfactory information processing.
Therefore, mitral and different types of tufted cells are considered as starting points
for parallel pathways of olfactory information processing in the brain. Moreover, recent
studies suggest that mitral cells also consist of heterogeneous subpopulations with
different cellular properties despite the fact that the mitral cell layer is a single-cell layer. In
this review, we first compare the morphology of projection neurons in the olfactory bulb
of different vertebrate species. Next, we explore the similarities and differences among
subpopulations of projection neurons in the rodent olfactory bulb. We also discuss the
timing of neurogenesis as a factor for the generation of projection neuron heterogeneity
in the olfactory bulb. Knowledge about the subpopulations of olfactory bulb projection
neurons will contribute to a better understanding of the complex olfactory information
processing in higher brain regions.

Keywords: olfactory bulb, projection neurons, heterogeneity, parallel pathways, mitral cell, tufted cell

INTRODUCTION

Our ability to perceive the world through our senses begins with different sensory organs and
results in distinct brain regions processing this information. However, even a single sensory system
must process multiple aspects of the sensory modality in order to generate a meaningful sensory
experience. For example, we can acquire various types of object information, such as size and shape,
color, brightness, location, and motion, through the visual system (Wandell, 1995). A strategy to
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process multiple visual submodalities is to enhance the functional
diversity of the neuronal circuit by expanding the neuronal
heterogeneity in the retina (MacNeil and Masland, 1998;
Masland, 2012; Baden et al., 2016; Yan et al., 2020). In the primate
visual system, strong evidence suggests that the color and motion
of an object are differentially processed through parallel pathways
(Nassi and Callaway, 2009). These parallel pathways are formed
by different types of retinal ganglion cells (RGCs) projecting their
axons to different layers of the lateral geniculate nucleus of the
thalamus and subsequently different regions of the cortex (Nassi
and Callaway, 2009; Schiller, 2010; Seabrook et al., 2017). Thus
far, at least 20 different RGC subtypes have been identified based
on their different morphological, physiological, and molecular
properties in the primate retina (Kolb et al., 1992; Peng et al.,
2019). Recent studies expanded the classification of the cells into
40 RGC subtypes in the mouse retina (Sanes and Masland, 2015;
Baden et al., 2016; Rheaume et al., 2018).

In terms of evolution, the olfactory system is one of the oldest
senses to monitor the outside world. It is said that there are more
than 3,000 chemicals that can be detected by our chemosensory
system as fragrances (Arctander, 1969), and the mixture of
these chemicals produces different odor qualities and behavioral
responses (Kay et al., 2005; Saraiva et al., 2016). Unlike the visual
system that receives photons with 3–6 types of photoreceptor
cells (rod cells and 2–5 types of cone cells) (Baden et al.,
2020), the vertebrate olfactory system takes a unique strategy to
discriminate these odor qualities by establishing a large repertoire
of odorant receptors expressed by olfactory sensory neurons
(OSNs) (Buck and Axel, 1991; Zhang and Firestein, 2002; Godfrey
et al., 2004; Malnic et al., 2004). However, each OSN expresses
only a single type of odorant receptor (Chess et al., 1994; Serizawa
et al., 2003; Monahan and Lomvardas, 2015). All OSNs project
axons to the olfactory bulb (OB), a structure that is found in
all vertebrate animals and the first relay station for the olfactory
information in the central nervous system (Mombaerts et al.,
1996; Northcutt, 2002). The OSNs expressing the same type of
odorant receptor converge their axons usually into 2-3 spherical
structures known as glomeruli (Mombaerts et al., 1996). The
convergence of OSN axons forms a glomerular map, or odorant
receptor map, at the surface of the OB (Mori et al., 1999; Mori
and Sakano, 2011). The information from the glomerular map
is transmitted to the olfactory cortex through the axons of OB
projection neurons (Ghosh et al., 2011; Sosulski et al., 2011;
Igarashi et al., 2012; Hirata et al., 2019).

A single odor or an odor mixture activates a distinct
combination of OSNs and glomeruli (Malnic et al., 1999; Mori
et al., 2006; Johnson and Leon, 2007; Fletcher, 2011). Therefore,
processing the glomerular activation pattern on the map is
the first step to identify the odors. In addition, the olfactory
system processes different aspects of smell sensation; not only
the odor quality, but also the odor intensity, pleasantness,
and location of the source (Thomas-Danguin et al., 2014).
Different concentrations of the same odor activate different
numbers of glomeruli and change the temporal profiles of OB
projection neuron responses (Johnson and Leon, 2000; Spors
and Grinvald, 2002; Gautam et al., 2014; Bolding and Franks,
2018). Specific domains in the glomerular map are responsible

for mediating particular odor-induced behaviors in rodents (Bear
et al., 2016). For example, signals from the dorsomedial glomeruli
are responsible for the innate fear responses caused by predator
odors in mice, which is likely controlled by the central amygdala
(Kobayakawa et al., 2007; Dewan et al., 2013; Root et al., 2014;
Isosaka et al., 2015; Kondoh et al., 2016). In contrast, a subset
of ventral glomeruli are targeted by TRPM5 expressing OSNs
that are responsible for semiochemical processing, and these
glomeruli are innervated by a population of mitral cells projecting
to the medial amygdala (Lin et al., 2007; Thompson et al.,
2012; Lemons et al., 2017). Mounting evidence demonstrates the
importance of OB organization in information processing.

Here, we focus on the subtypes of OB projection neurons.
Accumulating evidence shows that OB projection neurons
can be subdivided into several subpopulations with different
morphological and physiological properties. This suggests that
different subpopulations of OB projection neurons may be
involved in processing different aspects of smell via parallel
pathways. We begin by summarizing the OB projections neurons
found in lower vertebrate species to analyze their diversity
from an evolutionary perspective, focusing primarily on their
morphological properties. Then, we describe the similarities and
differences among the subpopulation of projection neurons in
the rodent OB. Lastly, we discuss the timing of neurogenesis as
a factor for generating heterogeneity of projection neurons in the
OB. The authors apologize to those whose work was not included
here due to space limitations.

BASIC NEURAL CIRCUITRY OF THE
MAMMALIAN OLFACTORY SYSTEM

The mammalian main OB (MOB) has an onion-like layer
structure consisting of various cellular populations segregated
into individual layers. Figure 1 shows the structure of the
rodent OB as an anatomical model for reference. Although
we do not go deeper into detail in this review, there are
many excellent reviews summarizing the cell types, synapses,
and neuronal circuits found in the MOB (Shepherd et al.,
2004; Wachowiak and Shipley, 2006; Figueres-Onate et al.,
2014; Imai, 2014; Nagayama et al., 2014; Sakano, 2020). Briefly,
the OSN axons run tangentially through the olfactory nerve
layer (ONL) at the surface of the OB before entering the
glomerular layer (GL) (Klenoff and Greer, 1998; Rodriguez-Gil
et al., 2015). Here, the OSNs form axodendritic synapses with
the OB projection neurons, known as mitral and tufted cells,
as well as periglomerular interneurons (Pinching and Powell,
1971b; White, 1972). In addition, OB projection neurons and
periglomerular interneurons form reciprocal dendrodendritic
synapses within the GL (Pinching and Powell, 1971b; White,
1972). Both mitral and tufted cells are glutamatergic neurons,
and they share morphological features such as a single primary
dendrite projecting to a single glomerulus as well as the secondary
dendrites extending within the external plexiform layer (EPL),
a layer beneath the GL (Macrides and Schneider, 1982; Mori
et al., 1983). Within the EPL, the secondary dendrites of
mitral and tufted cells form dendrodendritic synapses with
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FIGURE 1 | Basic neural circuit in the rodent olfactory bulb. (A) The olfactory bulb (OB) is formed at the most anterior portion of the telencephalon in the rodent
brain. The accessory olfactory bulb (AOB) receiving the pheromonal information from the vomeronasal organ is located at the posterodorsal OB. Mitral cells in the
AOB have multiple apical dendrites projecting to multiple glomeruli. The rest of the OB is called the main OB (MOB) and is innervated by olfactory sensory neurons
(OSNs). The MOB consists of multiple concentric layers. (B) The OSN axons tangentially run at the surface of the MOB within the olfactory nerve layer (ONL), before
entering the glomeruli. Mitral (M) and tufted cell (T) somata are located in the mitral cell layer (MCL) and external plexiform layer (EPL), respectively, and project their
primary dendrites to a single glomerulus. In the glomerulus, OSN axons form axodendritic synapses with mitral and tufted cells as well as periglomerular cells (PG).
The secondary dendrites of mitral and tufted cells form dendrodendritic synapses with granule cells (G) in the EPL. Somata of periglomerular and granule cells are
found in the glomerular layer (GL) and the granule cell layer (GCL), respectively. IPL, internal plexiform layer.

granule cells, another type of interneuron (Rall et al., 1966;
Price and Powell, 1970b). The somata of most tufted cells are
found in the EPL while the mitral cell somata are aligned below
the EPL to form a thin layer called the mitral cell layer (MCL)
(Schneider and Macrides, 1978). The granule cell layer (GCL) is
located below the MCL and is the largest layer in the OB formed
primarily by the somata of granule cells (Schneider and Macrides,
1978). There is another thin layer between the MCL and GCL
known as the internal plexiform layer (IPL) which contains axon
collaterals from tufted cells (Liu and Shipley, 1994).

In addition to the main olfactory system, rodents have a
vomeronasal system, unlike humans, through which they process
pheromonal signals with great sensitivity (Silva and Antunes,
2017). For further details on aspects of the organization of the
neuronal circuits involved in the pheromonal signals, readers
are referred to several excellent and comprehensive studies and
reviews (Larriva-Sahd, 2008; Tirindelli et al., 2009; Yokosuka,
2012; Silva and Antunes, 2017; Holy, 2018; Mohrhardt et al.,
2018). In the vomeronasal organ, pheromones are received
by vomeronasal receptors expressed by vomeronasal sensory
neurons, which project axons to the accessory olfactory bulb
(AOB) located at the dorsoposterior region of the MOB (Belluscio
et al., 1999; Rodriguez et al., 1999; Boschat et al., 2002; Del
Punta et al., 2002). Similar to the MOB, there are glomeruli

at the surface of the AOB, where the AOB mitral cells receive
synaptic inputs from vomeronasal neurons (Barber et al., 1978).
However, upon reaching the AOB, individual axons can divide to
terminate in multiple glomeruli (Larriva-Sahd, 2008). Therefore,
contrary to the MOB, axons of sensory neurons expressing a
given receptor form multiple glomeruli in the AOB (Belluscio
et al., 1999; Rodriguez et al., 1999). Somata of AOB mitral
cells are scattered beneath the glomeruli and a single AOB
mitral cell possesses multiple primary dendrites which innervate
multiple glomeruli (Takami and Graziadei, 1991; Wagner et al.,
2006; Yonekura and Yokoi, 2007; Larriva-Sahd, 2008). The AOB
mitral cells extend secondary dendrites in the layer beneath the
glomeruli where they form dendrodendritic synapses with AOB
granule cells whose somata are localized at the deepest layer
of the AOB (Yonekura and Yokoi, 2007; Larriva-Sahd, 2008).
Although it is said that AOB mitral cells are the only type of
projection neurons in the AOB, at least three types of AOB
projection neurons with different somata shape, location, and
dendritic morphology have been suggested to exist (Yonekura
and Yokoi, 2007; Larriva-Sahd, 2008). In addition, a recent study
showed that a subset of AOB projection neurons was intrinsically
rhythmogenic (Gorin et al., 2016; Zylbertal et al., 2017). These
results raise the possibility that AOB mitral cells also consist of
highly heterogeneous subpopulations. The mitral cell axons exit
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the AOB in bundles and run through a layer between the somata
of mitral cells and granule cells before converging on the lateral
olfactory tract (LOT), ultimately transmitting the pheromonal
information to higher brain regions (von Campenhausen and
Mori, 2000; Larriva-Sahd, 2008).

MORPHOLOGY OF OB PROJECTION
NEURONS IN LOWER VERTEBRATES

Fish
The olfactory system of teleost fish sends the unbranched OSN
axon to a single glomerulus (Weiss et al., 2020). The layer
structure of the teleost fish OB is similar to that of the rodent OB,
but a bit more simplistic (Kermen et al., 2013). In the fish OB,
there are two types of glutamatergic projection neurons; mitral
cells, a major projection neuron, and ruffed cells (Figure 2A1).
There is no clear MCL, and both mitral cells and ruffed cells are
located in the external cell layer that lies beneath the GL (Satou,
1990). Although they share the same name and have apical
dendrites innervating glomeruli allowing them to receive input
from OSN axons, the mitral cells of teleost fish are significantly
different from those in the mammalian OB. Golgi staining and
retrograde tracing of OB neurons in adult teleosts revealed that
mitral cells do not extend secondary dendrites (Kosaka and
Hama, 1982; Fuller et al., 2006). In most teleost fish, mitral
cells possess multiple apical dendrites that project to multiple
glomeruli, with the exception of zebrafish (Kosaka and Hama,
1982; Oka, 1983; Fujita et al., 1988; Satou, 1990; Fuller et al.,
2006). The zebrafish mitral cells typically have only a single
apical dendrite innervating a single glomerulus, and a smaller
percentage of mitral cells have multiple apical dendrites that still
innervate a single glomerulus (Fuller et al., 2006). In contrast
to the mitral cells, the ruffed cells have a membranous field
surrounding the initial part of the axon (Kosaka and Hama,
1979; Fuller and Byrd, 2005). A major difference from mitral
cells is that ruffed cells do not receive direct input from OSN
axons, but receive inhibitory synaptic inputs from interneurons
activated by mitral cells (Kosaka, 1980; Satou, 1990). Therefore,
the activity patterns of mitral and ruffed cells are contrasting in
nature (Zippel, 1999; Zippel et al., 2000).

Mitral and ruffed cells project their axons to higher brain
regions through either the medial olfactory tract (MOT) or
LOT depending on the location of their somata (Fuller et al.,
2006; Miyasaka et al., 2014). In the brain, mitral cell axons
send their projections to five major regions; posterior and
ventral telencephalon, posterior tuberculum, right habenula,
and ipsilateral/contralateral OB (Eisthen and Polese, 2010)
(Figure 2A2). Genetic labeling of zebrafish mitral cells at single-
cell resolution revealed that (1) individual mitral cells can target
multiple regions; the MOT and LOT do not determine the target
regions, (2) mitral cells innervating the same glomerulus do not
show the same axon trajectory and (3) the right habenula is
innervated by mitral cells that convey the information from the
medial glomeruli (Miyasaka et al., 2009, 2014).

Although there is no distinct AOB in the teleost OB, a report
suggested that a specific glomerulus located at the mediodorsal

OB, mdG2, may be functionally similar and serve as the accessory
olfactory system in teleost fish (Biechl et al., 2017). The mdG2
receives inputs solely from crypt cells, a specific type of OSN
activated by kin odor, and the mitral cells targeting the mdG2
send their axons to the intermediate ventral telencephalic nucleus
(Ahuja et al., 2013; Biechl et al., 2016, 2017; Gerlach et al.,
2019). It is hypothesized that this nucleus in teleost fish may
be functionally analogous to the medial amygdala of mammals
(Biechl et al., 2017). The evolutionary origin of the accessory
olfactory system is an intriguing topic to aid in our understanding
of the parallel pathways for olfactory information processing. The
axonal projection patterns of the ruffed cells in the fish olfactory
system is another research topic that remains to be elucidated.

Amphibians
In contrast to the mammalian olfactory system, a single OSN
of amphibians typically innervates multiple glomeruli (Gilbert
et al., 2013; Hassenklover and Manzini, 2013). The OB of the
frog has a layer structure similar to, but not as fully concentric
as, that of the mammalian OB (Byrd and Burd, 1991; Scalia et al.,
1991a; Kratskin et al., 2000). The projection neurons called mitral
cells are scattered among the EPL and MCL (Kratskin et al.,
2000). The basic morphology of the frog mitral cells resembles
that of rodent mitral and tufted cells, except for their multiple
(1–6) primary dendrites that innervate multiple glomeruli (Jiang
and Holley, 1992) (Figure 2B1). Jiang and Holley (1992) further
demonstrated that the mitral cells located superficially, close to
the GL, extend their primary dendrites with a larger angle and
targeted glomeruli across a wider field of range. The primary
and secondary dendrites of the frog mitral cells are not clearly
distinct in that some dendrites send several branches into the
GL while the others remain in the EPL (Jiang and Holley, 1992).
Mitral cells with similar morphology were also observed in the
salamander OB (Herrick, 1924). A unique feature of amphibians
is the process of metamorphosis in which species transform
from an immature to mature state. This is an intriguing process
with respect to olfactory system development and evolution. The
studies of the OB morphology in the clawed frog showed that
the basic structure of the mature OB was apparent in tadpoles
(around larval stage 48/49) and remained constant throughout
the late larval stage and into adulthood, with only the size
increasing (Byrd and Burd, 1991; Nezlin and Schild, 2000). The
majority of MOB projection neurons in both frog and salamander
tadpoles (stages 51–56) had more than one glomerular tuft (up to
4) innervating different glomeruli (Herrick, 1924; Nezlin et al.,
2003).

As shown in Figure 2B2, OB projection neurons project to
the dorsal, lateral, and medial pallium as well as the lateral and
medial septal nuclei in the frog brain (Eisthen and Polese, 2010).
They also innervate the lateral amygdala (Scalia et al., 1991b).
Contrary to the lack of an apparent AOB in the teleost fish, the
AOB in the frog is quite evident and is located at the ventrolateral
region of the OB. Anterograde HRP tracing experiments revealed
that the AOB projection neurons project to the medial amygdala
(Scalia et al., 1991b). While the projection from the MOB and
AOB may converge in the amygdala, the medial amygdaloid
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FIGURE 2 | Projection neurons in the non-mammalian vertebrate olfactory bulb. (A) Schematic illustrations of projection neurons in the teleost fish olfactory bulb
(OB). Mitral (M), and ruffed cells (R) are located in the external cell layer (ECL) (A1). Most teleost fish including carp and goldfish have mitral cells with multiple apical
dendrites projecting to multiple glomeruli. However, zebrafish mitral cells have only a single apical dendrite. No secondary dendrites are observed in the mitral cells.
A morphological characteristic of ruffed cells is a membranous field surrounding the initial part of the axon. Axonal projection patterns from the zebrafish OB are
shown in (A2) (Miyasaka et al., 2014). (B) Schematic illustrations of projection neurons in the amphibian OB. Somata of frog mitral cells (M) are located in the external
plexiform layer (EPL) and mitral cell layer (MCL); these two layers are not clearly segregated (B1). Mitral cells have multiple apical dendrites, and some have secondary
dendrites that do not project to the glomeruli. Axonal projection pattern from the frog OB are shown in (B2) (Eisthen and Polese, 2010). (C) Schematic illustrations of
projection neurons in the reptile OB. OSN axons are not depicted as it has not been clearly shown whether a single OSN of reptiles project unbranched axon to a
single glomerulus. Somata of mitral cells (M) are found in the MCL that is clearly segregated from the EPL. A single primary dendrite is formed in lizard mitral cells,
while multiple primary dendrites are found in turtle mitral cells (C1). Both lizard and turtle mitral cells have clear secondary dendrites extending within the EPL. Axonal
projection pattern from the snake OB are shown in (C2) (Eisthen and Polese, 2010; Ubeda-Banon et al., 2011). pTel and vTel, posterior and ventral telencephalon;
Hb, habenula; PT, posterior tuberculum; SN, septal nucleus; lAmg and mAmg, lateral and medial amygdala; AON, anterior olfactory nucleus; OT, olfactory tubercle;
LC, lateral cortex; NAOT, nucleus of accessory olfactory tract; vaA, eA, and mA, ventral anterior, external, and medial amygdala; and NS, nucleus sphericus.

nucleus may be connected exclusively to the AOB (Scalia et al.,
1991b) (Figure 2B2).

Reptiles
Whether a single OSN of reptiles projects unbranched axon to
a single glomerulus has not been clearly described. The MOB
of reptiles also exhibits a distinct layer structure in which the
GL, EPL, MCL, and GCL are clearly visible, however, they
may have a thicker IPL than mammalian OB (Kirillova and
Lin, 1998; Pinato and Midtgaard, 2003; Kondoh et al., 2013).
Mitral cells are distributed throughout the MCL in the turtle
OB (Kirillova and Lin, 1998). The morphology of turtle mitral
cells was determined by reconstruction after electrophysiological
recordings and showed the existence of long secondary dendrites
that reach almost half of the bulbar circumference (Mori et al.,
1981). In the turtle and snake OB, a single mitral cell possesses
more than one primary dendrite and therefore is capable of
targeting multiple glomeruli (Mori et al., 1981; Iwahori et al.,
1989) (Figure 2C1). However, mitral cells in the lizard OB have
only one dendritic tuft in a glomerulus, which was shown with

Golgi staining (Llahi et al., 1985) (Figure 2C1). While not yet
experimentally concluded, the existence of tufted cells in the
reptile OB is suggested due to the discernible segregation of the
EPL and MCL. In fact, the mitral cells observed in the EPL of
the lizard OB are described as displaced mitral cells (Llahi et al.,
1985). Cells varying in soma size were identified in the EPL and
MCL of the snake MOB (Kondoh et al., 2013), and the Japanese
striped snake has two mitral cell types that are morphologically
distinct based on the somata locations within the MCL (Iwahori
et al., 1989). These support a concept suggestive of a transition
between mitral cells and tufted cells.

In the snake brain, the axonal projections from the MOB
terminate at the AON, olfactory tubercle (OT), the lateral cortex,
and some amygdaloid nuclei (Halpern, 1976; Martinez-Garcia
et al., 1991; Lohman and Smeets, 1993; Lanuza and Halpern,
1998; Eisthen and Polese, 2010; Ubeda-Banon et al., 2011)
(Figure 2C2). Overall, the projection patterns of most reptilian
MOB projection neurons are somewhat comparable to that of
the rodent (see Figures 2C2, 4). However, in contrast to the
mammalian OB projection neurons, some axons from the snake
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MOB enter the ipsilateral stria medullaris thalami, cross the
midline in the habenular commissure, enter the contralateral
stria medullaris thalami and terminate in the contralateral
lateral pallium (Halpern, 1976; Lanuza and Halpern, 1998). The
accessory olfactory system becomes more noticeable in reptiles
compared to amphibians considering that the AOB is caudally
located and clearly separated from the MOB (Martínez-Marcos
and Halpern, 2009; Ubeda-Banon et al., 2011; Kondoh et al.,
2013). The AOB mitral cells in the reptile give rise to more
than one primary dendrite with multiple tufts in the GL (Llahi
et al., 1985). The axons of AOB mitral cells follow along the
accessory olfactory tract and project to three portions of the
amygdala: the nucleus sphericus, medial amygdala, and nucleus
of the accessory olfactory tract (Halpern, 1976; Martinez-Garcia
et al., 1991; Lohman and Smeets, 1993; Lanuza and Halpern,
1998; Eisthen and Polese, 2010; Ubeda-Banon et al., 2011)
(Figure 2C2). In some reptilian species including a type of lizard,
the AOB projects to the bed nucleus of stria terminalis (BNST)
(Martinez-Garcia et al., 1991).

Evolutionary Morphological Changes of
OB Projection Neurons
Different species have morphologically distinct MOB projection
neurons. As described above, the mitral cells of teleost fish,
amphibians, and reptiles, excluding zebrafish and lizards,
typically possess multiple primary dendrites projecting to
multiple glomeruli while only a single primary dendrite is formed
in the mammalian mitral cells (Kosaka and Hama, 1982; Oka,
1983; Fujita et al., 1988; Satou, 1990; Dryer and Graziadei, 1994;
Fuller et al., 2006). These results suggest that OB projection
neurons have reduced the number of their primary dendrites
from multiple to a single primary dendrite over the course of
evolution. Interestingly, rodent MOB mitral cells form multiple
primary dendrites with tufts in multiple glomeruli at the initial
stage of development (Malun and Brunjes, 1996; Lin et al.,
2000). Although it is reasonable to assume that having a single
primary dendrite projecting to a single glomerulus assists in odor
discrimination, it is still largely unknown how each mitral cell is
able to “select” one dendrite during maturation. A recent study
showed that spontaneous network activity among immature
projection neurons in the neonatal OB is essential for the pruning
of excess primary dendrites, but the OSN activity does not appear
to be necessary in this process (Lin et al., 2000; Fujimoto et al.,
2019). Comparing the development of OB projection neurons in
different species would provide us with interesting insights into
the molecular and cellular mechanisms underlying the selection
of a single primary dendrite.

It is also noteworthy that clear secondary dendrites seem
to be first apparent in the reptilian mitral cells, whereas
the distinction between the primary and secondary dendrites
in amphibian mitral cells is difficult to observe. From
an evolutionary perspective, this information suggests that
information processing in the OB became more intricate and
complex as life began to shift from living in water to living
on land. As discussed in the latter section, difference in the
length of secondary dendrites is important for OB projection

neurons to differentially respond to the odor inputs in the rodent
OB. Formation of the two characteristic dendrites might be a
stepping stone to generate the parallel processing pathways in the
olfactory system.

SIMILARITIES AND DIFFERENCES
BETWEEN MITRAL AND TUFTED CELLS
IN THE RODENT OB

Henceforth, we will focus on the subpopulation of MOB
projection neurons reported from the rodent olfactory system.
The projection neurons in the rodent OB are essentially classified
into two types; mitral cells, named after their shape resembling
that of a bishop’s miter, and tufted cells, named by Ramon y Cajal
(1911) and Figueres-Onate et al. (2014). An increasing number of
studies report that the two cell types exhibit different properties
in response to odor stimuli, and dendrite/axonal projection
patterns, suggesting that mitral and tufted cells process different
aspects of olfactory information as described below.

Morphological Properties
In the rodent OB, the projection neurons located in the MCL
are defined as mitral cells, and others found in the EPL and GL
are deemed tufted cells (Ramon y Cajal, 1911; Shepherd et al.,
2004; Greer et al., 2008; Ennis et al., 2015). However, based
on the relative depth of somata location in the EPL and GL,
tufted cells are further subclassified into the external, middle, and
internal tufted cells, also known as superficial, intermediate, and
deep tufted cells, respectively (Ramon y Cajal, 1911; Macrides
and Schneider, 1982; Orona et al., 1984; Shepherd et al., 2004).
The internal tufted cells are sometimes identified as displaced
mitral cells because of their proximity to the MCL (Mori et al.,
1983; Kishi et al., 1984; Shepherd et al., 2004). The size of mitral
cell somata (20–25 µm) is typically larger than that of tufted
cells (10–20 µm) (Pinching and Powell, 1971a). Both mature
mitral and tufted cells have a single primary dendrite with a
tuft at the tip residing in a single glomerulus where they receive
excitatory input from OSN axons (Ramon y Cajal, 1911; Mori
et al., 1983). Mitral and tufted cells also form dendrodendritic
synapses with inhibitory periglomerular interneurons in the GL
(Pinching and Powell, 1971b).

In the rodent OB, different types of projection neurons possess
different lengths of secondary dendrites. Mori et al. studied
projection neurons in the rabbit OB, and showed that a single
mitral cell possesses ∼15,000 µm of secondary dendrites, which
is almost four times longer than that of middle tufted cells
(∼4,000 µm) (Mori et al., 1983). Internal tufted cells have an
intermediate length of secondary dendrites (∼12,000 µm) (Mori
et al., 1983). Also in the mouse OB, it was shown that the total
dendritic length of a mitral cell (∼15,000 µm) is much longer
than that of a middle tufted cell (∼7,500 µm) (Igarashi et al.,
2012). The tufted cells located in the most superficial EPL or GL
are classified as the external tufted cells. Like the other mitral
and tufted cells, the primary dendrites of external tufted cells
are generally uni-glomerular, with a small subpopulation being
di-glomerular (Ennis and Hayar, 2008). There are two distinct
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subpopulations of external tufted cells, and the most prominent
dissimilarity between the populations is the presence or absence
of secondary dendrites (Macrides and Schneider, 1982; Hayar
et al., 2004a,b; Antal et al., 2006; Liu and Shipley, 2008; Hirata
et al., 2019). The somata of external tufted cells with secondary
dendrites are generally found in the deeper one-third of the GL,
or in the EPL near the boundary with the GL. Morphometric
analysis using 300 µm thick rat OB slices showed that the total
length of secondary dendrites of external tufted cells in the slice
was ∼1,200 µm (Antal et al., 2006). Although we cannot directly
compare the results due to the differences in species and method,
it is reasonable to assume that mitral cells possess the longest
secondary dendrites while those of the external tufted cells are
the shortest. Interestingly, the other group of external tufted cells
whose somata are only found in the GL lack secondary dendrites
(Macrides and Schneider, 1982; Hayar et al., 2004a,b; Antal et al.,
2006; Liu and Shipley, 2008; Hirata et al., 2019). Based on the
data acquired thus far, it can be asserted that the deeper the
location of projection neurons cell somata in the OB, the longer
the secondary dendrites are as shown in Figure 3A.

In addition to the differences in length, Figure 3A shows
that mitral and tufted cells extend their secondary dendrites
in different sublayers of the EPL. The secondary dendrites of
mitral cells appear to remain restricted to the deepest portion
of the EPL (dEPL), proximal to the MCL, while those of tufted
cells extend in the most superficial portion of the EPL (sEPL),
proximal to the GL (Macrides and Schneider, 1982; Mori et al.,
1983; Orona et al., 1984; Imamura and Greer, 2015). Even among
tufted cells, it has been shown that the external tufted cells
extend secondary dendrites to the most outer region of the
sEPL and the middle tufted cells to the inner region of the

sEPL (Macrides and Schneider, 1982; Mori et al., 1983). Several
studies defined an intermediate EPL (iEPL) between sEPL and
dEPL, where the secondary dendrites of internal tufted cells are
projected (Orona et al., 1984; Mouradian and Scott, 1988). As
discussed in a later section, there are mitral cells that extend
secondary dendrites to the iEPL or the inner sEPL (Orona
et al., 1984). Therefore, the regions in the EPL occupied by
secondary dendrites of mitral cells and tufted cells gradually
shift from deep to superficial. Interestingly, granule cells are
also subgrouped into at least three populations based on their
dendritic extension patterns in the EPL: the type-I granule cell
ramifies spiny dendrites at any depth of the EPL; dendrites of the
type-II granule cell extend only in the deep EPL; and the type-
III granule cell ramifies spiny dendrites predominantly in the
superficial EPL (Schneider and Macrides, 1978; Mori et al., 1983;
Orona et al., 1983; Merkle et al., 2007). A computational analysis
indicated that lateral inhibition mediated by dendrodendritic
synapses between secondary dendrites of projection neurons and
granule cell dendrites in the EPL could spread through granule
cells only in a mitral-mitral or tufted-tufted way, but not mitral-
tufted (Cavarretta et al., 2018). However, it was also shown
that individual granule cells could influence a large group of
both mitral and tufted cells belonging to at least 15 glomerular
modules (Arnson and Strowbridge, 2017).

The activity of OB projection neurons is also regulated
by other interneurons, such as short-axon cells (Pressler and
Strowbridge, 2006; Parrish-Aungst et al., 2007; Eyre et al.,
2008; Eyre et al., 2009; Arenkiel et al., 2011; Burton, 2017;
Burton et al., 2017). In the EPL, mitral and tufted cells
form reciprocal and non-reciprocal connections with EPL-
located interneurons (EPL-IN) expressing parvalbumin (PV),

FIGURE 3 | Subpopulations of projection neurons in rodent main olfactory bulb. (A) Morphological differences of projection neurons in the rodent olfactory bulb (OB).
Type I mitral cells (M:I) extend their secondary dendrites in the deepest sublayer of the external plexiform layer (dEPL) while those of type II mitral cells (M:II) project to
the intermediate EPL (iEPL). Somata of internal tufted cells (iT) are found in the dEPL, and their secondary dendrites extend in the iEPL. Middle tufted cells are mostly
located in the iEPL. Tufted cells located in the superficial EPL (sEPL) or glomerular layer (GL) are classified as external tufted cells (eT). The external tufted cells are
further subclassified into cells with secondary dendrites projecting to the sEPL or cells absent of secondary dendrites. The deeper the location of projection neurons
cell somata in the OB, the longer the secondary dendrites are. (B) Timings of MOB projection neuron generation in the developing mouse brain. Mitral cells are
generated between E9 and E13 followed by the middle (E12–E16) and external (E13–E18) tufted cells.
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somatostatin (SST), vasoactive intestinal peptide (VIP), and/or
Corticotropin-Releasing Hormone (CRH) (Toida et al., 1994;
Lepousez et al., 2010; Huang et al., 2013; Matsuno et al., 2017).
EPL-INs form broader patterns of connectivity with mitral and
tufted cells than granule cells (Huang et al., 2016), which is
consistent with the broader odor tuning of EPL-INs (Kato et al.,
2013; Miyamichi et al., 2013). Interestingly, CRH-positive EPL-
INs provide stronger inhibition onto tufted cells than mitral cells,
and tufted cells exhibit more linearly additive responses to odor
mixtures without EPL-IN inhibitions (Liu G. et al., 2019). On
the other hand, SST-positive EPL-INs are located in the dEPL
and extend dendrites specifically into the dEPL (Lepousez et al.,
2010). Together with the results showing that lateral inhibition
differs between mitral cells and tufted cells (Geramita et al., 2016;
Geramita and Urban, 2017; Matsuno et al., 2017), these results
suggest that mitral and tufted cell activities are regulated mostly
by different inhibitory circuits.

Axons of OB projection neurons ramify both within the OB
and in the olfactory cortex (Kishi et al., 1984; Ojima et al., 1984;
Orona et al., 1984; Igarashi et al., 2012). Within the OB, the
axon collaterals terminate predominantly in the GCL to form
asymmetric synapses on somata and dendrites of granule cells
and short axon cells (Price and Powell, 1970a,b; Eyre et al.,
2008). In the rabbit OB, the collaterals of mitral cells were
distributed widely from the deep portion to the most superficial

portion of the GCL (Kishi et al., 1984). The collaterals of internal
tufted cells tended to be distributed more superficially in the
GCL than mitral cells while those of middle tufted cells were
distributed in the most superficial GCL (Kishi et al., 1984). It
was also reported that the collaterals of external tufted cells run
through the IPL to connect lateral and medial sides of the odor
map (Liu and Shipley, 1994; Belluscio et al., 2002; Lodovichi
et al., 2003). Since granule cells that project their dendrites to
the superficial and deep EPL tend to localize in the superficial
and deep GCL, respectively (Orona et al., 1983; Imamura et al.,
2006), different types of OB projection neurons seem to construct
distinct neuronal microcircuits within the OB.

Projection neuron axons extend from the ventrolateral side
of the OB and form the LOT before innervating the olfactory
cortex (Kishi et al., 1984; Yamatani et al., 2004; Walz et al., 2006;
Igarashi et al., 2012). AOB mitral cell axons pass through the
deepest layer of the LOT, and the axons of the MOB mitral
and tufted cells are found in the intermediate and superficial
layers, respectively (Inaki et al., 2004; Yamatani et al., 2004).
The location of the axons assists in preserving the topographical
organization of the olfactory information as it extends from the
OB to the olfactory cortex. Target regions of the AOB mitral cells
and MOB mitral and tufted cells rarely overlap (Figure 4). The
AOB mitral cells transmit the information from the vomeronasal
organ to the bed nucleus of the accessory olfactory tract (BAOT),

FIGURE 4 | Innervation patterns of olfactory bulb projection neurons in the rodent brain. Mitral cells in the accessory olfactory bulb (AOB) project their axons to the
bed nucleus of the accessory olfactory tract (BAOT), the bed nucleus of stria terminalis (BNST), the medial amygdaloid nucleus (MEA), and the posteromedial cortical
amygdaloid nucleus (PMCo). Mitral cells (M) in the main olfactory bulb (MOB) innervate the anterior olfactory nucleus (AON), the anterior and posterior piriform cortex
(aPC and pPC), the olfactory tubercle (OT), the lateral entorhinal cortex (LEC), the MEA, and the anterior and posterolateral cortical amygdaloid nucleus (ACo and
PLCo). However, the axons of tufted cells (mT and eT) project only to the anterior portion of the olfactory cortex including the pars externa of the AON and the
anterolateral OT.
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the BNST, the medial amygdaloid nucleus (MEA), and the
posteromedial cortical amygdaloid nucleus (PMCo) (Scalia and
Winans, 1975; Davis et al., 1978; Yoshihara et al., 1999; von
Campenhausen and Mori, 2000). The MOB mitral and tufted
cells innervate the olfactory cortex consisting of the AON, the
anterior and posterior piriform cortex (aPC and pPC), the OT,
the lateral entorhinal cortex (LEC), the MEA, and the anterior
and posterolateral cortical amygdaloid nucleus (ACo and PLCo)
(Scalia and Winans, 1975; Haberly and Price, 1977; Yoshihara
et al., 1999; Miyamichi et al., 2010; Ghosh et al., 2011; Sosulski
et al., 2011; Hintiryan et al., 2012; Igarashi et al., 2012; Hirata
et al., 2019). Within the MEA, AOB mitral cell axons terminate
in the deep region, and the MOB mitral cell axons are found
in the superficial layer without overlap (Kang et al., 2009).
Several studies showed that a single mitral cell innervates the
entire olfactory cortex while a tufted cell projects only to part
of the AON and OT (Nagayama et al., 2010; Igarashi et al.,
2012; Hirata et al., 2019). Within the OT, middle tufted cells
project to the lateral portion, whereas the medial portion is
preferentially innervated by mitral cells (Igarashi et al., 2012).
Although it was previously undetermined if external tufted cells
project their axons outside the OB (Schoenfeld et al., 1985; Tobin
et al., 2010; Lukas et al., 2019), Hirata et al. (2019) recently
showed that at least a subpopulation of external tufted cells
do target the anterolateral edge of the OT as well as the pars
externa of the AON.

Physiological Properties
Odor responses of mitral and tufted cells are regulated by their
intrinsic physiological properties and the intraglomerular and
interglomerular circuitry (Aungst et al., 2003; Shao et al., 2012,
2013; Adam et al., 2014; Fukunaga et al., 2014). Many studies have
reported the dissimilarity in odor responses between mitral and
tufted cells. First, a distinct combination of odorants excites or
suppresses the output of mitral and tufted cells. Interestingly, a
specific odor can inhibit mitral cell excitation, while the external
tufted cells show a distinct lack of the odor-specific suppression
which is believed to be shaped by interglomerular inhibition
(Adam et al., 2014; Kollo et al., 2014; Banerjee et al., 2015;
Economo et al., 2016). Molecular receptive range (MRR) is
defined as the odor spectrum that activated by a given odorant
receptor, glomerulus, or a mitral or tufted cell, and is important
for odor discrimination. It was reported that middle tufted
cells have a broader MRR than mitral cells (Nagayama et al.,
2004; Adam et al., 2014). Similarly, even among the projection
neurons targeting the same glomerulus, the deeper the somata
location, the narrower the MRRs (Kikuta et al., 2013). Since the
MRRs of OB projection neurons are largely regulated by lateral
inhibition mediated by the dendrodendritic synapses formed
between mitral/tufted cells and granule cells (Yokoi et al., 1995;
Tan et al., 2010; Geramita et al., 2016), the length of the secondary
dendrites may be a critical determinant of the MRR.

It has been suggested that not only the MRRs but also
the temporal components of the projection neuron activity
contributes to odor identification (Schaefer and Margrie, 2007;
Uchida et al., 2014; Wilson et al., 2017; Blazing and Franks, 2020).
There are notable differences between mitral and tufted cells

in temporal activation patterns after odor stimulation. Tufted
cells can respond to lower concentrations (∼10 times lower than
mitral cells) of odor stimuli with a higher frequency (>100 Hz),
whereas the typical firing rate of mitral cells is less than 100 Hz
(Nagayama et al., 2004; Igarashi et al., 2012; Kikuta et al.,
2013; Adam et al., 2014). In vitro studies suggested that the
greater excitability of tufted cells is caused by stronger afferent
excitation, greater intrinsic excitability, and less inhibitory tone
(Schneider and Scott, 1983; Burton and Urban, 2014; Arnson
and Strowbridge, 2017; Geramita and Urban, 2017). On the
other hand, mitral cells respond to strong OSN stimulation with
sustained firing, or persistent discharge, that continues after odor
stimulation (Adachi et al., 2005; Matsumoto et al., 2009; Geramita
and Urban, 2017; Vaaga and Westbrook, 2017). The timing of
firing onset in reference to the respiratory cycle is also different
between mitral and tufted cells. Tufted cell spiking is phase-
locked to OSN stimulation without sustained firing and starts
during the middle of the inhalation phase (early-onset), while
mitral cells respond with later-onset during the transition phase
from inhalation to exhalation in anesthetized freely breathing
rodents (Fukunaga et al., 2012; Igarashi et al., 2012). However,
in an artificial inhalation paradigm, superficial, middle, and deep
projection neurons were not reliably distinguished based on the
timing of their inhalation-evoked activity (Diaz-Quesada et al.,
2018; Short and Wachowiak, 2019).

External tufted cells receive direct OSN input and provide
feedforward excitation to other neurons in the GL including
periglomerular and short-axon cells and therefore are involved
in interglomerular suppression of other OB projection neurons
(Aungst et al., 2003; Hayar et al., 2004a; Whitesell et al.,
2013; Liu and Liu, 2018). In addition, as described in the
previous section, at least a subset of external tufted cells target
their axons to the anterolateral edge of the OT and the pars
externa of the AON (Hirata et al., 2019), suggesting that they
contribute to parallel pathways of the olfactory system. Focusing
on intrinsic physiological properties, the external tufted cells
inherently generate rhythmic theta bursts (1–10 Hz) of action
potentials and respond optimally to rhythmic, sniffing-related
input (Hayar et al., 2004b; Liu and Shipley, 2008). On the
other hand, mitral cells have biphasic membrane potentials
that control the responsivity to OSN stimuli (Heyward et al.,
2001; Kollo et al., 2014). As suggested from the differences in
intrinsic properties, responses to odor stimuli of external tufted
cells are distinct from mitral cells (Vaaga and Westbrook, 2016,
2017). Moreover, cholecystokinin (CCK) is a neuropeptide that is
known to express strongly in a subset of the external tufted cells
(Seroogy et al., 1985; Liu and Shipley, 1994; Gutierrez-Mecinas
et al., 2005; Baltanas et al., 2011), although in situ hybridization
analysis and recent immunohistochemical studies indicate a weak
CCK expression also in mitral cells (Ingram et al., 1989; Hirata
et al., 2019). Optical imaging of different mouse OB projection
neurons showed that CCK-positive external tufted cells exhibited
a shorter range of odor response latencies and durations than
mitral cells and other external tufted cell populations (Short and
Wachowiak, 2019). Thus, external tufted cells likely transmit the
olfactory information to specific regions in the olfactory cortex
with unique temporal patterns. On the other hand, vasopressin,
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a neuropeptide, is predominantly expressed by external tufted
cells with secondary dendrites and some middle tufted cells, but
not by mitral cells, in the rodent OB (Tobin et al., 2010; Lukas
et al., 2019). It is proposed that the vasopressin-positive external
tufted cells are involved in mechanisms of social recognition via
the odor signatures (Dluzen et al., 1998a,b; Tobin et al., 2010;
Wacker et al., 2011). However, recent studies showed that OSN
stimulation primarily caused strong inhibition of the vasopressin-
positive external tufted cells, suggesting that OSN axons do
not directly activate them (Lukas et al., 2019). Whether the
vasopressin-positive external tufted cells form a distinct neural
circuit/pathway from the other external tufted cells is needed to
be further elucidated.

The various types of oscillations of local field potential (LFP)
are produced in the OB after odor stimulation, and they are
associated with odor perception, discrimination, and learning
(Martin et al., 2004; Beshel et al., 2007; Kay et al., 2009; Lepousez
and Lledo, 2013; Martin and Ravel, 2014; Li et al., 2015; Liu P.
et al., 2020; Losacco et al., 2020). A previous report showed
that the local circuits produce fast-frequency (65–100 Hz) and
slow-frequency (35–65 Hz) gamma oscillations of LFP in the
OB (Kay, 2003). Several reports suggested that the early-onset
fast gamma-oscillations and later-onset slow gamma oscillations
are generated mainly by tufted cell and mitral cell subsystems,
respectively (Manabe and Mori, 2013; Frederick et al., 2016).
On the other hand, it was shown that glomerular networks
coordinate theta oscillations (2–12 Hz) (Hayar et al., 2004b;
Fukunaga et al., 2014). These findings imply that synchronized
oscillatory activity at different frequency may be a key mechanism
for OB projection neurons to process the different aspects of odor
information in parallel.

Heterogeneity of Mitral Cells
Since the MCL is only about the size of one cell body in thickness,
heterogeneity of mitral cells has not been deeply investigated.
However, several lines of evidence indicate that mitral cells do
consist of heterogeneous subpopulations. Although, as noted
above, mitral cells usually extend their secondary dendrites in
the dEPL (Mori et al., 1983; Orona et al., 1984), some mitral
cells extend their secondary dendrites in the iEPL in the rat OB,
even though their somata lay in the MCL (Orona et al., 1984;
Mouradian and Scott, 1988). Orona et al. (1984) classified the
former mitral cells as Type I and the latter as Type II mitral cells
(Figure 3A). Interestingly, the total secondary dendrite length of
Type II mitral cells was longer than that of the middle tufted cell
but shorter than Type I mitral cells (Orona et al., 1984). It remains
to be seen whether there is a difference in axonal projection
patterns between Type I and Type II mitral cells.

Mitral cells may also be subclassified based on their location
along different planes of the OB. For example, mitral cells
located at different regions along the dorsomedial-ventrolateral
axis in the MCL tend to exhibit different projection patterns
toward the OT, cortical amygdala, and MEA (Haberly and
Price, 1977; Scott et al., 1980; Miyamichi et al., 2010; Imamura
et al., 2011; Inokuchi et al., 2017). Retrograde labeling of OB
projection neurons from the olfactory cortex revealed that the
cortical amygdala (ACo and PLCo) and OT receive afferent

projections preferentially from mitral cells in the dorsomedial
and ventrolateral MCL, respectively (Haberly and Price, 1977;
Scott et al., 1980; Miyamichi et al., 2010; Imamura et al., 2011).
MOB mitral cells that project to the MEA are locally found at
the ventral region of the OB and mediate odor-induced attractive
social responses (Lin et al., 2007; Thompson et al., 2012; Inokuchi
et al., 2017; Lemons et al., 2017).

In contrast to the studies reporting differences between mitral
and tufted cells, only a few studies have suggested heterogeneous
physiological and molecular properties among mitral cells. It
has been shown that the α3 subunit of the GABAA receptor, as
well as a subunit of voltage-gated potassium channel (Kv1.2),
are expressed by subsets of mitral cells (Panzanelli et al.,
2005; Padmanabhan and Urban, 2010). In addition, a subunit
of hyperpolarization-activated cyclic nucleotide-gated channel,
HCN2, was expressed in glomeruli in a mosaic pattern (Angelo
and Margrie, 2011; Angelo et al., 2012). These studies also
reported on the diversity of intrinsic biophysical properties
among mitral cells, such as firing frequency and the Ih sag
current, which are supposedly reflective of varying Kv1.2 and
HCN2 expression levels (Padmanabhan and Urban, 2010; Angelo
et al., 2012). Moreover, these differences in molecular and
biophysical properties may endow mitral cells with different odor
response properties (Dhawale et al., 2010; Kikuta et al., 2013).

IMPLICATIONS OF PARALLEL
PATHWAYS FOR OLFACTORY
PROCESSING

Increasing evidence has suggested that mitral and tufted cells
differentially transmit olfactory information to the olfactory
cortex even when they receive OSN inputs within the same
glomerulus. It is noteworthy that the piriform cortex is
innervated only by mitral cell axons, and the piriform cortex
is one of the major brain regions that serves a critical
role in odor encoding, odor identification across different
odor concentrations, odor learning, and discrimination and
perception of complex odor mixtures (Wilson, 2000; Barnes et al.,
2008; Stettler and Axel, 2009; Chapuis and Wilson, 2011; Choi
et al., 2011; Haddad et al., 2013; Bolding and Franks, 2017,
2018; Iurilli and Datta, 2017; Roland et al., 2017; Meissner-
Bernard et al., 2019); see also reviews in Wilson and Sullivan
(2011), Bekkers and Suzuki (2013), Blazing and Franks (2020).
The narrower MRR of mitral cells is likely advantageous in
the process of accurate odor encoding. However, it is also
suggested that mitral cells in the rat MOB do not receive lateral
inhibition broadly from surrounding glomeruli via interneurons,
but rather receive lateral inhibition from only a small number
of spatially distributed glomeruli (Fantana et al., 2008; Shmuel
et al., 2019). Moreover, individual odors activate ensembles of
spatially distributed neurons in the piriform cortex that lack
apparent topographical organization with respect to the odor
map (Stettler and Axel, 2009; Miyamichi et al., 2010; Ghosh
et al., 2011; Sosulski et al., 2011; Igarashi et al., 2012). Instead,
it is proposed that neurons in the piriform cortex stochastically
sample glomeruli to generate a systematic population-level
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representation to identify the odors (Schaffer et al., 2018;
Pashkovski et al., 2020). Thus, the patterns of connectivity from
mitral cells to neurons in the piriform cortex should be elucidated
at the level of synapses, which may identify novel mitral cell
subpopulations and pathways.

The tufted cell pathway has a more rapid activation with lower
odor concentration compared to mitral cells. This implies that
tufted cells may transmit information from the glomeruli to the
olfactory cortex with less spatial and temporal modification, and,
therefore, may be involved in the olfactory functions in which
speed is required for efficient processing. Morphological analyses
showed that tufted cells, including the external tufted cells,
project to part of the AON and the lateral OT (Nagayama et al.,
2010; Igarashi et al., 2012; Hirata et al., 2019). It has been widely
argued that the OT is involved in reward and motivational aspects
of odor information processing, primarily due to the fact that the
OT is a component of the ventral striatum that connects with the
reward system, including the ventral tegmental area (Ikemoto,
2007; Wesson and Wilson, 2011; Gadziola et al., 2015; Yamaguchi,
2017; Zhang et al., 2017). It is particularly noteworthy that an
odor associated with punishment activates the lateral domain
of the OT and induces aversive behavior (Murata et al., 2015;
Yamaguchi, 2017). The neural pathway originating from tufted
cells may be necessary to escape quickly from these aversive odor
sources. In contrast, an odor associated with reward activates the
anteromedial domain of the OT and induces attractive behavior
(Murata et al., 2015; Yamaguchi, 2017; Zhang et al., 2017), which
may be mediated via the mitral cell pathway. Neurons in the AON
that receive inputs from most of the MOB projection neurons
decussate to the contralateral OB (Schoenfeld et al., 1985; Scott
et al., 1985; Illig and Eudy, 2008; Yan et al., 2008). A previous
report showed that AON neurons exhibit respiration phase-
locked firing pattern to ipsi-nostril stimulation, and this activity is
attenuated by contra-nostril stimulation, indicating that the AON
is involved in the function of odor source localization (Kikuta
et al., 2010; Liu A. et al., 2020). Since a subset of external tufted
cells targets the anterolateral edge of the OT as well as the pars
externa of the AON (Hirata et al., 2019), this external tufted
cell subset may play a critical role in the behaviors induced by
reward-related odors and odor source localization.

Another well-known feature of the external tufted cells is to
link the isofunctional glomeruli within the OB (Schoenfeld et al.,
1985; Liu and Shipley, 1994). It has been known that each rodent
OB has two mirror-image OR maps, one in the lateral side and
the other in the medial side, within which the two glomeruli
representing a particular OR are mapped symmetrically (Nagao
et al., 2000). The axon collaterals of an external tufted cell
run through the IPL and terminate beneath the mitral cells at
the corresponding region of the other side of the two maps
(Belluscio et al., 2002; Lodovichi et al., 2003). The axons synapse
onto the dendrites of granule cells within the IPL and therefore
inhibit the surrounding mitral and tufted cells, which results in
mutual inhibition between the lateral and medial maps (Belluscio
et al., 2002). Although the functional roles of each map in odor
information processing are unknown, a few differences in odor
response patterns between glomeruli in these maps have been
reported (Zhou and Belluscio, 2008, 2012; Baker et al., 2019;

Sato et al., 2020). The functional difference of two maps may be
elucidated through further study on the external tufted cells.

GENERATION OF DIFFERENT TYPES OF
OB PROJECTION NEURONS

The strategy to assign neurons having different birthdates with
different properties is widely used in the brain to generate
a variety of neuronal subtypes useful for processing complex
information. In the developing retina, all types of cells, including
Müller glia, are generated from a single pool of progenitors
(Turner and Cepko, 1987; Bassett and Wallace, 2012). The
fate of the precursors is largely determined by the timing of
neurogenesis, namely that the first neurons born are the RGCs
followed by cone photoreceptors, horizontal cells, amacrine cells,
rod photoreceptors, and bipolar cells (Bassett and Wallace,
2012). Müller glia are the last of the cells to emerge in the
retina. Even among the amacrine cells, it is suggested that
the birthdates specify their destinations and subtype identities
(Voinescu et al., 2009). The cerebral cortex is made up of six
layers, and each layer contains pyramidal projection neurons that
possess distinct dendritic morphologies and axonal target regions
as well as different molecular expression profiles (Molyneaux
et al., 2007; Kwan et al., 2012; Greig et al., 2013; Narayanan
et al., 2017; Gerfen et al., 2018). The mouse cortical pyramidal
neurons are generated between E11 and E18, and the neurons
with different birthdates migrate toward distinct layers with an
inside-out manner (Molyneaux et al., 2007; Kwan et al., 2012;
Greig et al., 2013).

Similarly, the timing of neurogenesis is a major contributor to
producing diversity in the OB projection neurons. The earliest
generated projection neurons in the mouse OB are the AOB
mitral cells that emerge around embryonic day (E) 9 and 10
(Hinds, 1968; Imamura and Greer, 2015; Hirata et al., 2019).
A recent study indicated that the AOB and MOB projection
neurons are generated from different progenitor cells whereas a
single progenitor cell can give rise to both MOB mitral and tufted
cells in the developing mouse OB (Sanchez-Guardado and Lois,
2019). Nevertheless, MOB mitral and tufted cells are generated
at different time points; mitral cells are generated between E9
and E13 having a peak at E11, while middle and external tufted
cells are born during a later period between E12 and E18 (Hinds,
1968; Blanchart et al., 2006; Imamura et al., 2011; Hirata et al.,
2019) (Figure 3B). Thymidine analog labeling and genetic tracing
experiments have shown that middle tufted cells are generated
earlier than external tufted cells (Hinds, 1968; Winpenny et al.,
2011; Hirata et al., 2019). Therefore, similar to cortical pyramidal
neurons, projection neurons in different layers are also generated
at different time points with an inside-out manner in the MOB.

Using the thymidine analog labeling method, we also showed
that mitral cells generated at E9 or E10 (early-generated mitral
cells) were preferentially localized to the dorsomedial MCL,
while mitral cells generated at E12 or E13 (late-generated mitral
cells) were predominantly located in ventrolateral MCL in the
mouse OB (Imamura et al., 2011). Later, we further revealed
that early- and late-generated mitral cells extend their secondary
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dendrites in the dEPL and iEPL, respectively, indicating that late-
generated mitral cells can be classified as the previously identified
Type II mitral cells (Orona et al., 1984; Imamura and Greer,
2015). These results strongly suggest that neuronal birthdate
is a significant contributor in the generation of morphological
differences, not only between mitral and tufted cells, but also
among subpopulations of mitral cells. Based on mitral cell
location contributing to the projection pattern of target structures
in the olfactory cortex, neuronal birthdate may also be considered
an implication of a cells function. However, a critical next step
is to determine whether there are differences in physiological
and/or molecular properties between early- and late-generated
mitral cells.

In summary, the olfactory system processes multiple aspects
of olfactory information through parallel pathways. Similar
to the visual system, the diversity of OB projection neurons
provides the basis for the parallel pathways in the rodent OB,
which has been established throughout the course of evolution.
In the retina, distinct RGC types have been characterized
by dendritic and axonal arborization patterns as well as
physiological parameters. More recently, molecular expression
patterns, including transcription factors, have been used to
examine the diversity of RGCs (Sanes and Masland, 2015; Baden
et al., 2016; Rheaume et al., 2018). In this review, we have
summarized the morphological and physiological diversities of
OB projection neurons. Although differing molecular expression
profiles of OB projection neurons in the rodent OB have yet
to be identified, the timing of neurogenesis seems to regulate
the generation of different projection neuron subpopulations.
Thus far, a large number of transcription factors expressed in
developing projection neurons in the rodent OB have been
reported (Winpenny et al., 2011; Imamura and Greer, 2013),

and we and others showed that each transcription factor
appears in the developing OB with a distinct spatiotemporal
pattern (Williams et al., 2007; Campbell et al., 2011; Nguyen
and Imamura, 2019). In addition, the results from large-
scale analyses using omics approaches are available (Campbell
et al., 2011; Kawasawa et al., 2016). A combination of
cutting edge techniques including single-cell RNA-sequencing,
tissue-clearing and whole-brain imaging, optical imaging, and
electrophysiological recordings can now be used to reveal
molecular, morphological, and physiological properties of
OB projection neurons. The knowledge acquired by these
techniques will further elucidate the functions and ramifications
of each pathway.
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