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Schizophrenia is a severe mental illness that affects ∼1% of the world’s population. It is

clinically characterized by positive, negative, and cognitive symptoms. Currently available

antipsychotic medications are relatively ineffective in improving negative and cognitive

deficits, which are related to a patient’s functional outcomes and quality of life. Negative

symptoms and cognitive deficits are unmet by the antipsychotic medications developed

to date. In recent decades, compelling animal and clinical studies have supported

the NMDA receptor (NMDAR) hypofunction hypothesis of schizophrenia and have

suggested some promising therapeutic agents. Notably, several NMDAR-enhancing

agents, especially those that function through the glycine modulatory site (GMS) of

NMDAR, cause significant reduction in psychotic and cognitive symptoms in patients with

schizophrenia. Given that the NMDAR-mediated signaling pathway has been implicated

in cognitive/social functions and that GMS is a potential therapeutic target for enhancing

the activation of NMDARs, there is great interest in investigating the effects of direct

and indirect GMS modulators and their therapeutic potential. In this review, we focus on

describing preclinical and clinical studies of direct and indirect GMS modulators in the

treatment of schizophrenia, including glycine, D-cycloserine, D-serine, glycine transporter

1 (GlyT1) inhibitors, and D-amino acid oxidase (DAO or DAAO) inhibitors. We highlight

some of the most promising recently developed pharmacological compounds designed

to either directly or indirectly target GMS and thus augment NMDAR function to treat

the cognitive and negative symptoms of schizophrenia. Overall, the current findings

suggest that indirectly targeting of GMS appears to be more beneficial and leads to less

adverse effects than direct targeting of GMS to modulate NMDAR functions. Indirect
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GMS modulators, especially GlyT1 inhibitors and DAO inhibitors, open new avenues for

the treatment of unmet medical needs for patients with schizophrenia.

Keywords: schizophrenia, unmet medical need, negative symptoms, cognitive impairments, glycine modulatory

site (GMS), d-serine, glycine transporter 1 (GlyT1) inhibitor, D-amino acid oxidase (DAO) inhibitor

INTRODUCTION TO SCHIZOPHRENIA AND
UNMET MEDICAL NEEDS IN PATIENT
WITH SCHIZOPHRENIA

Schizophrenia is a devastating mental illness, and the lifetime
prevalence of schizophrenia is ∼1%. Globally, there were
1.13 million schizophrenia cases and 12.66 million DALYs
(disability-adjusted life years) due to schizophrenia in 2017 (1).
The global burden of schizophrenia remains large and continues
to increase, increasing the burden on health-care systems
worldwide. This debilitating brain disorder typically emerges in
late adolescence and early adulthood and is characterized by
three main symptoms: positive symptoms, negative symptoms,
and cognitive deficits (2, 3). Positive symptoms include delusions,
hallucinations, and disorganized thoughts and speech typically
regarded as manifestations of psychosis. Negative symptoms
include reduced affect display, alogia, anhedonia, asociality,
avolition, lack of emotional response, and motivation. Cognitive
deficits include dysfunctions in working memory, attention,
processing speed, visual and verbal learning with substantial
deficits in reasoning, planning, abstract thinking, and problem
solving. Cognitive impairments and negative symptoms, as the
core features of schizophrenia, are enduring and correlate with
the degree of disability (4, 5).

Currently, antipsychotic medications are mainstays in the
treatment of schizophrenia and a range of other psychotic
disorders. Positive symptoms of schizophrenia often respondwell
to antipsychotic drugs. In contrast, the available antipsychotic
medications, which mainly affect the dopamine and serotonin
receptor systems, are relatively ineffective in improving negative
and cognitive deficits. Negative symptoms of schizophrenia
tend to linger or worsen over time and are accompanied by
impaired cognitive function in patients with schizophrenia (6).
The improvement of cognitive dysfunction is a better predictor
of patient quality of life (7, 8). Since existing pharmacological
and biological therapeutic modalities fail to improve cognitive
symptoms, various cognitive remediation strategies have been
adopted (9). In addition, the cognitive deficits in adolescents
at risk for schizophrenia and in patients after their first
episode of schizophrenia suggest that schizophrenia-related
cognitive dysfunction is not the result of chronic illness (10).
The US National Institute of Mental Health (NIMH) thus
developed theMeasurement and Treatment Research to Improve
Cognition in Schizophrenia (MATRICS), which significantly
raised awareness of the cognitive dysfunction in schizophrenia
(11). In addition to the reliance on the dopamine receptor
D2 (DRD2) as a conventional therapeutic target (12), a focus
on the different symptom domains of schizophrenia may lead
to the identification of different endophenotypic markers that

can promote the development of novel therapeutics useful for
rational cellular and molecular targets.

THE ROLES OF GLUTAMATERGIC
TRANSMISSION AND NMDAR
(N-METHYL-D-ASPARTATE RECEPTOR)
HYPOFUNCTION IN THE
PATHOPHYSIOLOGY OF SCHIZOPHRENIA

Similar to those of many other psychiatric disorders, the
etiology and pathophysiology of schizophrenia remain
unclear. Accumulating evidence from human genetic studies
and association studies has revealed several schizophrenia
susceptibility loci and genes. A genome-wide association
study (GWAS) revealed notable associations relevant to
the major hypotheses of the etiology and treatment of
schizophrenia, including DRD2 (the main target of many
effective antipsychotics) and multiple genes [e.g., metabotropic
glutamate receptor 3 (GRM3), glutamate ionotropic receptor
NMDA type subunit 2A (GRIN2A), serine racemase (SR), and
glutamate receptor, ionotropic, AMPA receptor 1 (GRIA1)]
involved in glutamatergic neurotransmission and synaptic
plasticity (13). In contrast to the conventional view of dopamine
involvement in schizophrenia (i.e., the dopamine hypothesis
of schizophrenia), glutamatergic neurotransmission has been
gradually attracting attention in the investigation of the
pathophysiology and treatment of schizophrenia in recent
decades (14–16).

In the central nervous system (CNS), glutamate is the
main excitatory neurotransmitter and activates metabotropic
and ionotropic glutamate receptors. NMDARs are ionotropic
glutamate-gated cation channels with high calcium permeability
that play vital roles in synaptic transmission, neuroplasticity,
and cognitive functions. Heterotetrameric NMDARs are widely
distributed throughout most of the brain and are composed
of two obligatory GluN1 (NR1) subunits with either two
GluN2 (NR2) subunits or a combination of GluN2 (NR2) and
GluN3 (NR3) subunits. As illustrated in the top left panel of
Figure 1, activation of NMDARs requires not only the binding
of glutamate on the GluN2 subunit but also the binding of
the coagonist glycine or D-serine at the glycine modulatory site
(GMS, also referred to as the glycine-B site or the strychnine-
insensitive glycine site) on the GluN1 subunit (17). Intriguingly,
although the endogenous high-potency coagonists glycine and
D-serine are present in the extracellular space (18), the GMSs
on NMDARs are not saturated in vivo (19). D-serine appears
to be the dominant endogenous coagonist for NMDARs and
a modulator for NMDAR-related neurotoxicity, even though
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the levels of glycine are 10-fold higher than those of D-serine
(20–22). The activation of NMDARs produces prolonged
increases in intracellular calcium concentration and thus triggers
downstream signaling cascades involved in the regulation of
many physiological and pathophysiological processes (23).

NMDAR has been proposed to be an important and
potential therapeutic target for many CNS and psychiatric
disorders (24). There is increasing evidence acquired through
different approaches supports the supposition that NMDAR
hypofunction plays a role in schizophrenia. In addition to
the abovementioned large-scale GWAS, copy number variant
studies have also led to the identification of rare genetic
variants in NMDAR-related genes and components related
to the postsynaptic density associated with increased risk for
schizophrenia (25, 26). Postmortem brain studies have also
indicated decreased expression of the NR1 subunit (mRNA
and protein) and NR2C subunit (mRNA) in the postmortem
dorsolateral prefrontal cortex in schizophrenic patients (27)
and reductions in D-serine and serine racemase (SR) levels
in patients with schizophrenia (28). A meta-analysis study
further indicated significant decreases in the expression of NR1
mRNA and protein in the prefrontal cortex of schizophrenic
patients (29). In addition to these genetic and postmortem
studies, aberrant NMDAR function has been identified via
the use of psychotomimetic agents. Pharmacological studies
have revealed that the use of NMDAR antagonists (e.g.,
phencyclidine (PCP) and ketamine) causes not only positive
symptoms of schizophrenia but also negative symptoms and
cognitive deficits in healthy humans (30–32). Subanesthetic
doses of ketamine not only induce psychotomimetic effects
but also increase amphetamine-induced dopamine release in
the striatum, which has been observed in schizophrenic
patients (33). In addition, positron emission tomography (PET)
imaging data have indicated links between glutamatergic system
dysfunction and schizophrenia (34). NMDAR hypofunction in
parvalbumin (PV) interneurons has also been proposed as a
pathological mechanism of schizophrenia (35). Proton magnetic
resonance spectroscopy (MRS) studies have revealed increased
glutamine levels in the medial prefrontal cortex, anterior
cingulate cortex, and thalamus in drug-naïve patients with first-
episode psychosis (36, 37), suggesting dysregulation of glutamate
neurotransmission (38). Moreover, reduced activation of the
prefrontal cortices (i.e., hypofrontality) has been considered
to underlie negative symptoms and cognitive deficits in
schizophrenia (39–41). Notably, it has been proposed that
antipsychotic medications may reduce NMDARs activity and
produce dysfunctions in the corticolimbothalamic circuit and
hypofrontality in patients with schizophrenia (42). Accordingly,
these studies indicate the involvement of NMDARs in the
pathophysiology of schizophrenia and provide new potential
targets for the treatment of schizophrenia.

Given the importance of glutamate in the NMDAR
hypofunction hypothesis for schizophrenia and NMDAR-
mediated neurotransmission, one possible strategy to boost
NMDAR functions involves either directly or indirectly
enhancing glutamate levels in synapses, as illustrated in the
bottom left and top right portions of Figure 1. However,

excessive glutamate induces high levels of calcium influx,
which has been shown to lead to excitotoxicity and neuronal
injury in cellular and animal models (43, 44). In addition,
indirect enhancement of glutamate via DL-TBOA, a glutamate
transporter 1 (GLT1) inhibitor, resulted in attenuated baroreflex
control of sympathetic nerve activity and heart rate (45).
Apparently, from a safety perspective, neither direct nor indirect
enhancement of synaptic glutamate levels is a reasonable
therapeutic approach in the regulation of NMDAR functions.
Alternatively, agents that act at the GMSs of NMDARs have
been proposed to be promising treatments to moderate severe
negative symptoms and cognitive impairments.

DIRECTLY TARGETING THE GMS ON
NMDARs

A unique characteristic of NMDAR is that the GMS must be
occupied by glycine and/or D-serine for glutamate to induce
channel opening. GMS was first reported by Johnson and
Ascher to facilitate the activation of NMDARs in cultured
mouse brain neurons (18). It was later demonstrated that
glycine is necessary to activate NMDARs (46). Mice carrying
targeted point mutations in the GMS of the NMDAR NR1
subunit gene (Grin1) exhibited marked NMDAR hypofunctions
and deficits in long-term potentiation and spatial learning (47,
48), as well as impaired social ability and spatial recognition
(49). Accumulating evidence has indicated that binding to
the GMS can enhance the affinity and efficacy of glutamate
neurotransmission (50), and the administration of GMS agonists
(e.g., glycine) can benefit schizophrenic patients by regulating
NMDAR-mediated neurotransmission (19). The disturbance of
GMS modulators found in schizophrenia patients has been
identified as a contributor to NMDAR hypofunction. Previous
studies have revealed reduced D-serine and SR in schizophrenia
(28). In addition, the levels of kynurenic acid, the only
known competitively endogenous antagonist of the GMS in
NMDAR, are elevated in the postmortem brain tissue (51)
and in the cerebrospinal fluid (CSF) of living schizophrenic
patients (52), suggesting that GMS occupancy might be shifted
toward antagonism in this disorder. Accordingly, modulation
of NMDAR through the GMS has been proposed as a possible
therapeutic target for the treatment of negative and cognitive
symptoms in schizophrenia (53, 54).

Indeed, several agonists have been designed to either directly
or indirectly target GMS due to its great potential for the
treatment of negative and positive symptoms in schizophrenia.
For example, 3-(4,6-dichloro-2-carboxyindol-3-yl) propionic
acid, an indole-2-carboxylic acid derivative, has been found to
have > 2,100-fold greater affinity for the GMS than glycine
(55), and 3-hydroxy-imidazolidin-4-one derivatives are partial
agonists of the GMS (56). Additional computational methods
that can be used to identify potential agonists have been used (57).
In addition to agonists of the GMS, GMS-specific antagonists,
such as 7-chlorkynurenic or L-701,324, have been developed
for research purposes (58, 59). Although numerous potential
agonists and antagonists have been developed or identified,
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FIGURE 1 | An overview of the hypothesis of N-methyl-D-aspartate receptor (NMDAR) hypofunction in schizophrenia and the direct/indirect treatments in the

regulation of NMDAR functioning. Top left panel: A model of glutamatergic trisynapses: pre-synapses, post-synapses, and astrocytes. Activation of NMDAR requires

not only the binding of glutamate to the GluN2 (NR2) subunit but also the binding of the coagonist glycine or D-serine at the glycine modulatory site (GMS) of the

GluN1 (NR1) subunit. In response to NMDAR activation, the intracellular calcium concentration increases and thereby triggers downstream signaling cascades. After

activation, glutamate and glycine are taken up by astrocytes through the glutamate transporter (GLT1) and glycine transporter (GlyT1), respectively. D-serine, another

coagonist of GMS, is predominantly produced in neurons, is synthesized from L-serine by serine racemase (SR) and is shuttled to astrocytes, where it is stored and

released. NMDARs are critical for synaptic plasticity, cortical maturation, and learning and memory processes. The hypofunction of ionotropic glutamate NMDARs has

been proposed to be a model of schizophrenia in humans, and NMDAR hypofunction plays a key role in the pathophysiology of schizophrenia. Bottom left panel:

Enhancing NMDAR functions through direct treatments. Glutamate, glycine, D-cycloserine, and D-serine compounds directly target postsynaptic NMDAR and

activate NMDAR functioning. Top right panel: Boosting NMDAR functions via indirect treatments (e.g., GLT1 inhibitors, DAO inhibitors, and GlyT1 inhibitors). GLT1

inhibitors block the reuptake of glutamate and increase the synaptic levels of glutamate. D-serine is metabolized into hydroxypyruvate by D-amino acid oxidase (DAO)

in astrocytes. DAO inhibitors block the metabolism of D-serine, which prolongs the synaptic concentration of D-serine. GlyT1 inhibitors block the reuptake of glycine

and increase synaptic levels of glycine.

only a few of the candidates are suitable for advancement
from preclinical studies to clinical trials. To date, most clinical
studies have focused mainly on targeting the GMS using

single amino acids as agonists of GMS, including glycine,
D-cycloserine, and D-serine, as indicated in the bottom left
panel of Figure 1.

Frontiers in Psychiatry | www.frontiersin.org 4 October 2021 | Volume 12 | Article 742058

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Pei et al. Targeting NMDARs to Treat Schizophrenia

Direct Modulation of NMDAR Functions by
Glycine
Glycine is the simplest amino acid and acts as a neurotransmitter
in the CNS. In addition to glycinergic terminals, glycine may
be simultaneously released into the synaptic cleft with GABA
(60). Extracellular glycine is immediately recycled through
glycine transporters, including glycine transporter 1 (GlyT1) in
glial cells or glutamatergic neurons, and glycine transporter 2
(GlyT2) in presynaptic neurons (61). Intracellular glycine is then
metabolized into L-serine by serine hydroxymethyltransferase
in glial cells or catabolized into carbon dioxide and ammonium
by the glycine cleavage system in neurons (62). Glycine
causes inhibitory and excitatory neural transmission via
strychnine-sensitive glycine receptors and NMDA receptors,
respectively. Glycine receptors are mainly located in the
brainstem and spinal cord. In contrast, NMDARs are present
in high density within the cerebral cortices and hippocampus
and are thought to be involved in the pathophysiology of
schizophrenia (24, 63).

Numerous investigations support decreased glutamatergic
signaling and NMDAR hypofunction as pathogenic mechanisms
of schizophrenia. Interestingly, it has been reported that glycine
is upregulated in patients with schizophrenia. Findings on
schizophrenic patients obtained postmortem have revealed
increased binding activity of radiolabeled [3H]glycine in the
brain, especially in the parietal cortex and occipital cortex (64).
Rats treated with a glycine-rich diet for a long period also exhibit
schizophrenia-like abnormalities, including altered sensory
gating function, enlarged cerebral ventricles, and diminished
hippocampal dimensions (65). Similarly, high serum glycine
levels have been reported in patients with chronic schizophrenia,
and these levels have been associated with impaired sensorimotor
gating function in pre-pulse inhibition (66). These findings
imply that glycine levels might compensate for alterations
in glutamate-NMDAR transmission in patients with chronic
schizophrenia. For example, a postmortem study indicated a
striking decrease in tyrosine phosphorylation of the GluN2
subunit in the dorsolateral prefrontal cortex of schizophrenic
patients, but the postsynaptic density of NMDAR complexes in
these patients was, in fact, increased (67). Inconsistently, lower
plasma glycine levels have reported in schizophrenic patients
compared to healthy controls and have been correlated with
negative symptoms of schizophrenia (68). To further elucidate
the glycine levels in the brains of schizophrenia patients, it is
necessary to measure glycine levels in serum and CSF in a large
sample size.

Despite the controversial findings regarding glycine levels
in patients with schizophrenia, glycine-induced augmentation
of NMDAR-mediated neurotransmission has been considered a
potentially safe, and feasible approach for ameliorating negative
symptoms of schizophrenia. Glycine appears to be safe, even at
dosages of as high as 5 g/kg per day in rats (69) and 0.8 g/kg
body weight per day in schizophrenic patients (70). In addition
to its high biocompatibility and low toxicity, the effect of glycine
on the amelioration of schizophrenia-related symptoms has been
demonstrated in animal models of schizophrenia. Subchronic

administration of glycine at doses relevant to its clinical
effects (71) significantly prevents PCP-induced abnormalities
in auditory mismatch negativity (MMN, a neurophysiological
characteristic of schizophrenia) (72). Glycine also significantly
reduced novelty- and methamphetamine-induced locomotor
activity in neonatal ventral hippocampal damaged rats compared
with sham rats (73). In addition, microinjection of 1 µmol
of glycine into the mouse prefrontal cortex alleviated PCP-
induced behavioral deficits in latent learning (74), suggesting
the involvement of glycine in the regulation of frontocortical
NMDARs and cognitive functions. Glycinamide, a prodrug of
glycine, can be converted to glycine in CNS by hydrolysis
and it prevented MK-801 (dizocilpine, a non-competitive
antagonist of NMDAR)-induced deficits in a novel object
recognition task in rabbits (75, 76). Despite contrasting
neurochemical profiles, a recent study further proved that partial
glycine site agonists and glycine reuptake inhibitors display
comparable precognitive effects in rats and therefore have
potential relevance as treatments of cognitive impairments in
schizophrenia (77).

The effects of glycine on the treatment of schizophrenic
symptoms in clinical studies are summarized in Table 1.
Briefly, in the late 1980s, a series of open-label clinical studies
failed to demonstrate the therapeutic potential of glycine in
the amelioration of negative symptoms of schizophrenia (78–
80). Milacemide, an acylated prodrug of glycine, did not
alleviate schizophrenic symptoms, and psychotic symptoms were
worsened (91, 92). Later, glycine was demonstrated to improve
negative symptoms at 0.4 g/kg/day (81). Consistently, recent
clinical studies have also indicated that a high dose of glycine
is associated with improvement in clinical rating scales of
schizophrenia, especially scales of negative symptoms (70, 71, 82,
83, 86, 89, 90). However, inconsistent results have been reported
and indicate that glycine administered with clozapine had no
effect on patients with schizophrenia (84, 85, 87). In a 16-week
randomized double-blind, double-dummy, and parallel-group
clinical trial conducted at four sites in the United States and one
site in Israel, no significant differences were found between the
total average scores on the Scale for the Assessment of Negative
Symptoms (SANS) of patients treated with glycine or placebo,
and no change in the average cognitive scores was apparent
(88). The lack of consistency across trials could be due to small
sample sizes, different doses of glycine, different trial durations,
and different clinical ratings. Notably, glycine is an inhibitory
neurotransmitter in glycinergic neurons, and it has been
reported to have poor CNS penetration (i.e., rate of permeation
across the blood-brain barrier) (93). Therefore, higher doses of
glycine might be required for treatment purpose in patients.
Unfortunately, systemic administration of high-does glycine is
problematic and is not well-tolerated. The administration of
high-dose glycine can result in some unwanted adverse effects,
such as nausea (71, 83, 87) and sensorimotor gating deficits (94).
Thus, these studies suggest that glycine is not a generally effective
therapeutic option for treating negative symptoms or cognitive
impairments. It seems wise to explore other drug candidates
targeting GMS in the glutamatergic system.
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TABLE 1 | Summary of effects of glycine on the treatment of schizophrenic symptoms in clinical studies.

Compound Type Study site Patient Usage Subject number

(placebo vs.

experiment)

Dosage Trial

duration

(weeks)

Clinical outcomes Clinical ratings References

Glycine OL US SZ Add on 11 (no placebo) 5–25 (g/day) 32–36 – Neuroleptics intake (78)

OL US SZ Add on 6 (no placebo) 10.8 (g/day) 0.6–8 – BPRS, SANS, CGI,

SAS, AIMS

(79)

OL US SZ Add on 6 (no placebo) 15 (g/day) 6 – BPRS (80)

DB + additional

OL

US SZ Add on 7 vs. 7 2–30 (g/day) 8 DB + 8

OL

+ (Negative symptoms) PANSS, ESRS, AIMS (81)

OL US SZ Add on 5 (no placebo) 0.14–0.8

(g/kg/day)

8 + (Negative symptoms) PANSS, SANS, ESRS,

AIMS

(82)

DB (Crossover) Israel TRS SZ Add on 11 vs. 11 0.8 (g/kg/day) 6 + (Negative, depressive,

cognitive symptoms)

PANSS, SAS, AIMS (70)

DB (Crossover) Israel TRS SZ Add on 22 vs. 22 0.8 (g/kg/day) 6 + (Negative, depressive,

cognitive symptoms)

BPRS, PANSS, SAS,

AIMS

(83)

DB (Parallel) US TRS SZ Add on (Clozapine) 10 vs. 9 30 (g/day) 12 – BPRS, SANS, SAS,

SAFTEE

(84)

DB (Parallel) US SZ Add on (Clozapine) 13 vs. 14 60 (g/day) 2 SB + 8

DB

– BPRS, PNASS, SANS,

HDRS, SAS, GAS

(85)

DB (Crossover) US SZ Add on 6 vs. 6 0.2–0.8

(g/kg/day)

6 + (Negative symptoms) PANSS, BARS, SAS,

AIMS

(86)

DB (Crossover) Israel SZ Add on

(Olanzapine &

risperidone)

17 vs. 17

(Olanzapine: 12;

Risperidone: 5)

0.06–0.8

(g/kg/day)

6 + (Negative, cognitive,

positive symptoms,

excitement, depression)

BPRS, PANSS, SAS,

AIMS

(71)

DB (Crossover) Canada TRS SZ Add on (Clozapine) 12 vs. 12 60 (g/day) 28 – BPRS, PANSS, GAF,

ESRS

(87)

DB (Parallel)

(NCT00222235)

US & Israel SZ or SZA Add on (Without

clozapine)

45 (55) vs. 42 (54) 15–60 (g/day) 16 – BPRS, SANS, CGI,

SAS, AIMS

(88)

DB (Parallel) Australia SZ or SZA Add on 21 vs. 22 (SZ:17;

SZA:5)

0.2–0.6

(g/kg/day)

6 + (Acute: duration MMN;

chronic:PANSS scores)

PANSS, CDRS,

WSAS, ERP (MMN)

(89)

DB (Crossover) US SZ (9p24.1 CNV) Add on 2 vs. 2 6–48 (g/day) 6 + (Clinical symptoms) BPRS, PANSS, CGI,

Motor abnormalities

(90)

OL 2 (no placebo) 5.4–86.5

(g/day)

47 + (Clinical symptoms)

+, Positive clinical results; −, Negative clinical results; AIMS, Abnormal Involuntary Movements Scale; BPRS, Brief Psychiatric Rating Scale; CDRS, Calgary Depression Rating Scale; CGI, Clinical Global Impression; DB, double-blind;

ERP, Event Related Potential; ESRS, Extrapyramidal Symptom Rating Scale; GAF, Global Assessment of Functioning Scale; GAS, Global Assessment Scale; HDRS, Hamilton Depression Rating Scale; MMN, Mismatch negativity; OL,

open-label; PANSS, Positive and Negative Syndrome Scale; SAFTEE, Systematic Assessment for Treatment Emergent Event; SANS, Scale for the Assessment of Negative Symptoms; SAS, Simpson Angus Scale for Assessment of

Extrapyramidal Side Effects; SZ, schizophrenia; SZA, schizoaffective disorder; TRS: treatment-resistant; WSAS: Work and Social Adjustment Scale.
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Direct Modulation of NMDAR Functions by
D-Cycloserine
D-cycloserine is a well-known antibiotic metabolite produced
by Streptomyces orchidaceus and Streptomyces garyphalus that
has therapeutic effects on tuberculosis. D-cycloserine has also
been found to act as a partial agonist targeting the GMS
of NMDAR (95), and its binding affinity is 100-fold less
than that of glycine (96). Similar to glycine, D-cycloserine
has been reported to improve cognitive functions through
modulation of NMDAR function in animal studies. For
example, both systemic administration and intra-amygdala
infusions of D-cycloserine facilitated conditioned fear extinction
and improved memory consolidation in rats (97, 98). Single
administration of D-cycloserine also significantly improved
visual recognition memory in rhesus monkeys (99). However,
inconsistently, some studies reported that D-cycloserine had no
effect on neural activity in a mouse model of schizophrenia (100),
MK-801-induced sensorimotor gating dysfunction in mice (101),
or acquisition of memory performance inMK-801-treated rats in
the radial arm maze and the water maze (102).

Similarly, inconsistent findings have also been reported in
clinical studies. Effects of D-cycloserine on the treatment of
schizophrenic symptoms in clinical studies are summarized
in Table 2. Briefly, some studies indicated that D-cycloserine
at a dosage of 50 or 100 mg/day had therapeutic effects in
the treatment of negative symptoms and/or cognitive deficits
(90, 103, 106, 108, 111, 112, 115–119). In contrast, others
reported that D-cycloserine had no effect on patients with
schizophrenia (88, 104, 107, 113, 114). There are several possible
explanations for the contradictory findings in clinical studies.
First, D-cycloserine has a very narrow therapeutic window.
The administration of D-cycloserine >100 mg/day has been
reported to result in the deterioration of clinical outcomes
in patients with schizophrenia (96, 103, 110). It has been
shown that D-cycloserine has neurotoxic side effects, including
hyperexcitability, depression, anxiety, memory deficits, and
even seizures (121). Second, D-cycloserine administered with
clozapine can result in drug-drug interactions, which might
lead to the exacerbation of symptoms in patients (105, 109).
Third, the treatment effect of D-cycloserine might be influenced
by heterogeneity caused by differences in onset age and white
matter integrity (120). In addition, a study revealed that patients
receiving D-cycloserine demonstrated a significant increase in
temporal lobe activation, suggesting that the addition of D-
cycloserine to conventional neuroleptics may improve negative
symptoms through enhanced temporal lobe function (115).
Finally, a meta-analysis indicated that full agonists (such as
glycine and D-serine) appear to be more effective than partial
agonists (such as D-cycloserine) (122, 123). Thus, the therapeutic
potential of D-cycloserine appears to be limited and not
particularly effective.

Direct Modulation of NMDAR Functions by
D-Serine
D-serine is enriched in the forebrain and is an endogenous
ligand of the GMS on NMDAR (124). Emerging evidence
suggests the potential role of D-serine in the regulation of

NMDAR functions for the treatment of schizophrenia. For the
GluN1/N2 subunits of NMDAR, the binding affinity of D-
serine is three-fold more potent than that of glycine (125).
D-serine is mainly expressed by glutamatergic neurons, even
though there has been considerable controversy regarding the
concentration and function of D-serine in glial cells and
neurons (126). D-serine is predominantly produced in neurons
by the stereoconversion of L-serine (provided by astrocytes)
via the PLP-dependent enzyme serine racemase (SR) and is
then shuttled to astrocytes, where it is stored and released.
Studies using more-selective antibodies have demonstrated
that SR and D-serine are prominently expressed in forebrain
glutamatergic neurons (127–130). In addition, the distribution
of D-serine residues in the brain is similar to that of NMDARs
(131). Intriguingly, it has been reported that the deletion
of neuronal SR resulted in impaired NMDAR functions and
synaptic plasticity, whereas deletion of astrocytic SR had no
effect (132). Notably, D-serine is the primary coagonist of
synaptic NMDARs, whereas glycine is the primary coagonist of
extrasynaptic NMDARs (22). In general, D-serine is an allosteric
modulator of brain NMDARs and is predominantly released
from glutamatergic neurons.

Emerging evidence suggests that D-serine is involved in the
pathophysiology of schizophrenia and is a potential therapeutic
agent and/or biomarker for schizophrenia. Indeed, decreased
levels of D-serine in serum and CSF have been found in patients
with schizophrenia compared to those in healthy controls (133).
A CSF and postmortem brain study also revealed a 25%
decreases in D-serine levels and the D/L-serine ratio in the
CSF of schizophrenia patients, suggesting that reduced brain SR
and elevated D-amino acid oxidase (DAO) protein levels may
contribute to the lower D-serine levels observed in the CSF of
schizophrenic patients (28). A recent study further indicated
that poor executive function performance is associated with a
lower D-serine/total serine ratio in schizophrenic patients (134).
Moreover, accumulating evidence has indicated that alteration
of D-serine is associated with neuroplasticity and cognitive
deficits in schizophrenia. For example, supplementation with D-
serine prevented the onset of cognitive deficits in adult offspring
after maternal immune activation in pregnant mice (135),
suggesting that early intervention with D-serine may prevent
the occurrence of psychosis in high-risk subjects. Decreasing
synaptic D-serine by enhancing Na+-independent alanine–
serine–cysteine transporter-1 abolished long-term potentiation
(LTP) and reduced synaptic NMDAR responses by 60–70%
(136). Taking advantage of SR-null mice, a series of studies
confirmed that D-serine is required for NMDAR responses,
NMDAR-dependent LTP, dendritic spine formation, cognitive
functions, and social memory (137–141). However, D-serine is
metabolized rapidly by DAO, reducing its bioavailability and
requiring the administration of high doses, which may lead
to peripheral neuropathies, creating a potential problem for
the use of D-serine in treating schizophrenia-related symptoms
(142, 143). D-serine levels in blood and urine are sensitive to
the presence of kidney dysfunction of different origins. There
are also concerns that high concentrations of D-serine augment
kidney dysfunction and cause potential nephrotoxicity, which has
been reported in rats that have developed acute tubular necrosis
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TABLE 2 | Major findings in clinical trials examining effects of D-cycloserine on the treatment of schizophrenic symptoms.

Compound Type Study site Patient Usage Subject

number

(placebo vs.

experiment)

Dosage Trial

duration

(weeks)

Clinical outcomes Clinical ratings References

D-cycloserine OL Italy SZ Add on 7 (No

placebo)

250 (mg/day) 6 – (Worsen symptoms) BPRS, SANS, CGI (96)

SB & RB (Dose

finding)

US SZ Add on 9 5, 15, 50, 250

(mg/day)

10 (2

wks/dose)

+ (50 mg/day: negative,

cognitive symptoms)

BPRS, SANS, GAS, SIRP, AIMS (103)

DB (Parallel) US SZ Add on

(Molindone)

4 vs. 3 vs. 6

(Placebo vs.

10 vs. 30)

10, 30

(mg/day)

4 – BPRS, SANS, CGI (104)

SB & RB (Dose

finding)

US SZ Add on

(Clozapine)

10 5, 15, 50, 250

(mg/day)

10 (2

wks/dose)

– (Worsen symptoms) BPRS, SANS, SIRP (105)

SB (Dose finding) Netherlands SZ (Drug-free) Alone 13 15, 25, 50,

100, 250

(mg/day)

24 days (4

days/dose)

+ (100 mg/day:

negative symptoms)

PANSS, CGI, ESRS (106)

DB (Crossover) Israel TRS SZ Add on 8 vs. 9 50 (mg/day) 6 - PANSS, HDRS, SAS, AIMS (107)

DB (Parallel) US SZ Add on 23 (24) vs. 23

(23)

50 (mg/day) 8 + (Nnegative symptoms) PANSS, SANS, HDRS, GAS, SIRP, AIMS,

Stroop Test, Miller-Selfridge Test, Verbal

fluency, Digit span, Finger tapping

(108)

DB (Crossover) US SZ Add on

(Clozapine)

11 vs. 11 50 (mg/day) 6 – (Worsen negative

symptoms)

PANSS, SANS, HDRS, GAS, SAS, AIMS,

BARS

(109)

DB (Parallel) Netherlands SZ Add on (Without

antidepressants)

13:13 100 (mg/day) 8 – (Worsen symptoms) PANSS, CGI, ESRS (110)

SB & RB (Dose

finding)

US SZ Add on

(Risperidone)

10 5, 15, 50, 250

(mg/day)

10 (2

wks/dose)

+ (50 mg/day: negative

symptoms)

BPRS, SANS, HDRS, GAS, SAS, AIMS,

Word list generation, Digit span, Finger

tapping, Stroop test,

(111)

DB (Crossover) Israel TRS SZ Add on 16 vs. 16 50 (mg/day) 6 + (Negative symptoms) PANSS,HDRS, SAS, AIMS (112)

DB (Parallel) US SZ Add on 12 vs. 10 50 (mg/day) 4 – BPRS, SANS, ATRS, SAS, CPT, Sternberg

paradigm

(113)

DB (Parallel) US SZ Add on 12 (28) vs. 14

(27)

50 (mg/day) 24 – PANSS, SANS, HDRS, QOL, GAS, CVLT,

WAIS III, ANART, Stroop Test, Finger tapping,

WCST, SAS, AIMS

(114)

DB (Parallel) US SZ Add on 6 vs. 6 50 (mg/day) 8 + (Improved negative

symptoms associated

with temporal lobe

activation)

PANSS, SANS, SAS, AIMS, fMRI, (115)

DB (Parallel) US & Israel SZ or SZA Add on (Without

cloazpine)

45 (55) vs. 46

(56)

25–50

(mg/day)

16 – BPRS, SANS, CGI, SAS, AIMS (88)

DB (Parallel) US SZ Add on (Without

cloazpine)

16 (19) vs. 16

(19)

50 (mg/day) 8 + (Negative symptmos,

logical memory)

PANSS, SANS, CGI, SAFTEE, WMS-III,

HVLT, WCST, TMT, Phonemic fluency,

Category fluency, Letter-number sequencing,

Grooved pegboard

(116)

(Continued)
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TABLE 2 | Continued

Compound Type Study site Patient Usage Subject

number

(placebo vs.

experiment)

Dosage Trial

duration

(weeks)

Clinical outcomes Clinical ratings References

DB (Crossover)

(NCT00742079)

US SZ or SZA Add on

(Combined with

CBT)

9 (10) vs. 11

(11) (PCB-first

vs. DCS-first)

50 (mg/day) 1 + (DCB-first: delusional

severity, distress, belief

conviction)

PSYRATS, SAPS, ABA, Bead Task (117)

DB (Parallel)

(NCT00963924)

US SZ or SZA Add on 15 (18) vs. 17

(18)

50 (mg/day) 8 + (Cognitive, negative

symptoms)

PANSS, SANS, MATRICS, CDSS, QOL,

GAS, SAFTEE, Auditory discrimination task

(118)

DB (Parallel) US SZ Add on 21 vs. 24 100

(mg/once)

1 day + (Neural response,

working memory)

BPRS, WASI, EEG, N-back task, IIT, WPT (119)

DB (Crossover)

(UMIN000000468)

Japan SZ Add on 19 (22) vs. 17

(19) (PCB-first

vs. DCS-first)

50 (mg/day) 6 – PANSS, SANS, BACS, JCDSS, GAF, EQS,

DIEPSS, AIMS, MR-DTI

(120)

DB (Crossover) US SZ (9p24.1

CNV)

Add on 2 vs. 2 50 (mg/day) 6 + (Clinical symptoms) BPRS, PANSS, CGI, Motor abnormalities (90)

+, Positive clinical results; −, Negative clinical results; ABA, Alternative Beliefs Assessment; AIMS, Abnormal Involuntary Movements Scale; ANART, Adult North American Reading Test; ATRS, Abrams and Taylor Rating Scale; BACS,

Brief Assessment of Cognition in Schizophrenia; BARS, Barnes Akathisia Rating Scale; BPRS, Brief Psychiatric Rating Scale; CDSS, Calgary Depression Scale of Schizophrenia; CGI, Clinical Global Impression; CPT, Continuous

Performance Test; CVLT, California Verbal Learning Test; DB, double-blind; DCS, D-cycloserine; DIEPSS, Drug Induced Extrapyramidal Symptoms Scale; DTI, Diffusion Tensor Imaging; EEG, electroencephalogram; EQS, Emotional

Intelligence Scale; ESRS, Extrapyramidal Symptom Rating Scale; fMRI, functional Magnetic Resonance Imaging; GAF, Global Assessment of Functioning Scale; GAS, Global Assessment Scale; HDRS, Hamilton Depression Rating Scale;

HVLT, Hopkins Verbal Learning Test; IIT, Information Integration Task; JCDSS, Japanese version of Calgary Depression Scale of Schizophrenia; MATRICS, Measurement and Treatment Research to Improve Cognition in Schizophrenia;

OL, open-label; PANSS, Positive and Negative Syndrome Scale; PSYRATS, Psychotic Symptom Rating Scales; QOL, Quality of Life; RB, rater-blind; SAFTEE, Systematic Assessment for Treatment Emergent Event; SANS, Scale for

the Assessment of Negative Symptoms; SAPS, Assessment of Positive Symptoms; SAS, Simpson Angus Scale for Assessment of Extrapyramidal Side Effects; SB, single-blind; SIRP, Sternherg’s Item Recognition Paradigm; SZ,

schizophrenia; SZA, schizoaffective disorder; TMT, Trail Making Test; TRS, treatment-resistant; WAIS-III, Wechsler Adult Intelligence Scale-III; WASI, Weschler Abbreviated Scale of Intelligence; WCST, Wisconsin Card Sorting Test; WPT,

Weather Prediction Task.
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Pei et al. Targeting NMDARs to Treat Schizophrenia

associated with higher doses of D-serine (144, 145). Nevertheless,
serum D/L-serine levels might provide a measurable biological
marker for schizophrenia, and D-serine may be effective for
the treatment of negative symptoms and cognitive dysfunction
in schizoprhenia. The study of D-serine requires accurate
methodologies and specific controls, and a specific guideline for
accuratemeasurement and detectionmethods has been described
previously (146).

Along the same lines, D-serine has been employed alone
or as an add-on treatment to standard antipsychotics for
improving positive, negative, and cognitive symptoms of
schizophrenia in numerous clinical studies (147–159). Effects
of D-serine on the treatment of schizophrenic symptoms
in clinical studies are summarized in Table 3. Briefly, some
clinical studies have demonstrated positive outcomes for D-
serine (147, 149–151), and repeated D-serine administrations
have been shown to improve MMN and cortical plasticity in
patients with schizophrenia (156, 157). However, other studies
have revealed negative results (148, 152–155). A meta-analysis
indicated that the effect size of D-serine on the treatment of
negative symptoms (SMD = −0.319) and positive symptoms
(SMD = −0.211) appeared to be small (160). In particular,
in the first randomized double-blind placebo-controlled study
with 60 mg/kg D-serine in schizophrenia, D-serine led to
significant improvement in MMN frequency generation and
clinical symptoms (157), which is consistent with another meta-
analyses showing significant effects of D-serine on schizophrenia.
This study also implied that a minimum daily dose of 3.6 g D-
serine is needed to improve negative symptoms. However, high
concentrations of D-serine can lead to peripheral neuropathies,
such as oxidative damage (161), neurotoxicity (162), and renal
toxicity (150, 163). In summary, these studies indicate that
the therapeutic benefit of D-serine may be limited due to its
adverse effects.

INDIRECTLY TARGETING THE GMS ON
NMDARs

As described previously, activation of NMDARs requires the
binding of a coagonist, D-serine or glycine, at the GMS of
NMDARs. To date, the GMS on NMDAR is one of the most
promising therapeutic targets for contributing to the medical
needs of patients with schizophrenia. However, the beneficial
effect of directly targeting the GMS with D-serine is limited
because of the requirements for a high dose, narrow therapeutic
window and poor CNS penetration rate, concomitant side
effects and potential drug-drug interactions. Alternatively, as
illustrated in the right panel of Figure 1, indirectly targeting the
GMS of NMDARs via enhancement of synaptic glycine/D-serine
levels from in astrocytes provides a new approach to modulate
NMDAR functions and to help meet the needs of patients in
schizophrenia (164).

Indirect Modulation of NMDAR Functions
by Targeting Astrocytic GlyT1
A glycine reuptake inhibitor inhibits the reuptake of synaptic
glycine by blocking astrocytic glycine transporters and increasing

the availability of glycine at the synaptic cleft. Glycine transporter
type 1 (GlyT1) is expressed at glutamatergic synapses throughout
mammalian brain regions and primarily regulates the synaptic
concentrations of glycine (165). GlyT1 is highly colocalized with
NMDARs on glial cells and neurons in the cortex, hippocampus,
septum and thalamus (166). GlyT1 effectively regulates synaptic
glycine reuptake and governs GMS occupancy at NMDARs in
excitatory synapses (19). Thus, selective inhibition of astrocytic
GlyT1 is a promising new therapeutic target for indirectly
enhancing synaptic glycine concentrations and facilitating
NMDAR function.

Accumulating evidence from preclinical studies indicates that
inhibition of GlyT1 enhances NMDAR functions in animals.
Initial studies have revealed that glycyldodecylamide, a non-
selective glycine transport antagonist, reverses PCP-induced
behavioral deficits (167, 168). Subsequently, a series of studies
consistently demonstrated that administration of N[3-(40-
fluorophenyl)-3-(40-phenylphenoxy)propyl]-sarcosine (NFPS,
also known as Alx5470), a GlyT1 inhibitor, enhanced LTP and
behavioral performances in associative learning, spatial and
object memory, and social memory (140, 141, 169–171). In
agreement with the results obtained with NFPS, a series of
studies also indicated that sarcosine, another GlyT1 inhibitor,
has promising therapeutic potential in ameliorating behavioral
impairments and cognitive deficits in both pharmacological and
genetic mouse models of schizophrenia (139, 172, 173).
Furthermore, sarcosine has been proven to effectively
regulate the surface trafficking of NMDARs, NMDAR-evoked
electrophysiological activity, brain glycine levels and MK-801-
induced abnormalities in the brain, which might contribute
to the therapeutic effect for the treatment of schizophrenia
(139). Intriguingly, it has been proven that sarcosine also binds
to the GMS of NMDARs and enhances NMDAR functions
through more than one mechanism (139, 174). In addition,
other GlyT1 inhibitors, such as SSR504734 and ORG 24598,
have also displayed similar beneficial effects in sensorimotor
gating, learning and memory functions, and schizophrenia-like
behaviors (175–178). Furthermore, selective genetic disruption
of GlyT1 resulted in enhancement of NMDAR functions, spatial
retention memory, selective attention, and procognitive and
antipsychotic phenotypic profiles, suggesting that inhibition of
GlyT1 might have both cognitive-enhancing and antipsychotic
effects (179–181). These studies indicate that GlyT1 is an
attractive and promising drug target for the treatment of
schizophrenia-related behaviors and cognitive deficits, even
though the high binding affinity of the GlyT1 inhibitor can cause
unpredictable toxicity leading to a coma-like state, compulsive
walking or respiratory distress (15, 182).

With the aim of treating unmet medical needs in
schizophrenia, a number of pharmaceutical industries have
developed selective GlyT1 inhibitors as novel therapeutic drugs
for schizophrenia. Numerous clinical studies have been carried
out to evaluate the effects of special GlyT1 inhibitors on the
treatment of schizophrenic symptoms. Based on the chemical
structures of GlyT1 inhibitors, these clinical studies can be
divided into two major structural classes: sarcosine-based and
non-sarcosine-based inhibitors, and the summaries of these
studies are shown in Tables 4, 5, respectively.
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TABLE 3 | Summary of clinical outcomes and benefits related to D-serine in patients with schizophrenia.

Compound Type Study site Patient Usage Subject number

(placebo vs.

experiment)

Dosage Trial

duration

(weeks)

Clinical outcomes Clinical ratings References

D-serine DB (Parallel) Taiwan SZ Add on 15 vs. 14 30

(mg/kg/day)

6 + (Positive, negative,

cognitive symptoms)

PANSS, SANS, CGI, HDRS, SAS,

AIMS, BARS, UKU

(149)

DB (Parallel) Taiwan SZ Add on

(Clozapine)

10 vs. 10 30

(mg/kg/day)

6 – PANSS, SANS, CGI, HDRS, SAS,

AIMS, BARS, UKU

(152)

DB (Crossover) Israel TRS SZ Add on

(Olanzapine &

risperidone)

38 vs. 37 (Risperidone:

21; Olanzapine: 18)

20–30

(mg/kg/day)

6 + (Negative, positive,

cognitive, depression

symptoms)

BPRS, PANSS, SANS, SAS, AIMS, (147)

DB (Parallel) Taiwan SZ (Acute

exacerbation)

Add on

(Risperidone)

20 (23) vs. 19 (21) 2 (g/day) 6 – PANSS, SANS, SAS, AIMS, BARS,

UKU

(149)

DB (Parallel)

(NCT00491569)

Taiwan SZ Add on 16 (20) vs. 16 (20) 2 (g/day) 6 – PANSS, SANS, GAF,QOL, SAS,

AIMS, BARS, UKU

(153)

OL

(NCT00322023)

US SZ or SZA Add on (Without

cloazpine)

12 vs. 19 vs. 16 (30 vs.

60 vs. 120; no placebo)

30, 60, 120

(mg/kg/day)

4 + (PANSS, MATRICS,

neuropsychological

measures)

PANSS, SANS, CGI, CDSS

MATRICS, SAS, AIMS, BARS

(150)

DB (Parallel)

(NCT00138775)

Israel SZ or SZA Add on 69 (98) vs. 73 (97) 2 (g/day) 16 – PANSS, SANS, CGI, SAS, AIMS,

UKU

(154)

DB (Parallel) Israel TRS SZ Alone 5 (10) vs. 3 (8) (D-serine

vs. Olanzapine)

1.5–3 (g/day) 10 Treatment effect:

Olanzapine > D-serine

PANSS, SAS, AIMS, UKU (158)

DB (Parallel) US & India SZ or SZA Add on 23 (26) vs. 25 (27) vs.

22 (27) vs. 21 (24)

(control vs. D-serine vs.

CRT vs. D-serine +

CRT)

30

(mg/kg/day)

12 – PANSS, CDS, QOL, CPT, WAIS-III,

HVLT-R, TOL, WCST, SAS, AIMS,

BARS, UKU,

(155)

OL Israel TRS SZ Add on 17 (no placebo) 1.5–4 (g/day) 6 + (Extreme delta brush

electrographic pattern)

MRI, continuous EEG (159)

DB (Parallel)

(NCT00826202)

US SZ Prodrome Add on 20 (24) vs. 15 (20) 60

(mg/kg/day)

16 + (Negative symptoms) SOPS, MATRICS, PSQI, SAS,

AIMS, SAFTEE

(151)

DB (Crossover)

(NCT01474395)

US SZ or SZA Add on 13 (one placebo

session + two D-serine

sessions)

60

(mg/kg/day)

2–3 + (Auditory plasticity,

θ-frequency response,

MMN generation)

Auditory emotion paradigm,

ERP(MMN)

(156)

OL

(NCT02156908)

3 vs. 5

DB (Crossover)

(NCT00817336)

US SZ or SZA Add on 16 vs. 16 60

(mg/kg/day)

6 + (MMN frequency,

generation, clinical

symptoms)

PANSS, MCCB, ERP (MMN) (157)

OL

(NCT00322023)

SZ or SZA 5 vs. 8 vs. 6 (30 vs. 60

vs. 120; no placebo)

30, 60, 120

(mg/kg/day)

4 + (MMN frequency)

+, Positive clinical results; –, Negative clinical results; AIMS, Abnormal Involuntary Movements Scale; ANSS, Positive and Negative Syndrome Scale; BARS, Barnes Akathisia Rating Scale; BPRS, Brief Psychiatric Rating Scale; CDS,

Calgary Depression Scale; CDSS, Calgary Depression Scale of Schizophrenia; CGI, Clinical Global Impression; CPT, Continuous Performance Test; DB, double-blind; EEG, Electroencephalogram; ERP, Event Related Potential; GAF,

Global Assessment of Functioning Scale; HDRS, Hamilton Depression Rating Scale; HVLT-R, Hopkins Verbal Learning Test-Revised; MATRICS, Measurement and Treatment Research to Improve Cognition in Schizophrenia; MCCB,

MATRICS consensus cognitive battery; MMN, Mismatch negativity; MRI, Magnetic Resonance Imaging; OL, open-label; PSQI, Pittsburgh Sleep Quality Index; QOL, Quality of Life; SAFTEE, Systematic Assessment for Treatment

Emergent Event; SAS, Simpson Angus Scale for Assessment of Extrapyramidal Side Effects; SANS, Scale for the Assessment of Negative Symptoms; SOPS, Scale of Prodromal Symptoms; SZ, schizophrenia; SZA, schizoaffective

disorder; TOL, Tower of London Test; TRS, treatment-resistant; UKU, Udvalg for Kliniske Undersogelser Side Effects Rating Scale; WAIS-III, Wechsler Adult Intelligence Scale-III; WCST, Wisconsin Card Sorting Test.
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TABLE 4 | Summary of clinical trials evaluating effects of sarcosine-based GlyT1 inhibitors on the treatment of schizophrenic symptoms.

Compound Type Study site Patient Usage Subject number

(placebo vs.

experiment)

Dosage Trial

duration

(weeks)

Clinical outcomes Clinical ratings References

Org 25935 DB (Parallel)

(NCT00725075)

Worldwide

(GINAT trial)

SZ (Negative

symptom)

Add on 62 (70) vs. 62 (71)

vs. 67 (73)

(Placebo vs.

low-dose vs.

high-dose)

4–8 & 12-16

(mg, BID)

12 – PANSS, SANS, GAF, CDSS,

NES, Cognitive battery,

ESRS

(183)

AMG 747 DB (Parallel)

(NCT01568216 &

NCT01568229)

Worldwide SZ Add on 76 (90) vs. 54 (60)

vs. 51 (60) vs. 51

(60) (placebo vs. 5

vs. 15 vs. 40)

5, 15, 40

(mg/day)

12 Terminated (Adverse event) PANSS, NSA-16, CGI,

MCCB, PSP, Q-LES-Q-18,

SDS

(184)

Sarcosine DB (Parallel) Taiwan SZ Add on 21 vs. 17 2 (g/day) 6 + (Positive, negative, cognitive,

gnenral symptoms)

BPRS, PANSS, SANS,

HDRS, SAS, AIMS, BARS,

UKU

(185)

DB (Parallel) Taiwan SZ (Acute

exacerbation)

Add on

(Risperidone)

20 (23) vs. 18 (21) 2 (g/day) 6 + (Positive, negative symptoms) PANSS, SANS, SAS, AIMS,

BARS, UKU

(148)

DB (Parallel) Taiwan TRS SZ Add on

(Clozapine)

10:10 2 (g/day) 6 – PANSS, SAS, AIMS, BARS,

UKU

(186)

DB (Parallel)

(NCT00328276)

Taiwan SZ (Drug-free)

(Acute

exacerbation)

Alone 6 (9) vs. 10 (11) (1

vs. 2; no placebo)

1, 2 (g/day) 6 – PANSS, SANS, QOL, SAS,

AIMS, BARS, UKU

(187)

DB (Parallel)

(NCT00491569)

Taiwan SZ Add on 16 (20) vs. 19 (20) 2 (g/day) 6 + (Positive, negative symptoms) PANSS, SANS, GAF, QOL,

SAS, AIMS, BARS, UKU

(153)

OL (Case report) Poland SZ Add on

(Quetiapine and

citalopram)

1 1, 2 (g/day) 4 (2 g/day:

2 + 1

g/day: 2)

+ (2 g: negative symptom but

cause hypomania)

PANSS, HDRS (188)

OL (Case report) Poland SZ (Negative/

cognitive

symptoms)

Add on

(Olanzapine and

venlafaxine)

1 2 (g/day) 12 (24) Terminated (Cause hypomania) PANSS, HDRS (189)

DB (Parallel)

(NCT01503359)

Poland

(PULSAR)

SZ (Negative

symptom)

Add on 25 vs. 25 2 (g/day) 24 – (Negative, general symptoms)

(Decreased in hippocampal

Glx/Cr, Glx/Cho)

PANSS, 1H-MRS (190)

Paranoid SZ Add on 29 vs. 30 2 (g/day) 24 No changes of cardiometabolic &

body composition parameters

PNASS, BIA,

Cardiometabolic

characteristics

(191)

SZ (Negative

symptom)

Add on 25 vs. 25 2 (g/day) 24 + (Negative symptom) (Increased

in DLPFC NAA/Cho, mI/Cho,

mI/Cr)

PANSS, 1H-MRS (192)

SZ (Negative

symptom)

Add on 25 vs. 25 2 (g/day) 24 + (Negative symptom)

(Decreased in WM Glx/Cr.

Glx/Cho)

PANSS, 1H-MRS (193)

Paranoid SZ Add on 30 vs. 28 2 (g/day) 24 + (Negative, total symptoms)

(MMP-9 no changed)

PANSS, CDSS, BIA serum

MMP-9 measure

(194)

(Continued)
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Sarcosine-Based GlyT1 Inhibitors
In the early period of drug discovery, several high-affinity
GlyT1 inhibitors derived from sarcosine derivatives [e.g., NFPS
(141, 169, 177) and Org 24598 (178)] were produced but
caused unexpected toxicity and side effects (15, 178). Only
two sarcosine-based GlyT1 inhibitors, AMG 747 (184) and
Org 25935 (also known as SCH 900435 or MK-8435) (183),
were advanced into clinical trials. Both AMG 747 and Org
25935 trials ended due to unspecified safety events and failure
to benefit schizophrenia, respectively (182). Researchers have
focused on the low-affinity GlyT1 inhibitor sarcosine as an
adjunctive medication to conventional antipsychotics. Off-label
use of sarcosine in clinical studies has been demonstrated to
improve positive symptoms, negative symptoms, and quality of
life with minimal side effects in patients with schizophrenia
(148, 153, 185, 198). Moreover, findings from previous clinical
trials and moderator analyses further indicated that sarcosine
is more efficacious than D-serine in general psychopathology
for chronically ill stable schizophrenic patients as well as for
schizophrenic patients with acutely exacerbated symptoms of
schizophrenia (123, 148, 153). Along the same lines, a series
of studies from the Polish Sarcosine Study in Schizophrenia
(PULSAR) project illustrated that schizophrenic patients treated
with sarcosine for 6 months displayed significant improvements
in negative symptoms, general psychopathology and changes
in glutamatergic transmission in the brain (190, 192, 193).
However, no significant differences in cardiometabolic systems,
body composition or neurochemical levels (e.g., BDNF, IL-
6 and TNF-α) were found in PULSAR studies (191, 194–
197). Double-blind clinical studies revealed no beneficial effect
of adjunctive sarcosine in drug-free schizophrenia patients or
patients treated with clozapine (186, 187, 199). In terms of the
side effects and safety profile of sarcosine, the overall results
have been satisfactory in most clinical studies; however, sarcosine
administered with glutamatergic and serotoninergic agents may
have had a synergistic effect that exacerbated schizophrenic
symptoms and hypomania in two case reports (188, 189).

Non-sarcosine-based GlyT1 Inhibitors
In addition to sarcosine-based inhibitors, non-sarcosine-
derived GlyT1 inhibitors are potential alternatives for indirectly
modulating the GMS on NMDARs. Compared to sarcosine-
based GlyT1 inhibitors, non-sarcosine-based compounds
are associated with faster off-rates and less toxic side effects
(182). The earliest non-sarcosine-based GlyT1 inhibitors,
including SSR504734 (216), SSR103800 (217), GSK1018921
(218), and DCCCyB (219), were developed and have been
entered into phase I clinical trials. However, the trials with all
these compounds were halted or discontinued for undisclosed
reasons (182, 200, 220). In addition, PF-3463275, another
non-sarcosine-based GlyT1 inhibitor developed by Pfizer (221),
was entered into clinical trials and provided positive results for
the enhancement of cognitive remediation in schizophrenia
(201). However, the first phase II clinical trial (203) on the use of
PF-3463275 as an add-on therapy for the treatment of negative
symptoms was terminated because of unspecified scientific
reasons and safety concerns. The second phase II clinical trial
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TABLE 5 | Major findings in clinical trials examining effects of non-sarcosine-non-sarcosine-based glycine transporter 1 (GlyT1) inhibitors in patients with schizophrenia.

Compound Type Study site Patient Usage Subject number (placebo

vs. experiment)

Dosage Trial

duration

(weeks)

Clinical outcomes Clinical ratings References

SSR504734 Phase I SZ Undisclosed details Terminated (182)

SSR103800 Phase I SZ Undisclosed details Terminated (182)

GSK1018921 DB (Parallel)

(NCT00929370)

SZ Undisclosed details 4 Terminated PANSS, CGI, VAS, SAS,

AIMS, BARS

(200)

DCCCyB Phase I SZ Undisclosed details Terminated (182)

PF-

03463275

DB (Crossover)

(NCT01911676)

US SZ Add on

(Risperidone,

aripiprazole)

9 (12) (Risperidone: 5 (6),

aripiprazole: 4 (6))

10, 20, 40

(mg, BID)

1 + (40 mg: enhanced

neuroplasticity)

PET, EEG (LTP) (201)

Add on 10 (11) 60 (mg, BID) 1 – (202)

DB (Parallel)

(NCT00977522)

US SZ (Negative

Symptom)

Add on 207 (Total) 30 (mg, BID) 12 Teminated PANSS, SANS, CGI, GAS,

MCCB, SQLS, C-SSRS,

ESRS

(203)

Bitopertin DB (Parallel)

(NCT01192867)

Worldwide

(FlashLyte)

SZ (Negative

Symptom)

Add on 594 (total) 10, 20

(mg/day)

24 – PANSS, CGI, PSP (204)

DB (Parallel) Worldwide

(CandleLyte)

SZ (Acute

exacerbation)

Alone 58 (80) vs. 56 (80) vs. 60

(77) (Placebo vs. 10 vs. 30)

10, 30

(mg/day)

4 – PANSS, CGI, C-SSRS,

SCID-CT, ESRS, NOSIE,

ESRS

(205)

DB (Parallel)

(NCT01192906)

Worldwide

(DayLyte)

SZ (Negative

Symptom)

Add on 605 (Total) 5, 10

(mg/day)

24 – PANSS, PSP (206)

DB (Parallel)

(NCT00616798)

Worldwide SZ (Negative/

disorganized

thought)

Add on 61 (81) vs. 60 (82) vs. 57

(81) vs. 53 (79) (Placebo vs.

10 vs. 30 vs. 60)

10, 30, 60

(mg/day)

8 + (Negative symptoms) PANSS, CGI, PSP, SQLS,

HRQoL, SAS, AIMS, BARS

(207)

(208)

– (Quality of life) (209)

DB (Parallel)

(JapicCTI-111627)

Japan SZ (Negative

Symptom)

Add on 9 (15) vs. 57 (73) vs. 48 (73)

(No placebo)

5, 10, 20

(mg/day)

52 + (Negative &

sub-optimally

controlled symptoms)

(20 mg: adverse

events)

PANSS, CGI, PSP, C-SSRS,

ESRS

(210)

DB (Parallel)

(NCT01235520)

Worldwide

(TwiLyte)

SZ Add on 186 (196) vs. 188 (198) vs.

186 (194) (Placebo vs. 10

vs. 20)

10, 20

(mg/day)

12 – PANSS, CGI, PSP, C-SSRS,

ESRS

(211)

DB (Parallel)

(NCT01235585)

Worldwide

(MoonLyte)

186 (193) vs. 187 (195) vs.

191 (200) (Placebo vs. 5 vs.

10)

5, 10

(mg/day)

–

DB (Parallel)

(NCT01235559)

Worldwide

(NightLyte)

189 (199) vs. 190 (198) vs.

190 (199) (Placebo vs. 10

vs. 20)

10, 20

(mg/day)

+ (10 mg: positvie

symptoms)

DB (Parallel)

(NCT01192880)

Worldwide

(SunLyte)

SZ (Negative

Sympt)

Add on 625 (630) 10, 20

(mg/day)

24 – (Small Effect size) PANSS, NSA-16, CGI, PSP,

C-SSRS, ESRS

(212)

(Continued)
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TABLE 5 | Continued

Compound Type Study site Patient Usage Subject number (placebo

vs. experiment)

Dosage Trial

duration

(weeks)

Clinical outcomes Clinical ratings References

DB (Parallel)

(NCT01192906)

Worldwide

(DayLyte)

203 (209) vs. 205 (211) vs.

197 (201) (Placebol vs. 5 vs.

10)

5, 10

(mg/day)

–

DB (Parallel)

(NCT01192867)

Worldwide

(FlashLyte)

197 (210) vs. 200 (208) vs.

197 (208) (Placebo vs. 10

vs. 20)

10, 20

(mg/day)

–

DB (Parallel)

(NCT01116830)

US SZ or SZA Add on 12 vs. 17 10 (mg/day) 6 – PANSS, MCCB, ERP (MMN) (213)

OL

(NCT01116830)

US SZ or SZA Add on 12 vs. 17 10 (mg/day) 6 – PANSS, MCCB, ERP (MMN) (157)

BI 425809 DB (Parallel)

(NCT03859973)

Worldwide SZ Add on (without

clozapine)

200 (Total) 10 (mg/day) 12 Recruiting PANSS, CGI, MCCB,

SCoRS, BET, VRFCAT,

PRECIS

(214)

DB (Parallel)

(NCT02832037)

Worldwide SZ Add on 160 (170) vs. 77 (85) vs. 79

(84) vs. 81 (85) vs. 83 (85)

(Placebo vs. 2 vs. 5 vs. 10

vs. 25)

2, 5, 10, 25

(mg/day)

12 + (Cognitive

symptoms)

PANSS, MCCB, PSP,

SCoRS, C-SSRS

(215)

+, Positive clinical results; –, Negative clinical results; AIMS, Abnormal Involuntary Movements Scale; BARS, Barnes Akathisia Rating Scale; BET, Balloon Effort Task; CGI, Clinical Global Impression; C-SSRS, Columbia-Suicide Severity

Rating Scale; DB, double-blind; EEG, Electroencephalogram; ERP, Event Related Potential; ESRS, Extrapyramidal Symptom Rating Scale; GAS, Global Assessment Scale; HRQoL, Health-Related Quality of Life; LTP, Long-term

potentiation; MCCB, MATRICS consensus cognitive battery; MMN, Mismatch negativity; NOSIE, Nurses’ Observation Scale for Inpatient Evaluation; NSA-16, Negative Symptom Assessment-16; OL, open-label; PANSS, Positive and

Negative Syndrome Scale; PRECIS, Patient Reported Experience of Cognitive Impairment in Schizophrenia; PSP, Personal and Social Performance Scale; SANS, Scale for the Assessment of Negative Symptoms; SAS, Simpson Angus

Scale for Assessment of Extrapyramidal Side Effects; SCID-CT, Structured Clinical Interview for DSM-IV–Clinical Trials version; SCoRS, Schizophrenia Cognition Rating Scale; SQLS, Schizophrenia Quality of Life Scale; SZ, schizophrenia;

SZA, schizoaffective disorder; VAS, Visual Assessment Scale; VRFCAT, Virtual Reality Functional Capacity Assessment Tool.
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(202) was initiated in 2013, and although it has remained active,
to the best of our knowledge, there has been no recruitment
efforts to date.

In addition to the abovementioned non-sarcosine-based
GlyT1 inhibitors, bitopertin (also known as RG1678 or
RO4917838) is an oral, non-competitive GlyT1 inhibitor that was
originally developed by Roche as a potential drug candidate for
the treatment of negative symptoms of schizophrenia. Preclinical
studies revealed that bitopertin modulated schizophrenia-like
behaviors in several naïve and pharmacologically challenged
animal models (222, 223). The most promising finding of
bitopertin was the result of an 8-week randomized, double-blind,
proof-of-concept phase II study, in which bitopertin was proven
to be safe, with the results showing an inverted U-shaped dose–
response efficacy against the predominant negative symptoms
of stable schizophrenia patients (207, 208), but no similar
effect was observed in the quality of life of these patients
(209). Subsequently, in a phase II/III clinical trial, bitopertin
monotherapy improved only the positive subscale score of
the PANSS (Positive and Negative Syndrome Scale) with
respect to acute exacerbation of schizophrenia (205). In a
randomized double-blind phase III study following one-year as
an adjunctive treatment, bitopertin was found to be generally
safe and well-tolerated for the treatment of Japanese patients
with schizophrenia, and all three bitopertin-treated groups
showed improvements in all the efficacy endpoints for both
“negative symptoms” and “suboptimally controlled symptoms”
throughout the duration of the study (210). Except for this study,
unfortunately, the superior efficacy over placebo of adjunctive
bitopertin at any of the doses tested in patients with persistent
predominant negative symptoms of schizophrenia could not be
proven in several randomized, double-blind, placebo-controlled
phase III trials (204, 206, 211, 212). Furthermore, bitopertin
did not significantly affect any symptoms, NMDAR-related
biomarkers, or MMN frequency at the doses tested in double-
blind clinical trials with patients with schizophrenia (157,
213). Accordingly, the negative results and small improvements
associated with bitopertin suggest that adjunctive bitopertin
treatment might only offer a modest benefit and that bitopertin
might not be a broadly effective or optimal therapeutic candidate
for the treatment of schizophrenia. Further study will be needed
to elucidate the effect of bitopertin in animal models and
clinical trials.

Furthermore, BI 425809was recently developed by Boehringer
Ingelheim as a novel, investigational GlyT1 inhibitor to improve
cognitive function and memory in patients with schizophrenia
and Alzheimer’s disease (224–226). A recent randomized double-
blind, placebo-controlled phase II study revealed that BI 425809
improved cognitive functions after 12 weeks in patients with
schizophrenia (215), suggesting that BI 425809 can provide
an effective treatment for cognitive impairment associated
with schizophrenia. Currently, another phase II trial of BI
425809 combined with computerized cognitive training for
schizophrenic patients is in progress (214, 227). Further large-
scale phase III clinical trials will be necessary to replicate these
encouraging findings and to confirm the therapeutic potential of
BI 425809 for the treatment of cognitive deficits in schizophrenia.

In summary, both sarcosine-based and non-sarcosine-based
GlyT1 inhibitors are generally well-tolerated and exhibit a
satisfactory safety profile. GlyT1 inhibitors also exert more-
promising therapeutic potential than agonists directly targeting
the GMS in the improvement of schizophrenic symptoms.
However, in consideration of the etiology and pathophysiology
of schizophrenia, no evidence has supported a proposal that
GlyT1 is overexpressed in the brains of schizophrenic patients.
In contrast, a series of negative findings of association studies
have revealed that neither glycine transmission nor GlyT1 is
implicated in the pathogenesis of schizophrenia (228–230).
As described previously, although concentrations of glycine
are 10-fold higher than D-serine, D-serine is considered the
dominant endogenous coagonist of NMDARs and a modulator
of NMDAR-related neurotoxicity (20, 21). Thus, targeting GlyT1
might not be an optimal strategy for modulation of NMDAR
functions. Furthermore, functional distinctions between synaptic
and extrasynaptic NMDARs in brain physiology, in which
synaptic and extrasynaptic NMDARs are gated by D-serine and
glycine, respectively, have been reported (22, 231). D-serine and
glycine differentially impact NMDAR membrane diffusion and
neuroplasticity (21, 22). Given that glycine, but not D-serine,
preferentially gates NMDARs located at extrasynaptic sites and
that synaptic, but not extrasynaptic, NMDARs are essential for
LTP induction, it is plausible that the efficacy and therapeutic
effect of GlyT1 inhibitors might be relatively less effective than
those of D-serine. Thus, as an alternative to GlyT1 inhibitors,
one of the promising approaches for the development of novel
therapeutic compounds to treat schizophrenia is based on
increased synaptic D-serine levels realized through the indirect
modulation of astrocytic D-serine synthesis.

Indirect Modulation of NMDAR Functions
by Targeting DAO
DAO (or DAAO) encodes D-amino acid oxidase which has a
flavin adenine dinucleotide (FAD) as the prosthetic group, and
DAO catalyzes the oxidative deamination of a wide range of D-
amino acids, including D-serine (232–234). The human DAO
gene is located on chromosome 12q24, and DAO is mainly
expressed in the liver, kidney and CNS (235). DAO is abundant in
both neurons and glial cells in the cerebral cortex, hippocampus
and cerebellum and contributes to normal neuronal functioning
(236, 237). DAO has been of interest in psychiatry because
its major substrate in the brain is D-serine, which modulates
NMDAR functions and contributes to NMDAR hypofunction
in schizophrenia. D-serine is synthesized from L-serine by SR
and is metabolized by DAO and SR through an α, β-elimination
reaction. Among DAO substrates in the brain, D-serine is clearly
the most abundant. DAO is believed to play a crucial role in the
regulation of cellular D-serine concentrations and release (143).
In particular, the three-dimensional structure of human DAO
is a stable homodimer and it is highly conserved compared to
the microorganism sources (238, 239). Human DAO possesses
a low FAD binding function and mainly presents in an inactive
apoprotein form (238, 240) because of its specific structure. DAO
also exhibits a low substrate affinity and catalytic efficiency for
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D-serine (234, 241). The inactive apoprotein form of human
DAO prevents excessive degradation of D-serine in the brain.
The active holeenzyme of human DAO is reconstituted by
binding of active-site ligands, such as FAD and the substrate
stabilizes flavin binding, and thus pushing the acquisition of
catalytic competence (238, 242). Intriguingly, it has been reported
that DAO inhibitor (e.g., benzoate) increases the holoenzyme
reconstitution of human DAO and stabilizes the flavoprotein
(243). In addition, human DAO is mainly colocalized with
pyramidal neurons in the prefrontal cortex and hippocampus
(236). Enhanced DAO activity is considered a potential cause
of reduced D-serine and subsequent impairment to NMDAR
functioning in schizophrenia (123, 244).

The glutamate hypothesis of schizophrenia suggests that
increased DAO activity leads to decreased D-serine levels,
which may subsequently lead to NMDAR hypofunction.
Supporting evidence from association studies, DAO expression
in schizophrenic patients and behavioral outcomes observed in
rodent models have suggested potential therapeutic benefits of
DAO inhibitors (DAOIs). Accumulating evidence from genetic
studies has indicated thatDAO andG72 are putative genes related
to schizophrenia (235, 245, 246). Schizophrenic patients with
genetic variation in DAO and G72 genes also display negative
valence and cognitive deficits (247–250). In complementary
findings, a recent GWAS revealed that of 108 schizophrenia-
associated loci, none were within the DAO or G72 gene regions
(13). Although reports on the association of DAO and G72 with
schizophrenia are ambiguous, these genes remain candidates in
schizophrenia because of their roles in glutamatergic signaling,
which has been associated with schizophrenia in multiple lines
of research (157, 166, 246). Both G72 mRNA and G72 protein
(as known as pLG72) are detected in higher levels in brain
and blood of schizophrenia patients (251, 252). Intriguingly,
DAO-pLG72 complex was reported to modulate intracellular
D-serine concentration in human (233, 238), which suggests
a novel avenue to design molecules to regulate human DAO
activity and thus NMDAR function for future research. In the
same vein, the expression and activity of DAO are significantly
increased in patients with schizophrenia (28, 236, 244, 253).
Intriguingly, it has been reported that chlorpromazine (i.e., a
first-generation antipsychotic) and risperidone (i.e., a second-
generation antipsychotic) are potentially active substances that
inhibit DAO function (254, 255). In addition, inactivation
of DAO in rodents produces behavioral and biochemical
effects, suggesting potential therapeutic benefits (143). Indeed,
increasing levels of D-serine have been observed in rodents
after the administration of DAOIs (256–258). Consistently,
PCP- or MK-801-induced pre-pulse inhibition deficits and
cognitive deficits relevant to schizophrenia were ameliorated
after treatment with DAOIs (256, 259, 260). DAOIs increase the
levels of D-alanine, which might also be beneficial for increasing
NMDAR function (260). Moreover, ddY/DAO(–) mice, which
lack active DAO due to a point mutation, exhibited increased
cerebellar NMDAR functions (261), enhanced hippocampal LTP,
and improved spatial learning in a water maze (262). Other
animal studies have indicated that DAO is involved in the
mechanism of D-serine nephrotoxicity (263), which is attenuated

by DAOIs (264). D-serine combined with DAOI or DAOI
alone might be beneficial for enhancing NMDAR functions
in schizophrenia.

In agreement with the abovementioned studies, DAOIs are
among the most attractive therapeutic targets for improving
cognition and reducing negative symptoms in schizophrenia
discovered in recent decades. Basically, DAOIs can be divided
into two categories: cofactor-competitive and substrate-
competitive inhibitors (238, 240, 241, 265–267). Chlorpromazine,
the first antipsychotic medication, is a traditional dopamine D2
receptor antagonist but it has been reported that chlorpromazine
is also a FAD-competitive DAO inhibitor (243, 255). Compared
to the cofactor-competitive inhibitor of DAO, substrate-
competitive DAOIs (such as CBIO and benzoate) are frequently
used as scaffolds for developing novel drugs. In the late 2000s,
a series of structurally similar molecules (such as ASO57278
(256), Merck compound (257), Pfizer compounds (258), and
CBIO (268), displayed a potent inhibition of DAO in vitro but
had limited elevation of D-serine in vivo. Especially, it has been
reported that acute and chronic administrations of ASO57278
produced inverted U-shaped dose-response curves to reverse
PCP-induced PPI deficits (256). And co-administration of
CBIO with D-serine also significantly increased D-serine level
and attenuated MK-801 induced PPI deficit (259). Thus, these
studies imply that DAOIs have beneficial effects in treatment
of schizophrenia.

To date, there are at least two potential DAOIs that
have been advanced into clinical evaluation, including sodium
benzoate and TAK-831. Effects of these two DAOIs on the
treatment of schizophrenic symptoms in clinical studies are
summarized in Table 6. Sodium benzoate is known as a
preservative that is widely used as a food pickling agent.
Sodium benzoate is a prototype competitive inhibitor of DAO,
and preclinical studies have indicated that it attenuates PCP-
induced pre-pulse inhibition deficits as well as D-serine-induced
nephrotoxicity (264, 277). The first randomized, double-blind,
placebo-controlled trial with chronic schizophrenia patients
reported that add-on sodium benzoate relieved positive, negative,
and cognitive symptoms as well as improved quality of life
(269). Sodium benzoate also showed efficacy and safety for
schizophrenic patients who had a poor response to clozapine
(270). Moreover, adjunctive sodium benzoate plus sarcosine,
but not sarcosine alone, improved the cognitive and global
functioning of chronic schizophrenia patients (199). However, a
randomized clinical study in Australia indicated that adjunctive
use of sodium benzoate had no effect on individuals with
early psychosis (271, 272). Two adaptive clinical phase II
studies performed to evaluate the safety and efficacy of
sodium benzoate in adolescent schizophrenia patients (273) and
treatment-resistant schizophrenia patients (274) are currently
recruiting. One probable drawback for the development of
sodium benzoate as a drug candidate is that it lacks patentability
due to its simple chemical structure. More evidence on the
therapeutic effect of sodium benzoate, especially in larger-
scale clinical trials in schizophernia, is required to prove
its effectiveness and applicability. In addition, another highly
selective and potent DAOI from Takeda known as TAK-831
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TABLE 6 | Potential clinical efficacy and benefits related to D-amino acid oxidase inhibitors (DAOIs) on the treatment of schizophrenic symptoms.

Compound Type Study site Patient Usage Subject number (placebo

vs. experiment)

Dosage Trial

duration

(weeks)

Clinical outcomes Clinical ratings References

Sodium

benzoate

DB (Parallel)

(NCT00960219)

Taiwan SZ Add on 23 (27) vs. 24 (25) 1 (g/day) 6 + (Positive, negative,

general symptoms)

PANSS, SANS, CGI, GAF,

MCCB, HDRS, QOLS, SAS,

AIMS, BARS, UKU

(269)

DB (Parallel) Taiwan SZ Add on 16 (21) vs. 17 (21) (Placebo

vs. sarcosine + Bezoate)

Sarcosine: 2

(g/day)

Benzoate: 1

(g/day)

12 + (Cognitive symptom) PANSS, CGI, GAF, MCCB,

SAS, AIMS, BARS, UKU

(199)

DB (Parallel)

(NCT01390376)

Taiwan TRS SZ Add on

(Clozapine)

20 vs. 20 vs. 20 (Placebo

vs. 1 vs. 2)

1, 2 (g/day) 6 + (Positive, negative

symptoms)

PANSS, SANS, GAF,

MCCB, HDRS, QOLS, SAS,

AIMS, BARS, UKU

(270)

DB (Parallel)

(ACTRN126150

00187549)

Australia Early

psychosis

(SZ, SCHF,

delusion,

bipolar)

Add on 160 (Total) 1 (g/day) 12 Protocol PANSS, CGI, GAF, HDRS,

AQOL, PAQ, PGI

(271)

40 (50) vs. 39 (50) – (272)

DB (Parallel)

(NCT01908192)

US & Taiwan SZ

(Adolescent)

Add on 126 (Total) 1 (g/day) 6 Recruiting PANSS, SANS, CGI, CGAS,

CDRS-R

(273)

DB (Parallel)

(NCT03094429)

US TRS SZ Add on

(Clozapine)

287 (Total) 1, 2 (g/day) 8 Recruiting PANSS, CGI, HDRS, PSP,

SQLS, C-SSRS, SAS,

AIMS, BARS, C-SSRS

(274)

TAK-831 DB (Crossover)

(NCT03359785)

US SZ Add on 31 (32) (Total) 50, 500

(mg/day)

8 days Complete BACS, EBC, ASSR, ERP

(MMN)

(275)

DB (Parallel)

(NCT03382639)

Worldwide SZ Add on 307 (315) (Total) 50, 125, 500

(mg/day)

12 Complete PANSS, BNSS, BACS, CGI,

SCoRS

(276)

+, Positive clinical results;−, Negative clinical results; AIMS, Abnormal Involuntary Movements Scale; AQOL, Assessment of Quality of Life; ASSR, Auditory Steady State Response; BACS, Brief Assessment of Cognition in Schizophrenia;

BARS, Barnes Akathisia Rating Scale; BNSS, Brief Negative Symptom Scale; CDRS-R, Children’s Depression Rating Scale-Revised; CGAS, Children’s Global Assessment Scale; CGI, Clinical Global Impression; C-SSRS, Columbia-

Suicide Severity Rating Scale; DB, double-blind; EBC, Eye Blink Conditioning; ERP, Event Related Potential; GAF, Global Assessment of Function; HDRS, Hamilton Depression Rating Scale; MCCB, MATRICS consensus cognitive battery;

MMN, Mismatch negativity; PANSS, Positive and Negative Syndrome Scale; PAQ, Physical Activity Questionnaire; PGI, Patient Global Impression; PSP, Personal and Social Performance scale; QOLS, Quality of Life Scale; SANS, Scale

for the Assessment of Negative Symptoms; SAS, Simpson Angus Scale for Assessment of Extrapyramidal Side Effects; SCoRS, Schizophrenia Cognition Rating Scale; SQLS, Schizophrenia Quality of Life Scale; SZ, schizophrenia;

SCHF, Schizophreniform disorder; TRS, treatment-resistant; UKU, Udvalg for Kliniske Undersogelser Side Effects Rating Scale.
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FIGURE 2 | The therapeutic effects and possible underlying mechanisms of D-amino acid oxidase inhibitors (DAOIs) in the treatment of schizophrenia. Top panel:

Indirect modulation of NMDAR functions by DAOIs restores NMDAR hypofunction. Inhibition of DAO results in increased synaptic levels of D-serine. Middle panels:

DAOIs significantly alleviate positive, negative, and cognitive symptoms in patients with schizophrenia and moderate schizophrenia-like behavioral deficits in animal

models. DAOIs enhance NMDAR functions and hippocampal LTP in animal studies. Bottom panels: Possible mechanism of action of DAOIs. The effects of DAOIs on

brain activity, neuromorphology, and cell surface trafficking of NMDARs, which contribute to the amelioration of NMDAR hypofunction and restoration of mental

functions, are worthy of further investigation.

is currently being evaluated for schizophrenia in a phase II
clinical trial (275, 276, 278). A series of studies of TAK831,

including those directed to pharmacokinetics, target occupancy,
and D-serine concentrations in the brain, have detected and
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analyzed a non-linear quantitative multilayer mechanistic model
for multilayer biomarker-assisted clinical development with
multiple CNS indications (279). Investigations to discover the
characteristics and potential development of TAK-831 are needed
to determine its efficacy and tolerability in the management
of different domains of schizophrenia. In addition to sodium
benzoate and TAK-831, there are additional unpublished data
on DAOIs for which patent applications have been filed and
which have been claimed to have specific therapeutic utility in the
treatment of schizophrenia and other neuropsychiatric disorders
(280). It is worth further investigating the safety and therapeutic
potential of these novel DAOIs for the treatment of unmet
medical needs of patients with in schizophrenia in future studies.

CONCLUSION

Data from clinical, genetic, postmortem, and animal studies
strongly implicate NMDARs as central hubs for many
pathophysiological processes in the brains of schizophrenic
patients. Notably, several NMDAR-enhancing agents,
particularly those directed to the GMS of NMDARs, result
in the significant alleviation of schizophrenia-like behavioral
deficits and cognitive dysfunctions in animal models as well as in
patients with schizophrenia. There is great interest in identifying
potential drug candidates targeting the GMS of NMDARs
and to evaluate their therapeutic effectiveness in attenuating
the negative and cognitive symptoms of schizophrenia with
minimal adverse effects. Modulation of NMDAR functions
through the GMS has been proposed as a possible therapeutic
approach to drug development, and either direct or indirect
activation of GMS results in differential benefits and adverse
effects in the treatment of schizophrenia. A summary of the
relevant animal study data, as well as those from clinical trials,
examining the therapeutic effects and experimental outcomes of
direct and indirect GMS modulators is provided in this article.
Overall, current findings suggest that indirectly targeting GMS
appears to be more beneficial and results in fewer adverse effects
than directly targeting GMS to modulate NMDAR functions.
In particular, compared with GlyT1 inhibitors, one of the
promising approaches to the development of novel therapeutic
compounds for treating schizophrenia is to indirectly increase
synaptic D-serine levels by targeting DAO. As illustrated in
Figure 2, inhibition of DAO via DAOIs not only results in
increased synaptic D-serine levels but also the regulation of
NMDAR-evoked electrophysiological activity, which contributes
to the amelioration of NMDAR hypofunction and restoration of
mental functions. There is great interest in further investigating
the effects of DAOIs on brain activity, neuromorphology, and
cell surface trafficking of NMDARs, which contribute to the
amelioration of NMDAR hypofunction and untreated symptoms

of schizophrenia. Thus, GMS modulators, especially GlyT1
inhibitors and DAOIs, may open new avenues to the treatment
of unmet medical needs in patients with schizophrenia, which
is worthy of further investigation. For the development of
new antipsychotic drugs, the establishment of safety profiles of
these potential compounds will be beneficial and informative,

possibly leading to the elucidation of their precise mechanisms
of action and the evaluation of their therapeutic effects in both
animal models and clinical studies. Notably, however, this review
presents an oversimplified summary of the treatment alternatives
for an extremely complex psychiatric disorder. Indeed, human
diseases are far more complex and only some aspects of human
diseases can be partially modeled in animal models. Clinical
trials are essential and irreplaceable in drug development. In
complementary to human studies, preclinical animal studies
are highly valuable and indispensable to the understanding of
the underlying mechanism and for the development of new
drugs. And we simply focus on discussing the importance of
NMDAR functions on excitatory rather than inhibitory neurons
in this review article. The role of inhibitory neurons and the
impact of NMDAR hypofunction on GABAergic neurons
in the pathophysiology of schizophrenia are worth further
investigating (281, 282). Because the etiology of schizophrenia
remains unclear, disturbances to the GABAergic, cholinergic,
and dopaminergic neurotransmitter systems (283, 284), as well
as disruptions to astrocyte function (164), are also worthy of
further investigation.
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