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Epithelial ovarian cancer has a low response rate to immunotherapy and a complex
immune microenvironment that regulates its treatment outcomes. Understanding the
immune microenvironment and its molecular basis is of great clinical significance in
the effort to improve immunotherapy response and outcomes. To determine the
characteristics of the immune microenvironment in ovarian cancer, we stratified ovarian
cancer patients into three immune subtypes (C1, C2, and C3) using immune-related
genes based on gene expression data from The Cancer Genome Atlas and found that
these three subtypes had significant differences in immune characteristics and prognosis.
Methylation and copy number variant analysis showed that the immune checkpoint genes
that influenced immune response were significantly hypermethylated and highly deleted in
the immunosuppressive C3 subtype, suggesting that epigenetic therapy may be able to
reverse the efficacy of immunotherapy. In addition, the mutation frequencies of BRCA2
and CDK12 were significantly higher in the C2 subtype than in the other two subtypes,
suggesting that mutation of DNA repair-related genes significantly affects the prognosis of
ovarian cancer patients. Our study further elucidated the molecular characteristics of the
immune microenvironment of ovarian cancer, which providing an effective hierarchical
method for the immunotherapy of ovarian cancer patients, and has clinical relevance to
the design of new immunotherapies and a reasonable combination strategies.

Keywords: ovarian cancer, multi-omics, immune microenvironment, immune classification, immunotherapy

Abbreviations: TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus; OC, Ovarian cancer; TME, Tumor
microenvironment; TIME, Tumor immune microenvironment; IRG, Immune related gene; CNV, Copy number variants;
MAD, Median absolute deviation; DEG, Differentially expressed gene; DMG, Differentially methylated gene; EMT, Epithelial-
mesenchymal transition; ESC, Embryonic stem cells; FDR, False discovery rate; GO, Genetic ontology; KEGG, Kyoto
encyclopedia of genes and genomes; PFS, Progression-free survival; OS, Overall survival.
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INTRODUCTION

Immunotherapy is an innovative treatment for cancer that has
recently received a great deal of attention and has shown
significant benefits in many types of cancer, but not ovarian
cancer (OC) (1, 2). Recent studies show that the monotherapy
used in many solid cancers has not led to substantial progress in
the treatment of OC, with clinical response rates to single-dose
immunotherapy of about 10-15% in advanced OC (3-5).
Positive responses to immunotherapy often rely on
interactions of tumor cells with immune regulation within the
tumor microenvironment (TME). The TME has an essential
role in suppressing or enhancing the immune response (6).
Recent studies have shown that an immunosuppressive
TME is a major obstacle to successful implementation of
tumor immunotherapy in OC patients (7, 8). Therefore,
understanding how the immune microenvironment of OC
may hinder effective immune attack could guide the
prediction of OC patients and promote more practical
applications of immunotherapy in OC.

The tumor immune microenvironment (TIME) is highly
complex. The composition of immune cells in the TIME may
vary significantly among different patients with the same cancer
type, suggesting that mapping the composition of immune
infiltrates in the TIME and their functional status is essential for
both diagnosis and treatment strategy design (9-11). Several
studies have shown the prognosis of cancer patients could be
inferred by immunotyping and that patient stratification based on
immune genes is a feasible way to guide clinical treatment,
suggesting that the establishment of immune subtypes could led
to deeper understanding of the mechanism of tumorigenesis and
provide a basis for precise clinical treatment (12, 13). A previous
study based on transcriptome levels from The Cancer Genome
Atlas (TCGA) identified four molecular subtypes
(immunoreactive, mesenchymal, proliferative, and differentiated)
of OC (14). However, the role of the immune microenvironment
in the survival of patients has not been explored, and the
differences in TIME among OC patients with different prognosis
are not fully understood. Although several studies have identified
various immune-related indicators that can predict the prognosis
of OC patients, indicating that immune status affects prognosis
(15-17), little is known about the molecular regulation that
underlies different immune microenvironments.

In this study, gene expression profiles and immune-related
gene (IRG) sets of 362 OC samples were obtained from TCGA
and the ImmPort database, respectively. Non-negative matrix
factorization (NMF) was used to analyze the expression profiles
of IRGs in OC, and three immune-related molecular subtypes
with distinct characteristics were identified. The immune
characteristics, genomic characteristics, and clinical
characteristics of the three subtypes were systematically
analyzed, and the molecular basis of the immunosuppressive
microenvironment of OC was characterized in detail using a
combination of multi-omics analyses, including methylation and
genome variation, to provide a new perspective for improving
immunotherapeutic response in OC.

METHOD AND MATERIALS

Data Extraction

TCGA-OV Dataset

Gene expression profile data of OC patients were obtained from
TCGA (https://tcga-data.nci.nih.gov/tcga/); the data type was
RNA sequencing. The GDC API was used to download the
latest OC clinical follow-up information from TCGA on
2019.09.14. Samples with missing clinical data or overall
survival (OS) < 30 days, data for normal tissue samples, and
genes with transcripts per kilobase million <1 in half of the
samples were eliminated.

GEO Dataset
The GSE26712 and GSE153943 expression datasets were
downloaded from NCBI (https://www.ncbi.nlm.nih.gov/geo/).
Data of normal (non-tumor) tissue samples, samples with a
survival time of less than 30 days or uncertain survival status
were removed. The “bioconductor” package was used to map the
microarray probe onto human gene symbol.

The statistical information of the preprocessed dataset is
shown in Table S1.

Data of IRGs

IRGs were downloaded from the ImmPort database (https://
immport.niaid.nih.gov), and duplicates were removed. Gene sets
associated with 13 immune cell types were obtained from a
previous study (18).

DNA Methylation and Genomic Variation Data
Methylation data (Illumina Human Methylation 27) of ovarian
cancer patients were obtained from the UCSC database (https://
gdc.xenahubs.net). The copy number variants (CNV) data of
ovarian cancer patients was downloaded from the TCGA
database using the ‘TCGABIOLinks’ package, and the data
type was Masked Number Segment. SNP6 GRCh38 Remapped
Probeset File (https://gdc.cancer.gov/about-data/gdc-data-
processing/gdc-reference-files) was used as the markers file,
and the CNV interval was mapped to the corresponding gene.
Somatic single nucleotide variant (SSNV) data was the Mutect2
version in the TCGA database (https://www.cancer.gov/about-
nci/organization/ccg/research/structural-genomics/tcga), which
was the whole-exome sequencing data.

Identification of Immune Subtypes in OC

The expression values of IRGs were extracted from the
expression profile data of TCGA-OV, and genes with no or
low expression were excluded. The genes in the top 50% with
respect to the median absolute deviation (MAD) were screened
for Cox univariate regression analysis to obtain significant
prognosis-related genes. The NMF algorithm was used to
construct a consistency matrix for the screened genes, and the
samples were clustered. The optimal number of clusters was
selected according to the three indicators: cophenetic (the larger
the value, the more stable the clustering), dispersion, and rss
(residual sum of squares; the smaller the value, the better the
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clustering effect of the model). We used the “sigclust” package
and principal components analysis to compare the significance
of clustering differences among subtypes. Furthermore, the
random forest algorithm (“randomforest” package) was used to
screen the most representative genes in each gene set.

Relationship of Immune Subtypes with
Clinical Characteristics

To determine the relationships between immune subtypes and
clinical phenotypes, we analyzed the relationship between each
subtype and age, stage, and grade, and observed the distribution
of each subtype.

Molecular Characteristics of Immune
Subtypes

To observe each subtype’s function, we first analyzed the
differences in gene expression among the three subtypes on a
genome-wide basis. Differentially expressed genes (DEGs) in
each group were screened using the “limma” package, and the
hub genes in each subgroup were selected. Expression of genes
related to epithelial-mesenchymal transition (EMT) and
embryonic stem cell (ESC)-like genes is associated with
malignancy and metastasis of human tumors. Therefore, we
further analyzed the expression distribution of EMT pathway-
related marker genes and ESC marker genes in the
three subtypes.

Immune Characteristics Analysis of
Immune Subtypes

We used the “ESTIMATE” package to calculate ESTIMATEScore,
ImmuneScore, and StromalScore values in each subtype, and
analyzed the distribution differences of scores in the three subtypes.
We further used the “MCPcounter” package to calculate the
distribution differences of the ten immune components in each
subtype, and used TIMER (https://cistrome.shinyapps.io/timer/) to
calculate the scores of six types of immune cells in each sample for
validation. In addition, we used metagene data from a previous study
to estimate scores for 13 immune types and analyzed the differences
in expression of eight common immunoassay genes among the three
subtypes. We used the single-sample GSEA (ssGSEA) method in
the “GSVA” package to calculate the scores of four immune
pathways (IMMUNE_RESPONSE, IMMUNE_SYSTEM _
PROCESS, IMMUNE_EFFECTOR_PROCESS, IMMUNE
_SYSTEM_DEVELOPMENT) in each sample to analyze the
enrichment differences among these immune pathways in

each subtype.

Analysis of Differentially Methylated Genes
and Genomic Variation

The genes differentially methylated among subtypes were
screened using the “limma” package with the selection criteria
log(fold change)| >0.3 and false discovery rate (FDR) <0.05. The
“Hmisc” package was used to calculate the correlation between
the transcription-level expression and the degree of methylation
of each gene. If the correlation was negative, the expression level
was considered to be related to the degree of methylation.

Somatic variation data were retained in the mutation note
format. Differentially mutated genes were identified by the
“maftools” package with p<0.05 as the significance threshold.
The online tool GISTIC2.0 (https://cloud.genepattern.org/) was
used to analyze CNV data. Specific amplifications and deletions
of chromatin sites in each immune subtype were then selected for
subsequent analysis.

Functional Enrichment Analysis

Genetic ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis were conducted
using the “clusterprofiler” package, with FDR < 0.05 representing
statistical significance.

Cell Culture

Human OC cell lines SKOV3, A2780, HEY, and HO8910 were
obtained from the Obstetrics and Gynecology Hospital Affiliated
to Fudan University and grown at 37°C and 5% CO, in RPMI-
1640 (Servicebio, Wuhan, China) medium with UltraGRO™ cell
culture supplement (AventaCell, Atlanta, USA) and penicillin-
streptomycin (Yuchunbio, Shanghai, China). For 5-Azacytidine
(5-AzaC) treatment, the growth medium was supplemented with
10 umol/L or 100umol/L 5-AzaC (MCE, USA) for 12 h or 24 h.

Real-time PCR (RT-PCR)

Total RNA from cells was extracted with TRIzol (Invitrogen,
USA). After determination of its purity and concentration, RNA
was reverse transcribed into cDNA using a 5X ALL-IN-One RT
MasterMix kit (Applied Biological Materials Inc, Canada). RT-
PCR was performed using a TB Green Premix Ex Taq kit
(Takara, Japan). GAPDH was used as the internal control for
all PCR reactions. The specific primers are listed in Table S6.

Statistical Analysis

Univariate survival analysis was performed using the Cox risk
regression model, and a significance threshold of log-rank p<0.05
was set to screen IRGs that were significantly associated with
prognosis. Chi-square test was used to determine the significance
of bias in the distribution of clinical characteristics among
subtypes. Wilcoxon rank test was used to determine
significance in comparisons of two groups of continuous
variables, Kruskal-Wallis rank test was used for comparisons of
more than two groups, and the Benjamini-Hochberg method was
used to control the FDR. All the above analyses were performed
using R version 3.5.1. Unless otherwise specified, ****P < 0.0001,
P < 0.001, **P < 0.01, and *P < 0.05.

RESULTS

Identification of Immune Subtypes in
Ovarian Cancer

The workflow of this study is shown in Figure 1. The expression
values of IRGs were extracted from the TCGA dataset, and 798
IRGs were screened after removing genes with no or low
expression. Furthermore, the genes whose MAD was in the top
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FIGURE 1 | The workflow of study design.

50% were screened out for univariate Cox regression analysis,
and 61 genes that were significantly related to prognosis were
obtained (Tables S2, S$3). Using these prognosis-related genes,
the optimal number of clusters obtained by the NMF algorithm
was 3 (Figures S1A, B); the three resulting clusters were defined
as Cl (n=97), C2 (n=90), and C3 (n=175), respectively
(Figure 2A). The expression levels of prognosis-related
immune genes were the highest in C1 and C2 but lowest in
C3. Principal components analysis was used to analyze the
expression profiles of these prognostic immune genes,
revealing significant clustering differences between the three
subtypes with different distribution characteristics. These
results indicate that samples in the three clusters had
significantly different molecular characteristics (Figure 2B and
Table S4). Moreover, there were significant differences in
prognosis among the three immune subtypes, with Cl being
the best and C2 the worst (Figures 2E and S1D). This suggests
that there are multiple groups of immune molecular subtypes in
OC with significant differences in prognosis among them.

The 61 prognosis-related immune genes were divided into two
categories: G1 and G2. The genes in G1 were highly expressed in C1
samples, whereas those in G2 were highly expressed in C2 samples
(Figures 2C, D). To further screen out representative prognostic
genes, we selected the top 10 genes using the random forest
algorithm, resulting in five G1 immune genes and five G2
immune genes (Figures 3A and S1C). The gsig score of each
immune subtype was expressed as the average expression level of
the representative genes. Gsigl was highly expressed in the C1
subgroup, whereas gsig2 was highly expressed in the C2 subgroup
(Figure 3B). Univariate analysis and survival analysis showed that
gsigl was a protective factor for OS and improved progression-free

survival (PFS) in patients with high expression of G1 genes, with the
opposite results for gsig2 (Figures 3C-E).

Relationship of Immune Subtypes With
Clinical Characteristics

We analyzed the relationships between the three subtypes and
age, grade and stage, respectively. As shown in Table S5, there
was no significant relationship between any of the three subtypes
and stage, age, or grade. This suggests that the three subtypes are
independent of clinical characteristics.

Relationship of Inmune Subtypes With
Molecular Characteristics

To determine the function of each subtype, we first analyzed the
differences in gene expression among the three subtypes based on
the whole genome. There were 616 DEGs between C1 and C2,
1161 DEGs between C1 and C3, and 1152 DEGs between C2 and
C3 (Figure 4A). We then selected genes (147 in C1, 217 in C2,
and 496 in C3) with specific differences in each subtype for GO
and KEGG enrichment analyses. C1-specific genes were enriched
in 13 biological pathways, which were mainly related to receptor
regulator activity, cytokine receptor binding, and cytokine
activity. C2 was enriched in 38 biological pathways, mainly
related to growth factor binding and Wnt-protein binding. C3
was enriched in 19 biological pathways, mainly related to MHC
class II receptor activity and G protein-coupled peptide receptor
activity (Figures 4B-D). We also identified EMT pathway-
related marker genes and ESC marker genes and analyzed their
expression distributions in the three subtypes. The results
showed that most of these genes had significantly higher
expression in C2 compared with C3 and Cl1, indicating that
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FIGURE 2 | OC immunotyping based on IRGs. (A) Gene expression heatmap of OC immune subtypes. (B) Principal component analysis of the differences between
immune subtypes. (C) The expression difference distribution box plot of the G1 gene set between subtypes was analyzed. (D) The expression difference distribution
box plot of the G2 gene set between subtypes was analyzed. (E) The K-M curve of overall survival rate of immune subtypes in TCGA dataset was tested by log rank
test. ***P < 0.0001.

the C2 subtype may be more aggressive and malignant than the
others (Figures 4E-G).

Immune Characteristics Analysis of
Immune Subtypes

We used the “ESTIMATE” package to calculate immune scores
for each subtype and found that the immune score and stromal
score were highest in C2 and lowest in C1 (Figure 5A). We
further calculated the distribution differences of 10 immune
components using the “MCPcounter” package. The results
showed significantly higher abundance of fibroblasts and cells
of monocytic lineage in C2, and of CD8" T cells and cells of B
lineage in C1, whereas the abundance of T cells in C2 was
significantly lower than that in C1 and C3 (Figure 5B). Similar
results were obtained by using TIMER to calculate the scores of
six types of immune cells in each sample (Figure 5D). Then, we
estimated the scores of 13 immune cell types using metagene data
collected in a previous study; again, their scores were significantly
higher in CI than in C2 and C3 (Figure 5E). These results

indicate that the C1 subtype tumor microenvironment has a
higher content of immune cells than that of C2 and C3, with more
immune activity. We analyzed the expression of eight common
immune checkpoint genes in the three subtypes and found
that five genes had higher expression in C1 subtype was higher
than in C2, CD276 and CD86 had significantly higher expression
in C2 subtype than in the other two groups, and PDCD1LG2
had higher expression in C1 and C2 subtypes than in C3.
These results indicate that the three subtypes might have
different clinical responses to immunotherapy (Figure 5C).
We also used the ssGSEA method in the “GSVA” package to
calculate the enrichment scores of four immune pathways
(IMMUNE_RESPONSE, IMMUNE_SYSTEM_PROCESS,
IMMUNE_EFFECTOR_PROCESS, and IMMUNE_
SYSTEM_DEVELOPMENT) in each subtype. The scores were
significantly lower in the C3 subtype compared with the C1 and
C2 subtypes (Figure 5F). Moreover, the expression of IFN-y
pathway-related genes was significantly lower in the C3 subtype
than in the other two subtypes (Figure 5G). In summary,
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immune-enhanced subtypes C1 and C2 showed significant
differences in various immune characteristics, which led to
opposite clinical results.

External Dataset Validation for
Immunotyping

To further verify characteristics of the three subtypes, we
downloaded the GSE26712 standardized dataset from the GEO
database. This comprised 195 samples, from which 153 samples
with clinical follow-up information were selected, and the
expression profiles of characteristic genes were extracted. The
samples were classified by the training model, and 36 samples of
C1 subtype, 44 samples of C2 subtype, and 73 samples of C3 subtype
were predicted. The G1 gene set was highly expressed in C1, and the
G2 gene set was highly expressed in C2 (Figure 6A). Similarly, the
differences in prognosis among the three groups were analyzed: C1
had significantly better prognosis than C3, and C3 was significantly
better than C2, consistent with the results obtained in the training
set (Figure 6B). Furthermore, we used MCPcounter to analyze ten
immune components and found significant differences among the
three samples (Figure 6C). We analyzed the expression distribution
of 13 immune metagenes in each subtype and found that most of the
metagenes were highly expressed in C1, consistent with the results
in the validation set (Figure 6D). Further analysis of the sample
immune scores showed that these were significantly higher in the
C2 group than in the other groups, consistent with the results from
the training set (Figure 6E). We analyzed the gene expression
distribution of immune checkpoints; the results for two of the six

genes were consistent with those obtained in the training set
(Figure 6F). The above results show that our immune subtype
classification method can be verified in an external independent
dataset and thus has portability.

Comparison of Immune Subtypes and
Existing Subtypes

We compared the differences among the four previously
reported molecular subtypes and our three immune subtypes,
and found that the C1 subtype was significantly enriched in the
immunoreactive subtype (P<0.001), the C2 subtype was
significantly enriched in the mesenchymal subtype (P<0.001),
and the C3 subtype was significantly enriched in the proliferative
subtype (P<0.001) (Figure 7A). We further analyzed the
expression distribution of immune prognosis-related genes in
four TCGA subtypes and found that their expression level in the
immunoreactive and mesenchymal subtypes were significantly
consistent with those in the C1 and C2 subtypes (Figure 7B).
The expression level of the G1 gene set was significantly higher in
the immunoreactive subtype than in other subtypes, whereas the
expression level of the G2 gene set was significantly higher in the
mesenchymal subtype (Figures 7C, D).

Relationship of Immune Subtypes with
Methylation Status

To explore the underlying causes of low immunoreactivity in
patients with the C3 subtype, we further analyzed the degree of
gene methylation in patients with OC. First, we determined the
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expression levels of methylation- and demethylation-related
genes in the three immune subtypes, and found decreased
expression levels of demethylation genes in C3. By contrast,
the expression levels of methylation genes increased significantly
in C3, indicating that the gene methylation status of the C3
subtype was different from that of C1 and C2, and that the
immune reactivity of this subtype might be related to the degree
of methylation (Figure 8A). We further selected the 27K
methylation dataset from TCGA to screen differential
methylation genes among the three immune subtypes.
The methylation levels of many IRGs (including CD274 and
PDCD1LG2) and IFNYy-related genes were significantly increased
in C3 compared with C1 and C2, whereas their expression levels
were significantly decreased (Figures 8B, E). In the C3 subtype,
hypermethylated genes were significantly enriched in the NF-«xB
pathway, whereas hypomethylated genes were mainly enriched
in cytokine receptor interaction and the TGF-fB signaling
pathway (Figures 8C, D). Moreover, there was no significant
correlation between methylation status and clinical information
of OC patients, indicating that our immune subtype classification
method was better able to classify the immune response types of
patients compared with clinical data. To verify the effects of
methylation status on these IRGs, we treated OC cells with DNA
methylation inhibitor 5-AzaC. The results showed that the

expression levels of some genes increased after DNA
methylation was inhibited (Figures 9A, B and S2). In
conclusion, the low immune reactivity and prognosis of C3
subtype patients are related to the methylation of IRGs, such
as CD274. We screened the genes with different methylation
levels and transcriptional expression, and obtained five genes
related to the prognosis of OC patients. By verifying the immune
response of tumor patients in a GEO data sets (GSE153943), we
found that these genes had significantly differential expression in
patients with different immune responses (Figures 9C, D).

Relationship of Immune Subtypes and
Genomic Variation

We analyzed the gene mutations among the three immune
subtypes (Figures S3A-C) and found eight genes with
significant mutation differences in the C2 subtype compared
with the other two subtypes, including BRCA2 and CDKI12
(Figure 10A); moreover, the proportions of these eight genes in
C2 were significantly higher than those in C1 and C3 (Table S7).
We further analyzed the mutations of DNA damage repair genes
related to BRCA1 and BRCA2, and found that the mutation
frequency of BRCA1 (but not that of BRCA2) in the C2 subtype
was slightly lower than that in the other two subtypes, but
there was no significant statistical difference (Figures S3D, E).
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Further analysis showed that CCT8L2, SLC6A20, and MYO3B
had co-mutation tendencies in OC (Figures 10B, C). In addition,
among the eight genes with significant mutations in C2 subtype,
co-mutations of MYO3B and CCT8L2, MYO3B and SLC6A20, or
SLC6A20 and CCT8L2 were associated with significantly poorer
prognosis (Figure 10D). In order to further understand the
impact of genomic variation on the three immune subtypes, we
analyzed and screened the CNVs of each subtype. CASC1, KRAS,
and RASSF8 showed significantly higher amplification in the C2
subtype compared with the C1 and C3 subtypes, whereas there
was more deletion of various immune genes, including CD226,
CXCL9, CXCL11, and IL2, in the C3 subtype (Figures 10E-G).
These results suggest that mutations of these genes or variations
of genome copy number have an essential influence on prognosis
in the C2 and C3 subtypes.

DISCUSSION

OC is a malignant tumor with a poor prognosis and the leading
mortality rate among gynecological malignancies (19, 20).
Despite significant advances in surgical treatments and
chemotherapy in recent years, the survival rate for OC has
improved only slightly (21, 22). Several experimental and
clinical studies have shown that immunotherapy has

incomparable advantages over traditional anti-tumor therapies
in terms of extending PFS and OS, especially in patients with
advanced cancer (23, 24). However, this response occurs only in a
relatively small number of patients (25). Currently, single-dose
immunotherapy in advanced OC has an unsatisfactory clinical
response rate of about 10-15% (4, 5). Positive response to
immunotherapy depends on immunomodulatory interactions
within tumor cells and the TME, and the TME has a vital role
in suppressing or enhancing the immune response (26).
Therefore, a comprehensive understanding of the unique
immune microenvironment of OC is of great significance to
improve response to immunotherapy and patient outcomes.
Previous studies have shown that IRGs and the extent of
immune cell infiltration can reflect tumor immunotherapy
response (27). In this study, we identified three immune subtypes
of OC based on 798 IRGs. These three immune subtypes
have different immune microenvironments and molecular
characteristics. C1 and C2 represent an immunologically activated
state, whereas C3 represents an immunologically suppressed state,
and the three subtypes were associated with significantly different
survival rates. These results suggest that the immune characteristics
of tumors determine the immune response rate and the effectiveness
of immunotherapy. In combination with molecular typing of
OC from TCGA, we further analyzed the uniqueness of
immunotyping. We found that molecular typing was consistent
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with immunotyping, with significant enrichment of C1, C2, and C3
in immunoreactive, mesenchymal, and proliferative types,
respectively. It is worth noting that nearly half of OC patients’
tumor microenvironments were in an immunosuppressive state,
and the expression levels of immune checkpoint genes in these
patients were significantly decreased. Although the expression of
IRGs in the C2 subtype did not decrease significantly, patients with
this subtype had the worst prognoses. These problems indicate that
it is impossible to analyze the immune microenvironment of OC

patients completely by transcriptional analysis alone. Recent studies
have shown that the combination of multi-omics big data and
bioinformatics analysis can provide a basis for an in-depth
understanding of the mechanisms of tumorigenesis and guide
precision clinical treatment (28, 29). Therefore, we further used
multi-omics to further study the molecular characteristics of OC.
Usually, tumor-related molecular changes occur mainly in the
genome, but evidence increasingly shows a critical role for
epigenetics in the development and treatment of tumors (30).
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We found that several immune checkpoint genes, including
those encoding PD-L1 (CD274) and PD-L2 (PDCDI1LG2),
showed significant hypermethylation in the C3 subtype, and
the transcriptional expression level of these genes was
significantly decreased, suggesting that the inadequate immune
response of the C3 subtype may be related to the methylation
status of immune checkpoint genes (31). Further functional
enrichment analysis of differentially methylated genes showed
significant associations with the NK-«xB pathway, cytokine
activity, and the TGF-P pathway, consistent with previous
studies (32-34). We then identified five genes related to
prognosis after screening genes with different methylation and
transcriptional expression levels in the C3 subtype. The
expression levels of four of these five genes (GBP4, CTSS,
TNESF13B, RARRES3, and TAPBP) were closely related to
immunotherapy, according to validation in the GEO database
and the results of previous studies (35-39). These results suggest
that increasing the expression of immune checkpoint genes via

Tapbp Tnfsf13b Ctss
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FIGURE 9 | (A) After A2780 cell lines were treated with 5-AZ at the concentrations of 10uM for 24 hours, the changes of gene expression levels were observed.
(B) After HEY cell lines were treated with 5-AZ at the concentrations of 10uM for 24 hours, the changes of gene expression levels were observed. (C) K-M survival
curve of differentially methylated genes associated with prognosis. (D) Relationship between prognosis related differential methylation genes and immunotherapy

epigenetic therapy can reverse the immunosuppressive
microenvironment of OC and enhance the efficacy of
immunotherapy (40, 41).

The C2 subtype had a significantly different mutation pattern
compared with the other two subtypes, involving high-frequency
mutations of BRCA2 (11%) and CDKI12 (12%), especially
missense mutations. In previous studies, these two genes have
been proved to be associated with the tumor progression of OC
and breast cancer, indicating that genomic mutations may drive
the prognosis of patients with the C2 subtype; BRCA mutations
may also affect the efficacy of PARP inhibitors in OC patients
(42, 43). In addition, potential co-mutations were found among
SLC6A20 (8%), MYO3B (8%), and CCT8L2 (9%), and patients
with co-mutations in both genes had significantly worse
prognosis than those without the mutations. In previous
studies, these genes were shown to affect tumor progression via
changes in expression at the transcriptional level; however, in
this study, we studied their impact on prognosis at the level of
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FIGURE 10 | Genomic variation analysis of immune subtypes. (A) Differential high frequency mutation genes in C2 subtypes. (B) Correlation heatmap of co-mutated
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copy number genes in C2 subtype. (F) Significantly decreased copy number genes in C3 subtype. (G) Survival curve of differential copy number genes associated

genomic mutation (44-46). CNV analysis showed that genes
related to chemokines, cytokines, and immune response
receptors, including CD226, CXCL9, CXCL11, and IL2, were
deleted to varying degrees in the C3 subtype. Moreover, the low
expression of these genes was significantly related to poor
prognosis in patients with OC, and we found that they had
previously been validated as associated with tumor immune
response and immunotherapeutic efficacy (47-49).

In summary, in this study, we used immune genes to classify OC
patients and combined these results with multi-omics data to
analyze the causes of the different immune microenvironment
characteristics of different immune subtypes. We further revealed
differences in immune response patterns and prognosis of OC
patients at the molecular level. However, the results need to be
further validated in clinical samples of patients receiving
immunotherapy to clarify further the factors affecting immune
response. Overall, our study provides a conceptual framework for

understanding the TIME of OC and may have clinical significance
for the design of novel immunotherapies and appropriate
combination strategies.
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