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Cardiovascular diseases remain the leading cause of death worldwide,

particularly ischemic heart disease (IHD). It is also classified as incurable

given the irreversible damage it causes to cardiomyocytes. Thus, myocardial

tissue rejuvenation following ischemia is one of the global primary research

concerns for scientists. Interestingly, the mammalian heart thrives after an

injury during the embryonic or neonatal period; however, this ability disappears

with increasing age. Previous studies have found that specific non-coding (nc)

RNAs play a pivotal role in this process. Hence, the review herein summarizes

the research on cardiomyocyte regenerative medicine in recent years and

sets forth the biological functions and mechanisms of the micro (mi)RNA,

long non-coding (lnc)RNA, and circular (circ)RNA in the posttranscriptional

regulation of cardiomyocytes. In addition, this review summarizes the roles of

ncRNAs in specific species while enumerating potential therapeutic strategies

for myocardial infarction.
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Introduction

Ischemic heart disease (IHD) is a significant health concern worldwide (1) and has

been associated with increased morbidity and mortality over time (2, 3). IHD has also

been incurable, given the irreversible damage to cardiomyocytes. In addition, minimal

progress for myocardial infarction (MI) treatment on coronary reopening, increased

blood flow to the infarcted area, and coronary artery bypass grafts (CABG) usage has

been achieved (4–6).

Given that that cardiomyocytes hardly regenerate in mammals distinguishes

them from other lower vertebrates (7, 8). However, recent studies have found that

cardiomyocytes are not completely non-renewable (4, 9, 10). In contrast, neonatal

mouse cardiomyocytes could proliferate to some extent (11, 12). During myocardium

development, cardiomyocytes gradually break away from the cell cycle and become

non-renewable over time (13, 14).
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Cardiomyocytes undergo extensive proliferation during

embryogenesis but exit the proliferating cell cycle shortly after

birth (9, 13). Most cardiomyocytes undergo the last round of

DNA replication and nuclear division without cytokinesis from

the 5th day after birth in rodents resulting in approximately

90% of cardiomyocytes stopping proliferation in the 2nd week

after birth (15, 16). At this stage (2 weeks after birth), the

proliferation potential is limited to a small fraction of mono-

nuclear cardiomyocytes (15).

Nonetheless, recent studies have shown that adult

cardiomyocytes can re-enter the cell cycle and proliferate

under certain mitogen actions (such as fibroblast growth factor,

periosteal protein, and neuregulin) (17–20), which seems to be

limited to a small number of mono-nuclear cardiomyocytes.

Characterization of cardiomyocyte
proliferation

In the first 10-years of life, the human cardiomyocytes

turnover rate, mainly ventricular myocytes, is estimated to be

0.3–1% yearly (21), which is lower than other human body

tissues, particularly when tissues are damaged after Mi. Despite

several study results indicating that mouse and neonatal fetal

hearts myocardium could regenerate after tissue damage (15,

16, 22), G1/S and G2/M cyclin expression and cyclin-dependent

kinases in the cell cycle are usually downregulated, while the

associated cell cycle inhibitor levels are increased (10, 15).

However, when transitioning between the juvenile or adult

phase, cardiomyocytes break out of the cell cycle and enter

a quiescence phase (G0) (23). During the MI process or

myocardial ischemia-reperfusion (I/R) injury, both regulated

and non-regulated cell death processes are involved. Later, scar

tissue formation will follow this initial injury response (24).

Hence, understanding the heart’s regenerative capacity is the

primary goal of cardiac regenerative medicine.

MicroRNA

MicroRNA (miRNA) is an endogenous non-coding single-

stranded RNA composed of approximately 20–24 nucleotides

(25). It was first described in nematodes in 1993 (25, 26).

Abbreviations: circRNA, circular RNA; CeRNA, competitive endogenous

RNA; ECAR, Extracellular Acidification Rate; ESC, Embryonic Stem Cell;

HLHS, Hypoplastic Left Heart Syndrome; IHD, Ischemic Heart Disease;

iPSC, induced Pluripotent Stem Cell; I/R injury, Ischemic-Reperfusion

injury; lncRNA, long non-coding RNA; miRNA, micro RNA; MI, Myocardial

Infarction; mRNA, messenger RNA; MSC, Mesenchymal Stem Cell;

ncRNA, non-coding RNA; NRVMs, Neonatal Rat Ventricular Myocytes;

TAC, Transverse Aortic Constriction; TEA, Thoracic Epidural Anesthesia;

UTR, Untranslated Region.

Since then, miRNA has been investigated in multiple contexts,

confirming that it plays a regulatory role in various organisms

and associated diseases. The miRNA mechanism binds to the

3’ UTR at the end of the messenger RNA (mRNA) and

then targets the gene through posttranscriptional regulation,

thereby inhibiting the target gene expression in most cases

(26). miRNA is widely present in eukaryotes, and there are

traces of its existence from lower organisms to humans (8). Its

biological characteristics include a high degree of conservation

and temporal and tissue expression specificity (27).

With miRNA, there is a high degree of evolutionary

conservation among various species with its sequence structure

(28). Researchers believe that miRNAs conservation has an

important biological significance, suggesting that miRNAs have

the same regulatory mechanism during several organisms’

development (29). It thus provides additional evidence for the

conclusions derived using miRNAs in cross-species studies (28).

Likewise, it also provides a basis for the homology of early

biological evolution.

In addition, there are significant differences in expression

levels for the same miRNA in different tissues and

developmental stages (30). Some miRNAs demonstrate

temporal expression during development (31). Several

studies have pointed out that miRNAs can specifically

regulate cell cycle-related proteins, such as CDK and P21,

and the proliferation of juvenile cardiomyocytes is also

inseparable from the regulation of cyclins and related

pathways. miRNAs that directly act on the cell cycle and

the relative signal pathway are summarized in Figures 1,

2, respectively.

This review article focuses on the most recent research

concerning miRNAs and their role in cardiomyocyte

regeneration. miRNAs that enhance or inhibit cardiomyocytes

proliferation are summarized in Tables 1, 2.

miRNAs that enhance cardiomyocyte
proliferation

Directed at the cell cycle

Researchers found thatmiR-294 was overexpressed inmouse

embryos and was consistent with embryonic heart development.

This miR changed rapidly after the heart tissue transitioned

from postnatal to adult heart stages (49). After transfection of

neonatal rat ventricular myocytes (NRVM) with the miR-294

mimic, CyclinB1, Cdk2, and CyclinE1 expressions were higher

than the control cells, indicating that the cells changed to the

G1/S phase. The transfected cells had an altered cell cycle and an

advantage in energy metabolism. The extracellular acidification

rate (ECAR), glycolysis ability, glycolysis, and glycolysis reserve

were significantly increased 24 h after miR-294 treatment than

the control group.
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FIGURE 1

The e�ects of di�erent miRNAs that directly act on the cell cycle.

FIGURE 2

The potential mechanism of the miRNAs on cardiomyocyte proliferation.
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TABLE 1 A summary of the in vitro and in vivo e�ects of miRNAs on enhanced cardiomyocyte proliferation and the potential mechanism.

miRNA Species in vitro Species

in vivo

Targets Pathway Other effects Reference

miR-101a AC16 / TGFBR1 - MAPK Apoptosis - (32)

miR-10b hESC-CM / LATS1 - Hippo Apoptosis - (33)

miR-1180 Neonatal SD rat ventricular

cardiomyocytes

SD rat NKIRAS2 - NFκB Apoptosis - (34)

miR-133a AC16 / / / Apoptosis - (35)

miR-152 Neonatal mice cardiomyocytes C57BL/6 YAP1- P27kip1 -DNMT1 - Hippo/YAP Apoptosis - (18)

miR-17-3p Neonatal rat cardiomyocytes

H9C2

C57BL/6 TIMP3 - AKT Hypertrophy+ (36, 37)

miR-199a-3p SD NRCM / CD151 – P38 - MAPK / (38)

miR-199a-3p neonatal rats cardiomyocytes / TAOK1 (β-TrCP (Cofilin2 - Hippo / (39)

miR-19a/19b Adult mice cardiomyocytes C57BL/6 PTEN - BIM - AKT Cell death - Apoptosis - (40)

miR-19b P19 / GSK3β + β-catenin - WNT Apoptosis -Differentiation

+

(41, 42)

miR-200a-3p AC16 C57BL/6 PDCD4 - AKT Apoptosis - (43)

miR-210 adult Fisher rat cardiomyocytes C57BL/6 APC - β-catenin+ WNT cell survival+ angiogenesis

+

(44)

miR-21-5p Human cardiomyocytes

(HUVECs)

CD1 mice PDCD4 - AKT Apoptosis - (45)

miR-221-3p H9C2 HUVECs SD rat PTEN - AKT Apoptosis - (46)

miR-24 SD NRCM SD rat CDKN1B(p27) - / Hypertrophy+ (47)

miR-25 hiPSC-CMs hESC-CMs Zebrafish FBXW7 - / / (48)

miR-294 neonatal rat cardiomyocytes mice Wee1/CDK1-CyclinB1 axis - / / (49)

miR-301a neonatal rat cardiomyocytes

H9C2

C57BL/6 PTEN - AKT Apoptosis - (50)

miR-302d hiPSC-CM hESC-CM / LATS2 - Hippo / (51)

miR-324 Human neonatal

cardiomyocytes

/ SOCS3 - NFκB Apoptosis - (52)

miR-374 ICR mice cardiomyocytes ICR mice DTNA - Notch Apoptosis - (53)

miR-486 Embryonic/neonatal mice

cardiomyocytes

CD1 mice GATA4+ FoxO1 - TGFβ/Smad

–

TGFβ / (54)

miR-496 H9C2 / HOOK3 - AKT Apoptosis - (55)

miR-708 neonatal rat cardiomyocytes

or H9C2

C57BL/6 MAPK14 - MAPK Apoptosis - (56)

In addition, the researchers used a targeting scanner to

predict the miR-294 target as WEE1. After, luciferase analysis

was used to determine if miR-294 bound to the 3’ UTR end of

WEE1 to regulate NRVM proliferation (49). WEE1, a cell cycle

regulatory protein, inactivates the CDK1-CyclinB1 complex and

prevents CDK1 phosphorylation at Tyr1530, thus preventing it

from entering the G2/M phase (13). Hence miR-294 inhibits

WEE1, indicating that miR-294-mediated NRVM cell cycle

reentry may be related to CDK1-CyclinB1 complex release and

its downstream signal.

P27 is a cyclin-dependent kinase inhibitor that promotes

the cell cycle by inhibiting various cyclins and CDK activities

so that cells in the G0/G1 phase cannot enter the S phase

of the cell cycle. miR-24 expression was higher in transverse

aortic constricted (TAC) rats than in sham-operated rats, and

researchers speculated that this might be associated with cardiac

hypertrophy (47). The target scan predicted that p27 was a

potential target in rats and humans. In a subsequent luciferase

reporter assay experiment, 3’-UTR bounds to p27 to inhibit P27

activity, which shows that p27 is a miR-24 target.

Likewise, miR-24 can affect cardiac myocyte hypertrophy

(47). miR-24, also known as a junctophilin-2 suppressing

miRNA (although it could cause cardiac hypertrophy),

treatment with antagomir prevents decreased L-type calcium

channel/receptor signaling fidelity or efficiency and whole-

cell calcium transients. Also, miR-24 decrease shows that
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TABLE 2 A summary of the in vitro and in vivo e�ects of miRNAs on inhibited cardiomyocyte proliferation and the potential mechanism.

miRNA Species in vitro Species

in vivo

Targets Pathway Other effects Reference

let-7i-5p C57BL/6 NMCM C57BL/6 E2F2 - CCND2 - / / (57)

miR-1 H9C2 / NOTCH3 Notch / (51)

miR-128 neonatal SD rat cardiomyocytes

Adult C57BL/6 CMs

C57BL/6 SUZ12 – Cyclin E and CDK2 - / / (58)

miR-143-3p Neonatal mice cardiomyocytes C57BL/6 YAP – Ctnd1 - Hippo Apoptosis+ (59)

miR-144 H9C2 / TBX1 - JAK/STAT Apoptosis+ (60)

miR-195 C57 Neonatal mice C57BL/6 Chek1 - / / (61)

miR-208a SD rat cardiomyocytes / PI3K - PI3K/AKT Autophagy+ Apoptosis+ (62)

miR-29b-3p HL-1 Zebrafish NOTCH2 Notch / (63)

miR-378a-3p Neonatal rat cardiomyocytes C57BL/6 ATg12 – LC3 – P62+ / Apoptosis+ (64)

miR-489 H9C2 / SPIN1 - PI3K/AKT Apoptosis+ (65)

miR-612 AC16 / HOXA13 - / Apoptosis+ (66)

miR-873 H9C2 / GLI1 - Hedgehog / (67)

miR-9 H9C2 / YAP1 - Hippo Apoptosis+ (68)

suppression of miR-24 could effectively prevent the myocardial

transition from compensated to decompensated state (36).

In addition to being a target for miR-24, the P27 is also

a target for miR-152. Wang et al. demonstrated that Toll-

like receptor 3 (TLR3) promotes myocardial regeneration and

repair in neonatal mice, while TLR3-deficient mice showed

greater heart function loss and huge infarct size (18). TLR3

ligands can activate the YAP1 pathway in neonatal mouse

cardiomyocytes, which can induce cardiomyocyte proliferation.

Further experiments confirmed that YAP1 activates miR-152

downstream expression. miR-152 can inhibit p27 and DNMT1

expression and regulate the cell cycle of cardiac myocytes from

G1/G0 phase to the S phase (18).

Moreover, miR-25 can promote cardiomyocyte proliferation

by targeting the cyclin family of proteins (48). Previous studies

showed that cardiomyocytes’ ability to proliferate decreased over

time in cultured hPSC-CM. In response, investigators examined

gene expression at the genome-wide level and screened for

significant changes on the sixth and 18th days. Finally, it was

determined that miR-25 could significantly promote hESC-CMs

and hiPSC-CMs proliferation.

Similarly, potential targets were predicted using a

target scan, and finally, miR-25 was reported to target

FBXW7 via a dual-luciferase reporter (48). Fbxw7 is a

cell cycle regulator that mediates the ubiquitin-dependent

proteolysis of several positive cell cycle regulators (69). In

addition, miR-25 regulates the FBXW7/CyclinE pathway

in cardiomyocyte proliferation, which was observed by

RNA sequencing and KEGG enrichment analysis. Finally,

in vivo experiments in zebrafish confirmed that miR-25

could also regulate FBXW7 to promote proliferation (48)

(Table 1).

AKT pathway

In 2017, the researchers measured the expression of miR-

17-92 cluster members and miRNAs in two different mouse

models and concluded that miR-17-3p increased in mouse

ischemic/reperfusion injury (IRI) and TAC exercise models

(37). The effects on cardiac myocyte hypertrophy, proliferation,

and survival were demonstrated in vitro and in vivo. A target

scan was also used to predict the target. After that, the

luciferase reporter analysis indicated that metalloproteinase 3

(TIMP3) tissue inhibitor is a direct target gene for miR-17-3p,

and phosphatase and angiotensin homolog (PTEN) could be

indirectly suppressed by miR-17-3p (37).

These results suggest that miRNA can activate the Akt

pathway to achieve cardiac myocyte proliferation. Liu et al.

(70) also demonstrated that human serum-derived small

exosomes could promote cell proliferation and increase miR-

17-3p expression in H9C2 cells, confirming TIMP3 as a direct

target gene. Moreover, two other members of the miR-17-

92 cluster (miR-19a and miR-19b, which had the same seed

sequence) reduced MI size in the MI mouse model, and

fractional shortening (FS) was improved. Likewise, adding

miR-19a/19b to NRVMs stimulated the proliferation of rat

cardiomyocytes in vitro (40). Increased expression levels were

also detected in patients’ blood with dilated cardiomyopathy

and coronary heart disease. It thus showed that miR-19a/19b

significantly stimulated the proliferation of cardiomyocytes in

infancy and adulthood.

In addition, BIM1 and PTEN are both direct targets of

miR-19a/19b. miR-19a/19b can also inhibit apoptosis by directly

inhibiting apoptosis-related genes (40). miR-301a and miR-221-

3p are also direct targets for PTEN (46, 50). Increasing miR-

301a expression in H9C2 cells can promote cell proliferation and
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increase the G1/S transition of the cell cycle. It can also increase

the proliferation rate of primary newborn cardiac myocytes.

Furthermore, the apoptosis rate of H9C2 cells transfected with

miR-301a decreased under hypoxic conditions. Also, miR-301a

can increase the proliferation of cardiomyocytes in vivo. Further

experiments, such as the luciferase reporter assay, showed that

the miR-301a could bind to the 3’ UTR end of PTEN (50).

Similarly, miR-221-3p from small hMSC exosomes can

enhance AKT kinase activity by inhibiting PTEN, thus

enabling H9C2 cells to proliferate (46). Researchers have

found that the small exosomes released by Young-Exo hMSCs

can promote myocardial endothelial cell formation after MI,

reducemyocardial fibrosis, inhibit cardiomyocyte apoptosis, and

effectively improve cardiac structure and function in vivo than

Age-Exo cells. Also, after sequencing, it was found that miR-221-

3p was upregulated, while miRNA activated the Akt pathway by

targeting PTEN (46).

A study by Cheng et al. found that MSC-derived small

exosomes were significantly reduced in a rat MI model after

treatment, which prevented fibrosis after infarction (71). Using

microarray analysis, miR-210 was found to be abundant

in MSC-derived small exosomes. With prediction and dual-

luciferase analysis, AIFM3 was the downstream target of miR-

210. However, the AIFM3 level was up-regulated in hypoxic

cardiomyocytes, while p-AKT, PPI3K and p-p53 expressions

were down-regulated using western blotting and qPCR analysis.

These results suggest that miR-210 may activate the PI3K/Akt

pathway (71).

Per bioinformatics analysis and target gene prediction

database, Hook3 is a key target gene for Rno-miR-496 and is

closely related to cell proliferation. After H9C2 cells transfection

with a miR-496 mimic, it was suggested that miR-496

upregulation might be related to H9C2 hypoxia/reoxygenation

(H/R-induced apoptosis) and human cardiomyocytes

reduction (55). Also, the dual-luciferase reporter assay

system confirmed that miR-496 targets Hook3. Subsequently,

Hook3 overexpression stimulated apoptosis in H/R-treated

cells, thereby inhibiting cell proliferation. miR-496-activated

PI3K/Akt signaling was upregulated, while Hook3 showed the

opposite trend. Thus, it shows that miR-496 directly regulates

apoptosis and the proliferation-related gene expression levels

by targeting Hook3 and activating the PI3K/Akt signaling

pathway (55).

Programmed cell death 4 (PDCD4) can be involved

in various cellular processes, including cell proliferation,

autophagy, and apoptosis (43, 72). Researchers have found that

it is a direct target gene of several miRNAs and is involved

in cardiomyocyte proliferation. Small exosomes isolated from

explant-derived cardiac stromal cells from patients with heart

failure (FEXO), microRNA array, and PCR analysis showed

that miR-21-5p was abnormally expressed in FEXO. miR-21-

5p overexpression can restore the impaired cardiac function

caused by FEXO (45). Further studies on the mechanism have

shown that miR-21-5p inhibited cardiomyocyte apoptosis by

targeting PDCD4, promoting angiogenesis by activating the

PTEN/Akt signaling pathway, and VEGF expression in vascular

endothelial cells.

In addition, Sun and Zhang (43) demonstrated the lncRNA

MALAT1 mechanism in myocardial infarction. The study also

confirmed that miR-200a-3p could bind to PDCD4, while

MALAT1 acts on miR-200a-3p by sponge as the competitive

endogenous RNA (ceRNA), upregulating PDCD4 (43). Rescue

experiments showed that the MALAT1/miR-200A-3p/PDCD4

axis regulates hypoxia-induced cardiomyocyte proliferation, cell

cycle progression, and apoptosis (Figure 1).

MAPK pathway

Astragaloside IV (AS/IV), an active component of

Astragalus Membranaceous (AM), has been used as one of

the traditional drugs to treat cardiovascular diseases. AS/IV

can effectively ameliorate myocardial cell injury induced by

hypoxia/reoxygenation (H/R), and it has a significant protective

effect on myocardial cells after H/R (32). miR-101a expression

was increased in H/R cells treated with AS/IV, while dual-

luciferase reporter gene analysis showed that miR-101a could

target TGFBR1 in H/R cardiomyocytes. Furthermore, AS/IV

could promote cell proliferation and upregulate miR-101a

expression, thus inhibiting TGFBR1 and TLR2 expression in

myocardial cells injured by H/R. Moreover, western blot analysis

showed that the downstream genes (p-ERK and p-p38) of the

MAPK signaling pathway were inhibited, indicating that AS/IV

could inhibit the MAPK signaling pathway of H/R-injured

cardiomyocytes (32).

miRNAs, including miR-708, were abundant in embryonic

and neonatal cardiomyocytes and less abundant in adult

cardiomyocytes (56). Thus, miR-708 overexpression could

promote H9C2 cell proliferation or primary cardiomyocytes in

vitro. miR-708 can also promote myocardial regeneration and

cardiac function recovery in vivo. In addition, miR-708 protects

cardiomyocytes from stress-induced apoptosis under hypoxia or

Isoprenaline treatment. Luciferase assay confirmed the direct

interaction between miR-708 and MAPK14, which showed

that miR-708 partially depended on MAPK14 expression (56).

Moreover, miR-199a-3p was a potent activator of rodent

cardiomyocyte proliferation. Ying et al. hypothesized that the

miR-199a-3p direct target gene was CD151, which activates

the negative proliferation regulators by expressing p38, thereby

inhibiting the cell cycle (38). Gain-of-function and loss-of-

function experiments confirmed that CD151 is essential in

inhibiting the cardiomyocyte cell cycle. Thus, it shows that miR-

199a-3p achieves cardiomyocyte proliferation by regulating the

MAPK pathway.
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Notch pathway

Zhao et al. discovered the distinct miR-374 expression in

a thoracic epidural anesthetic model and a myocardial I/R

injured mouse model (53). TEA is a common anesthesia method

that can block the sympathetic afferent and efferent nervous

systems. Therefore, it is speculated that it may preventmalignant

ventricular arrhythmia caused by acutemyocardial infarction. In

a mouse myocardial I/R injured model, low miR-374 and high

DTNA expressions were found. The TEAmodel has a protective

effect on myocardial I/R injury, achieved by increasing miR-374

and decreasing DTNA expression.

The dual-luciferase reporter assay confirmed that

DTNA is the target gene for miR-374, and cardiomyocytes

overexpressing miR-374 have downregulated DTNA levels

that blocked the Notch1 axis. miR-374 overexpression also

promoted cardiomyocyte viability, inhibited apoptosis, and

increased the cell number arrested in the S phase of the cell

cycle. Correspondingly, miR-374 upregulation and DTNA

downregulation reduced myocardial infarct size in vivo. These

results suggest that miR-374 prevents myocardial I/R injury

in mice after TEA by inhibiting DTNA-mediated Notch1 axis

activity (53).

Hippo pathway

Regulating the Hippo signaling pathway to promote

endogenous CM proliferation has emerged as a promising

strategy for cardiac regeneration (33, 39, 51). LATS1 is the

main component of the Hippo pathway. miR-10b was found

in human embryonic stem cell-derived CMs (hESC-CMs)

and was highly expressed in the early stage, with expression

gradually decreasing over time (33). Cell cycle-related genes

were higher than the control group, indicating that ESC-CM

proliferation was promoted. In addition, ESC-CM transfected

with miR-10b also had a significant inhibitory effect on

H2O2-induced apoptosis. Dual-luciferase reporter assay showed

that LATS1 was a target for 10b, and the pathway showed

that CM proliferation was increased by inhibiting the Hippo

pathway (33). Like LATS1, LATS2 is also a component of the

Hippo pathway.

Xu et al. studied the fourth day of hPSC differentiation into

CM and confirmed that miR-302d expression was significantly

reduced (51). miR-302d overexpression significantly promoted

hPSC-CMs proliferation. Target scan prediction and luciferase

reporter analysis concluded that LATS2 was a direct target gene

for miR-302d, promoting CM’s proliferation by targeting LATS2

in the Hippo pathway. TAOK1, LATS upstream gene in the

Hippo pathway, also has a miRNA targeting effect. miR-199a-

3p can target CD151 to activate cardiomyocyte proliferation

via the MAPK pathway (38). Thus, it targets the upstream

YAP inhibitory kinase (TAOK1) and the E3 ubiquitin ligase

(b-TrCP), causing YAP degradation (39), thereby inducing rat

cardiomyocytes proliferation.

NFκB pathway

Ding et al. investigated the miR-1180 mechanism on

cardiomyocytes and found that the miR-1180 observed in

the rat’s heart at embryonal day 9.5 decreased over time and

completely disappeared at the seven postnatal days (34).

In H/R-induced cardiomyocytes, miR-1180 expression was

downregulated. On the other hand, miR-1180 transfection

significantly mimics attenuated myocardial injury and

apoptosis, while miR-1180 overexpression promoted cell

proliferation through cell cycle processes. In addition, miR-

1180 was found to target NKIRAS2, directly regulating

the NF-κB pathway. Meanwhile, miR-410-3p attenuated

apoptosis in hypoxia-treated cardiomyocytes, while miR-410-3p

overexpression promoted hypoxia-preconditioned AC16 cells

proliferation (73).

The dual-luciferase assay showed that miR-410-3p could

bind to the 3’ UTR TRAF5 region. The result was confirmed

by inhibiting TRAF5 expression. TRAF5, a member of the

tumor receptor-associated factor (TRAF) protein family, is

involved in various tumor activities and usually mediates NFκB

pathway activation (73). Researchers compared the differentially

expressed genes (DEGs) in human myocardial infarction and

normal myocardial tissue through the bioinformatics database

and identified five hub genes.

One of the genes, SOCS3, was significantly elevated in

the MI group (52). Next, it was confirmed by bioinformatics

prediction and luciferase reporter assays that miR-324 was its

upstream regulatory miRNA, which could both bind to inhibit

SOCS3 expression. In in vitro experiments, it was clear that

miR-324 overexpression promoted cardiomyocyte proliferation,

protected cells from apoptosis in the H/R model, and reduced

cardiomyocytes, such as TNF-α, p-p65, and p-IκBα. Thus, it

showed that miR-324 might improve cardiomyocyte H/R injury

by regulating NFκB (52).

WNT pathway

miR-19b belongs to the miR-17-92 cluster (41). Previous

studies demonstrated that miR-19b could participate in the

PTEN/AKT pathway to activate cardiomyocyte proliferation

(40), stimulate the WNT pathway, and interact with the gene β-

Catenin-related pathway (41, 42). Arif et al. demonstrated (by

western blot analysis) that cardiomyocytes in the transfected

group had significantly increased proliferation but decreased

cell death and downregulated APC (adenomatous polyposis

coli) expression. Simultaneously, the group used murine

miR-210 to transfect adult rat cardiomyocytes (44). Using

a bioinformatics prediction and luciferase reporter assay,

Arif et al. confirmed that the APC cell cycle repressor is

a direct target for miR-210 in rodents. APC is a WNT

signaling pathway antagonist involved in tumor cell migration,

adhesion, and apoptosis (74). These showed that miR-210

overexpression rescued cardiac function after cardiac injury
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in adult mice by promoting CM proliferation, cell survival,

and angiogenesis.

Others

Physiologically, the ventricular myocytes are stretched

when the heart beats normally. Researchers hypothesized

that the cardiomyocyte stretch-response pathways are closely

related to cardiac development and that perturbations in

biomechanical stimuli may cause conditions such as hypoplastic

left heart syndrome (HLHS) (54). miR-486 expression was

increased in cardiomyocytes under cyclic stretch and in HLHS

patients with increased right ventricular (RV) stretch in vivo.

Furthermore, increasing miR-486 for 3 days in neonatal mice

was sufficient to promote ventricular growth and cardiomyocyte

proliferation significantly.

Subsequent studies confirmed that miR-486 inhibited TGF-

β/Smad signaling to promote cardiomyocyte proliferation. Yang

et al. found that with hypoxia prolongation, lncRNA TUG1 and

miR-133a exhibited time-dependent variation. Both expressions

were complementary, meaning TUG1 expression was increased

while miR-133a expression gradually decreased (35). TUG1

silencing enhanced miR-133a and miR-133b expression. A

luciferase reporter assay was subsequently performed, indicating

that miR-133a is a direct target for TUG 1 in AC16 cells. In

addition, TUG1 acts as a competitive endogenous RNA (ceRNA)

to inhibit miR-133a expression. Hence, it shows that miR-133a

can promote AC16 cell proliferation and inhibit cell apoptosis

(Table 1).

miRNAs that inhibit the cardiomyocyte
proliferation

Directed at the cell cycle

Let-7i-5p affects cardiomyocyte cell proliferation and

interferes with cardiomyocyte repair after injury (57). Let-7i-5p

transfection mimics in mouse cardiomyocytes can significantly

reduce cardiomyocyte count, indicating that let-7i-5p inhibits

proliferation. Additionally, target scan prediction and luciferase

reporter assay found that let-7i-5p is a target relationship

with E2F2 and CCND2, which binds their 3’ UTR end and

inhibits E2F2 and CCND2 proteins expression (57). Huang et al.

observed that miR-128 is upregulated in murine cardiomyocytes

during the postnatal period, switching from proliferation

to terminal differentiation (58). Furthermore, miR-128

overexpression impairs CM proliferation and cardiac function

by downregulating SUZ12 expression. The outcome could

suppress cyclin-dependent kinase inhibitor-p27 expression and

activate the positive cell cycle regulators Cyclin E and CDK2.

miR-195 and its expression, a member of the miR-15 family,

gradually decreased over time in neonatal mouse ventricular

myocytes. Also, the expression level was almost 6-fold higher

on the 10th day of life than on the 1st day of life (61). miR-

195 was also confirmed to affect cardiomyocyte proliferation in

vitro and in vivo. Subsequently, in the study of target genes,

it was found that miR-195 can bind to checkpoint kinase

1 (Chek1) and inhibit the increase in cardiomyocyte count

by affecting the cardiomyocyte cell cycle normal operation.

Chek1, one of the key regulatory enzymes of the cell cycle, is

mainly involved in regulating mitotic stages and coordinates

progression via the G2/M, spindle checkpoints, chromosome

segregation, and cell division (75). Therefore, miR-195 primarily

regulates mouse cardiomyocyte proliferation by affecting Chek1

expression (Table 2).

JAK-STAT pathway

Cao et al. studied the miR-144 effect on rat cardiomyocytes

and confirmed that it is essential in regulating cardiomyocyte

proliferation (60). miR-144 inhibits cell proliferation by blocking

H9C2 cells in the G1 phase. Bioinformatics prediction and

luciferase reporter gene analysis indicated that miR-144 directly

targets TBX1. miR-144 and TBX1 co-overexpression promotes

the transition from the G1 to the S phase, upregulates cell

proliferation, and downregulates apoptosis by inhibiting the

JAK2/STAT1 signaling pathway.

Hedgehog pathway

Researchers found that the miR-873 expression was

upregulated in patients’ serum with congenital heart defects

(67). miR-873 overexpression can inhibit H9C2 cell proliferation

and induce cell cycle arrest, which clarifies miR-873 role in

cardiomyocytes. miR-873 has a predicted target site in the

3’-untranslated region (3’-UTR) of GLI1, as shown by the

bioinformatics algorithm and verified by the dual-luciferase

reporter experiment (67). Glioblastoma-associated oncogene 1

(Gli1) is a nuclear effector of the Hedgehog pathway and plays

an essential role in embryonic development and organogenesis.

AKT pathway

Similar to the TEA model, sevoflurane is a common gas

anesthetic that blocks the sympathetic (afferent/efferent) effects

and may reduce myocardial infarction (53). Shi et al. studied

the protection by sevoflurane in a rat cardiomyocyte IRI model.

They concluded that sevoflurane application could effectively

reduce autophagy and apoptosis-related cytokines expression

in IRI cells, while miR-208a could reverse sevoflurane effects

on IRI cells (62). The induced effect reduces cardiomyocyte

proliferation and arrests the cardiomyocytes in the G0/G1

phase. When studying the pathway, the PI3K and AKT mRNA

expressions were significantly increased in the post-treatment

group with sevoflurane, while sevoflurane-preconditioning

combined with the miR-208a inhibitor increased PI3K and AKT

mRNA levels.
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It, therefore, suggests that miR-208a low expression can

activate the PI3K/AKT signaling pathway and inhibit the

expression of the autophagy-related factors in myocardial SI/RI

cells (62). miR-489 can be highly expressed in H/R-treated

rat cardiomyocytes, and miR-489 overexpression can accelerate

its apoptosis. Chen et al. found that the SPIN1 gene is a

downstream target gene for miR-489, and this miRNA can be

combined with its 3’ UTR to downregulate SPIN1 expression.

Additionally, western blots showed that miR-489 overexpression

inhibited the PI3K/AKT pathway (65). Thus, miR-489 could

induce cardiomyocyte apoptosis by inhibiting the AKT pathway

(Figure 2).

Notch pathway

Yang et al. applied next-generation sequencing (NGS)

to screen patients’ entire miRNA expression profile with

congenital heart disease (63). It was found that the of miR-

29b-3p expression in the patients’ right ventricular outflow

tract (RVOT) was significantly increased, while NOTCH2 was

downregulated in the RVOT. In vivo experiments using miR-

29b-3p mimics injected into zebrafish embryos caused several

malformations, including corporeal and cardiac malformations.

In vitro experiments, where miR-29b-3p was transfected into

HL1 cells showed that the expression of the proliferation-related

proteins was downregulated, while expression was upregulated

in the miR-29b-3p inhibitor group.

On the other hand, luciferase reporter analysis indicated that

miR-29b-3p was an upstream regulatory miRNA for NOTCH2,

indicating that miR-29b-3p could regulate the NOTCH pathway

and inhibit mouse cardiomyocyte proliferation (63). Meanwhile,

miR-1 was confirmed to regulate the NOTCH pathway and

inhibit cardiomyocyte proliferation (76). In rat cardiomyocytes,

hypoxia inhibited cell proliferation but promoted cell apoptosis

and miR-1 expression, while miR-1 expression downregulation

had the opposite effect. Subsequently, bioinformatics analysis,

luciferase reporter, and RNA immunoprecipitation assays

indicated that NOTCH3 was a direct target for miR-1.

Upregulation was shown to reverse the miR-1 effects on the

proliferation, apoptosis, and autophagy of the hypoxia-treated

H9C2 cells (76).

Hippo pathway

Ma et al. studied the melatonin effect on mice

cardiomyocytes and found that it could significantly reduce

oxidative stress and apoptosis in cardiomyocytes after

myocardial infarction (59). In vitro, melatonin stimulated

neonatal mouse cardiomyocytes to re-enter the cell cycle and

significantly inhibited miR-143-3p levels. In contrast, miR-143-

3p overexpression inhibited melatonin-induced cardiomyocyte

mitosis. Subsequent experiments proved that miR-143-3p target

genes were YAP and Ctnd1, suggesting that miR-143-3p could

regulate the YAP signaling pathway under the influence of

melatonin and promotes cellular regeneration in myocardial

infarction (59). With hypoxia prolongation in H9C2 cells,

miR-9 expression was upregulated, while YAP1 expression was

downregulated. miR-9 knockdown increased the hypoxic H9C2

cells’ proliferation and inhibited apoptosis and caspase 3/7

activity, while miR-9 overexpression had the opposite effect on

hypoxic H9C2 cells (68).

In addition, a luciferase reporter showed that YAP1 is

a direct target for miR-9. YAP1 gene knockdown inhibited

the hypoxia-exposed H9C2 cells proliferation and promoted

apoptosis. Also, the YAP1 knockout attenuated the anti-miR-

9 effects on the proliferation and apoptosis of the hypoxic

H9C2 cells. The results showed that in hypoxia-exposed H9C2

cells, miR-9 increased cardiomyocyte apoptosis and inhibited

cardiomyocyte proliferation by affecting the YAP pathway.

Others

Li et al. investigated patients with chronic heart failure

(CHF) and compared these patients with a normal control

group. The result showed that the lncRNA LUCAT1 in blood

was reduced by 1.7 times, suggesting that it may be related to

prognostic factors (66). LUCAT1 inhibitor transfection into the

AC16 cells can accelerate cardiomyocytes’ apoptosis. The study

also found that miR-612 expression was increased. Thus, follow-

up experiments determined that LUCAT1 can compete with

miR-612 as a ceRNA in AC16 cells, showing that they are directly

related. Simultaneously, the HOXA13 target for miR-612 was

also identified. Rescue experiments showed that the lncRNA

LUCAT1 promotes cell proliferation and inhibits apoptosis in

CHF patients through via miR-612/HOXA13 axis (66).

LncRNA NEAT1 is involved in various disease progression,

but the mechanism involved in myocardial infarction is

still unclear. LncRNA NEAT1 expression in more than 100

patients’ blood with unstable angina pectoris and ischemic

cardiomyopathy/MI was significantly higher than the normal

controls (64). After the I/R injury model was established in

vivo, the NEAT1 level significantly increased over time. NEAT1

knockdown ameliorated hypoxia-induced cardiomyocyte

injury. NEAT1 was subsequently predicted to be a target

for miR-378a-3p, where subsequent luciferase assay results

showed that the miR-378a-3p expression significantly reduced

the NEAT1 reporter gene (wild-type non-mutated) luciferase

activity (64). It was also noted that the NEAT1/miR-378a-3p

axis existed in rat cardiomyocytes under hypoxia (Table 2).

LncRNAs that inhibit cardiomyocyte
proliferation

In the mammalian genome sequence, 4%−9% of transcripts

sequentially produced are lncRNAs, with the corresponding
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proportion of protein-coding RNA being approximately

1%. Though lncRNAs were thought to be secondary RNA

polymerase-II-transcription products with no biological

functions (77), long non-coding RNAs (lncRNAs) are a

cluster of functional non-translated RNA molecules with a

length >200 nucleotides. Recent studies have shown that

lncRNAs are widely involved in several critical regulatory

processes, such as chromosome silencing, genome imprinting,

chromatin modification, transcription activation, transcription

interference, and nuclear transport (78, 79). Major LncRNAs

are classified into four types per their position in the genome

relative to the protein-coding gene, including Antisense

lncRNAs, Bidirectional lncRNAs, Intergenic lncRNAs, and

Sense-intronic lncRNAs. (17, 80, 81). LncRNAs play an essential

role in regulating cardiomyocyte proliferation by enhancing or

suppressing cell cycle progression.

On the one hand, some lncRNAs act as sponges for

inhibitory miRNAs to inhibit cardiomyocyte proliferation. The

lncRNA AZIN2-sv, AZIN2 gene splicing variant, directly binds

to miR-214 and acts on the PTEN target gene. In addition,

AZIN2-sv inhibit the AKT pathway by blocking its inhibitory

effect on PTEN. Therefore, AZIN2-sv loss can promote cell

survival and proliferation (80). Similarly to AZIN2-sv, the

lncRNA CRRL binds to miR-199a-3p and thereby increases the

target gene expression of Hopx, a critical negative regulatory

factor of CM proliferation, suppressing CM proliferation (82).

However, the lncRNA CAREL acted as a ceRNA for miR-

296 to downregulate Trp53inp1 and Itm2a, the miR-296

target gene. The Trp53inp1 has been found to cause cell

cycle arrest in G1 and to increase p53-mediated apoptosis,

while Itm2a was associated with G2/M cell cycle arrest

as a tumor suppressor. Hence, CAREL negatively controls

cardiomyocyte proliferation.

Cardiac-specific CAREL overexpression in mice reduced

cardiomyocyte division and proliferation and blunted neonatal

heart regeneration after injury. Similarly, CAREL reduced

human-induced pluripotent stem cell-derived cardiomyocyte

proliferation (83). LncRNA-specific transcript 5 (GAS5)

expression affects cardiomyocyte proliferation, cell cycle, and

apoptosis. LncRNA Gas5 regulates myocardial infarction by

targeting the miR-525-5p/CALM2 axis. Studies have shown that

Gas5 and CALM2 expression in cardiomyocytes after infarction

is significantly upregulated, while miR-525-5p expression is

significantly downregulated. Gas5 and CALM2 overexpression

significantly promotes cardiomyocyte apoptosis and inhibits

cardiomyocyte proliferation (84).

In addition, Gas5 stimulates PDCD4, inhibiting the

PI3K/AKT signal pathway. LncRNA-Gas5 regulates the

PDCD4 expression by targeting miR-21, mediating myocardial

infarction-induced cardiomyocyte apoptosis. Thus, it implies

that Gas5 may become a therapeutic target for MI (72).

However, LncRNA GAS5 inhibits NLRP3 (inflammasome)

activation-mediated pyroptosis in diabetic cardiomyopathy

by targeting miR-34b-3p/AHR. GAS5 acts as a competing

endogenous RNA to enhance AHR expression by sponging

miR-34b-3p and repressing NLRP3 (inflammasome) activation-

mediated pyroptosis to improve diabetic cardiomyopathy (85).

Additionally, lncRNA XIST overexpression reduces cardiac

regeneration and promotes apoptosis by negatively targeting the

miR-130a-3p/PDE4D axis (86).

On the other hand, some lncRNAs directly act on mRNAs

and proteins or act as guides for chromatin modifiers to

supress cardiomyocyte proliferation. The LncRNA CPR targets

minichromosome maintenance 3 (MCM3), a DNA replication

promoter, and cell cycle progression to inhibit cardiomyocyte

proliferation. CPR- knocked down cardiomyocytes and CPR-

knocked out mice exhibit increased CM renewal after MI

(87). Moreover, the lncRNA TUC40- overexpression reduced

the target gene Pbx1 expression, cardiomyocyte induction and

differentiation, inhibited proliferation and promoted apoptosis.

Proliferation was possibly inhibited due to G2/M cell cycle arrest

and the increased induced apoptosis rate (88).

LncRNAs that stimulate cardiomyocyte
proliferation

Some lncRNAs promote cardiomyocyte proliferation apart

from lncRNAs that suppress cardiac regeneration. A novel

upregulated fetal lncRNA ECRAR promoted DNA synthesis,

mitosis, and cytokinesis in the seventh post-natal day and adult

rat cardiomyocytes. ECRAR was transcriptionally upregulated

by E2F transcription factor 1 (E2F1). After that, ECRAR

bound and promoted extracellular signal-regulated kinases

1 and 2 (ERK1/2) phosphorylation, causing cyclin D1 and

cyclin E1 downstream target activation, lastly activating

E2F1. The E2F1-ECRAR-ERK1/2 signaling formed a positive

feedback loop to drive cell cycle progression and promote

CM proliferation (89). Moreover, antisense lncRNA, silent

information regulator enzyme 1 (Sirt1), has been shown

to enhance cardiomyocyte proliferation and synchronously

attenuate cardiomyocyte apoptosis (80). Unlike other lncRNAs,

Sirt1 antisense lncRNA can bind the Sirt1 3’-UTR, enhancing

Sirt1 stability and increasing Sirt1 abundance at both the mRNA

and protein levels.

Sirt1 was involved in Sirt1 antisense lncRNA-induced

cardiomyocyte proliferation (80). The LncRNA NR_045363

was primarily expressed in cardiomyocytes and rarely in

non-cardiomyocytes. NR_045363 overexpression in a 7-day-old

mice heart could improve cardiac function and stimulate

cardiomyocyte proliferation after myocardial infarction

(90). lncRNAs that regulate cardiomyocyte proliferation are

summarized in Table 3.
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TABLE 3 A summary of the lncRNAs on cardiomyocyte proliferation and the potential mechanism.

LncRNA Effect on proliferation Sponged by Target gene Pathway Reference

AZIN2-sv Inhibit miR-214 PTEN AKT (66)

CRRL Inhibit miR-199a-3p Hopx / (82)

CAREL Inhibit miR-296 Trp53inp1/ Itm2a / (83)

GAS5 Inhibit miR-525-5p CALM2 / (84)

GAS5 Inhibit miR-21 PDCD4 PI3K/AKT (72)

GAS5 Inhibit miR-34b-3p AHR / (76)

XIST Inhibit miR-130a-3p PDE4D / (86)

CPR Inhibit / MCM3 / (87)

TUC40- Inhibit / Pbx1 / (91)

ECRAR Promote / ERK1/2 / (65)

Sirt1 Promote / Sirt1 3’-UTR / (91)

NR_045363 Promote / - / (90)

CircRNA and cardiomyocytes

CircRNA is a single-stranded RNA type connected end-to-

end for specific functions. It implies that the 3’ and 5’ ends

of the RNA form a covalent bond. CircRNA is less prone

to degradation by exonucleases than conventional linear RNA

because it lacks of 5’ and 3’ tails (92). In the early 1990’s, an

accidental PCR amplification revealed circRNA to the world

(93). 2 years later, scientists discovered the biological behavior

of circular transcription while studying the key mouse gene

Sry, which is dominant in sex determination during embryonic

development (94).

Following extensive development and popularization of

RNA sequencing technology, several achievements have been

made in circRNA. Several experiments have confirmed that

certain circRNAs have been proven to encode proteins, given

that numerous circRNA types come from protein-coding genes

(95, 96). However, the biological functions of most circular

RNAs are still unclear. This article mainly introduces the

relationship between circRNA, cardiomyocyte proliferation, and

circRNA biological effects.

CircRNAs (circular RNAs) are emerging as powerful cardiac

development regulators and diseases that regulate cardiac

regeneration. CircRNA Nfix (circNfix) was overexpressed in

humans, rats, and mice in the adult heart. Experiments in

vitro and in vivo indicated that cardiomyocyte proliferation

was increased by circNfix knockdown, whereas it was inhibited

by circNfix overexpression. Mechanistically, super-enhancer-

regulated circNfix inhibits cardiac regenerative repair and

functional recovery after myocardial infarction by suppressing

Ybx1 ubiquitin-dependent degradation and increasing miR-214

activity after MI (97).

CircHIPK3 inhibits proliferative ability and stimulates

human-derived cardiomyocyte apoptosis after myocardial

Ischemia-reperfusion injury by binding to miRNA-124-3p,

which aggravates myocardial ischemia-reperfusion injury (98).

However, another study demonstrated that circHIPK3 was

overexpressed in fetal and neonatal mice hearts. CircHIPK3

promotes division and mouse cardiomyocyte proliferation

by increasing the Notch1 intracellular domain (N1ICD)

acetylation, significantly increasing its stability and reducing

degradability. In addition, circHIPK3 acted as a sponge for

miR-133a to promote connective tissue growth factor (CTGF)

expression, activating endothelial cells and improving cellular

function (99).

Notwithstanding, various circRNAs also show the ability to

regulate the proliferation of cardiomyocytes during myocardial

I/R injury positively. CircRNA-68566 participated in I/R by

regulating the miR-6322/PARP2 signaling pathway, which

binds to miR-6322 to enhance proliferation (100). circSNRK

overexpression could also facilitate the proliferation of

cardiomyocytes. In the post-infarction area induced by adeno-

associated virus 9 (AAV9), circSNRK could phosphorylate

GSK3β activity and miR-103-3p target, while circSNRK can

act as a sponge for miR-103-3p to promote cardiomyocytes

regeneration (101).

However, other researchers suggested overexpressed

CircANXA2 could inhibit the H/R-treated H9C2 cell

proliferation. Also, further investigation showed that

CircANXA2 could be a sponge for miR-133, reversing

the inhibition of proliferation and increasing apoptosis

(102). Moreover, circRNA PVT1 (circPVT1) can act as

a sponge for two miRNAs (miR-125b and miR-200a),

increasing cell apoptosis and blocking cardiomyocyte

proliferation in vitro. Luo et al., demonstrated that silencing

the circPVT1 expression could prevent heart I/R injury

in rats and restore cardiomyocyte viability by regulating

the circPVT1/miR-125b/miR-200a axis (103). circRNAs

that regulate cardiomyocyte proliferation are summarized

in Table 4.

Frontiers inCardiovascularMedicine 11 frontiersin.org

https://doi.org/10.3389/fcvm.2022.944393
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Qin et al. 10.3389/fcvm.2022.944393

TABLE 4 A summary of the circRNAs on cardiomyocyte proliferation and the potential mechanism.

CircRNA Effect on

proliferation

Sponged by Target gene Other effects Reference

CircNfix Promote miR-214 Ybx1 ubiquitin-dependent

degradation

/ (58)

CircHIPK3 Inhibit miR-124-3p / Induces apoptosis (98)

Promote miR-133a N1ICD acetylation CTGF Coronary vessel endothelial cell

proliferation (migration (and

tube-forming capacity and subsequent

angiogenesis.

(99)

Circ68566 Promote miR-6322 PARP2 / (72)

CircSNRK Promote miR-103-3p GSK3β Phosphorylation Reduced cardiomyocyte apoptosis

enhanced angiogenesis

(101)

CircANXA2 Inhibit miR-133 / Induces apoptosis (102)

CircPVT1 Inhibit miR-125b200a P53 SIRT7 Keap1 PDCD4 / (103)

ncRNAs as biomarkers and therapeutic
targets

Cardiovascular diseases (CVD) are the main cause of

morbidity and mortality worldwide. The adult heart cannot

regenerate new cardiomyocytes during myocardial infarction

and heart failure. In recent years, increasing evidence suggests

that circulating ncRNAs can serve as diagnostic biomarkers

and potential new therapeutic targets for several cardiovascular

disease, especially myocardial infarction.

MicroRNAs are considered ideal therapeutic targets in

myocardial infarction. In a reperfused AMI porcine model, a

single microencapsulated anti-miR-92a intracoronary injection

restrained left ventricle remodeling without adverse effects

(104). Likewise, the systemic injection of a locked nucleic

acid-modified anti-miR-15 effectively rendered cardiomyocytes

resistant to hypoxia-induced cardiomyocyte death (105).

Additionally, a miR-146a mimic selective administration

reproduces some benefits for cardiosphere-derived cells

(CDC) exosomes.

The findings identified exosomes as key mediators

for CDC-induced regeneration and highlighted exosomes’

potential utility as cell-free therapeutic candidates (104).

Another study indicated that exosome cargo analysis in mice

and humans identified conserved pro-regenerative miRs,

which recapitulated the therapeutic effects of promoting

cardiomyocyte proliferation (106). In summary, these

studies show that miRNA-based therapy using modified

oligonucleotides is a promising therapeutic agent for patients

suffering from massive acute myocardial infarction or affecting

cardiac remodeling and protecting cardiac function after

ischemic injury.

Recent advances involving targeting miRNAs, while

lncRNAs, a novel and challenging class of potential drug

targets will be given priority. A study that collected plasma

from patients with cardiac remodeling after acute myocardial

infarction and performed transcriptome analysis identified

LIPCAR as a potential biomarker for heart failure. In addition,

LncRNA LIPCAR (long intergenic non-coding RNA predicting

cardiac remodeling) is associated with cardiovascular death

in patients with heart failure and a prognostic indicator in

patients with heart failure (107). Another study found that

LncRNA ANRIL and KCNQ1OT1 levels could predict the

degree of left ventricular dysfunction (108). Recent studies

have shown that LncRNAs CoroMarker and LncPPARδ are

predictive markers for coronary heart disease (109). Despite

these advances, circulating ncRNAs cellular origin is largely

unknown, and little is currently known about the causality of the

underlying disease.

Conclusions

Microscopically, heart failure caused by the decrease in

absolute cardiomyocyte count is still the most crucial factor

threatening human life. In addition, current treatment methods

cannot supplement/replenish cardiomyocytes, the root cause of

failed treatments. The present review collected and summarized

information showing that cardiomyocytes, particularly during

the neonatal or fetal period, have an inherent ability to

proliferate, although gradually inhibited by different degrees of

extracellular or intracellular factors.

The nature and importance of these stimuli and how

they affect the myocardial cell cycle are still the subject

of in-depth research. Starting with lower vertebrates and

rodents is essential and effective in understanding the human

heart regenerative ability in the evolutionary process and

the corresponding cellular mechanism regulation. Notably,
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the cardiomyogenesis regulatory mechanisms identified

in these animal models appear to function similarly in

humans. Cell sequencing technologies will make large-

scale target identification possible, and new gene therapy

technologies will provide new tools for precise regulation

in vivo.

From the current research, various ncRNAs, including

miRNA, lncRNA, and circRNA, can control the essential

genes and regulatory pathways of various cellular processes.

Most non-coding RNAs in current research directly or

indirectly act in a regulatory role on cell cycle-associated

proteins. Therefore, enabling cardiomyocyte’s’ reentry

into the cell cycle would be a crucial breakthrough. The

studies on miRNAs in this research field of cardiomyocyte

regeneration are emerging compared with other ncRNAs.

Although lncRNA and circRNA are novel and unexplored,

the mechanisms behind them seem to be largely inextricably

linked to miRNA regulation. Hence fully understanding

the miRNAs mechanism may still allow breakthroughs in

solving myocardial regeneration issues. Although there

is progress non-coding RNA usage for cardiomyocyte

proliferation and repair, there are still significant

challenges in the actual combination of clinical guidance

and treatment.
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