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Abstract 

Background: Primary biliary cholangitis (PBC) is a classical autoimmune disease, which is highly influenced by 
genetic determinants. Many genome-wide association studies (GWAS) have reported that numerous genetic loci 
were significantly associated with PBC susceptibility. However, the effects of genetic determinants on liver cells and its 
immune microenvironment for PBC remain unclear.

Results: We constructed a powerful computational framework to integrate GWAS summary statistics with scRNA-seq 
data to uncover genetics-modulated liver cell subpopulations for PBC. Based on our multi-omics integrative analysis, 
29 risk genes including ORMDL3, GSNK2B, and DDAH2 were significantly associated with PBC susceptibility. By com-
bining GWAS summary statistics with scRNA-seq data, we found that cholangiocytes exhibited a notable enrichment 
by PBC-related genetic association signals (Permuted P < 0.05). The risk gene of ORMDL3 showed the highest expres-
sion proportion in cholangiocytes than other liver cells (22.38%). The ORMDL3+ cholangiocytes have prominently 
higher metabolism activity score than ORMDL3− cholangiocytes (P = 1.38 ×  10–15). Compared with ORMDL3− chol-
angiocytes, there were 77 significantly differentially expressed genes among ORMDL3+ cholangiocytes (FDR < 0.05), 
and these significant genes were associated with autoimmune diseases-related functional terms or pathways. The 
ORMDL3+ cholangiocytes exhibited relatively high communications with macrophage and monocyte. Compared 
with ORMDL3− cholangiocytes, the VEGF signaling pathway is specific for ORMDL3+ cholangiocytes to interact with 
other cell populations.

Conclusions: To the best of our knowledge, this is the first study to integrate genetic information with single cell 
sequencing data for parsing genetics-influenced liver cells for PBC risk. We identified that ORMDL3+ cholangiocytes 
with higher metabolism activity play important immune-modulatory roles in the etiology of PBC.
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Background
Primary biliary cholangitis (PBC), which is formally 
known as primary biliary cirrhosis until 2016 [1], is a rare 
chronic cholestatic liver disease characterized by pro-
gressive autoimmune-mediated destruction of the small 
intrahepatic biliary epithelial cells [2, 3]. PBC patients 
suffering from chronic cholestasis can eventually lead to 
cirrhosis and hepatic failure without effective treatments 
[2]. Although ursodeoxycholic acid has been used as the 
first-line therapeutic agent for PBC, there exist 10–20% 
of PBC patients resistant to ursodeoxycholic acid and 
developing to advanced-stage liver disease [2]. Previous 
studies [4] have reported that a combination of genetic 
and environmental risk factors have an important influ-
ence on the aetiology of PBC. Hence, understanding the 
genetic mechanisms of PBC is becoming a great interest, 
which may promote the development of individualized 
therapeutic strategy for PBC.

Over the past decade, a growing number of genome-
wide association studies (GWAS) and Immunochip 
studies based on East Asian and European populations 
have been performed to uncover the genetic suscepti-
bility loci associated with PBC [4]. To date, more than 
40 genetic loci with numerous risk genes have been 
reported [5–10], such as SLC19A3/CCL20, IRF8/FOXF1, 
NFKB1/MANBA, and PDGFB/RPL3. Nevertheless, the 
GWAS approach has generally focused on examining 
the genetic associations of millions of single nucleotide 
polymorphisms (SNPs) and only a handful of SNPs with 
a genome-wide significance (P ≤ 5 ×  10–8) are reported. 
There exist many common SNPs with small marginal 
effects were neglected [11, 12]. Moreover, the vast major-
ity of reported SNPs were mapped within non-coding 
genomic regions [12]. It is plausible to infer that these 
non-coding SNPs may modulate the expression lev-
els of corresponding risk genes rather than change the 
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functions of their proteins. Thus, combination of GWAS 
summary statistics and other different types of data that 
characterize tissue- and cell-type-specific activity, includ-
ing expression quantitative trait loci (eQTL) [11], DNase 
I-hypersensitive sites (DHS) [13], and histone marks [14], 
contributes to highlight disease-related risk genes and 
cell types.

With the advance of single cell sequencing techniques, 
researchers have an effective avenue to discover more 
refined and novel cell populations for complex diseases 
[15]. An accruing and large number of single cell RNA 
sequencing (scRNA-seq) studies on autoimmune dis-
eases, including rheumatoid arthritis [16], inflammatory 
bowel disease [17], and systemic lupus erythematosus 
[18], have been reported to parse the heterogeneity of 
cellular subpopulations at unprecedented resolution. In 
view of no scRNA-seq study was conducted for uncov-
ering human liver cell types implicated in PBC, we con-
structed a computational framework to identify risk 
genes whose genetically expressions associated with PBC 
and pinpoint cell subpopulations implicated in the etiol-
ogy of PBC.

Results
The framework for integrating single‑cell transcriptomes 
and GWAS on PBC
In the current study, we constructed a computational 
framework to unveil the cell-type specific genetic influ-
ence on the etiology of PBC based on multiple omics 
datasets (Fig.  1 and Additional file  2: Table  S1). It 
included three primary sections: (1) combination of 
GWAS summary statistics on PBC with scRNA-seq data 
to recapitulate the genetics-modulated single cell land-
scape for PBC (Fig. 1a), (2) prioritization of genetics-risk 
genes and pathways contributing to PBC (Fig.  1b), and 
(3) revelation of the cell-to-cell interactions and meta-
bolic activities of genetics-influenced subset of liver chol-
angiocytes and its immune microenvironment for PBC 
(Fig. 1c).

Identification of gene‑level genetic associations for PBC
To identify the aggregated effects of SNPs in a given 
gene on PBC, we performed a gene-level genetic associa-
tion analysis and found that 563 genes were significantly 
associated with PBC (FDR ≤ 0.05, Additional file  1: Fig. 
S1, Additional file  2: Table  S2). For example, the top-
ranked genes of HLA-DPA1 (P = 2.69 ×  10–24), IL12A 
(P = 6.63 ×  10–22), and BTNL2 (P = 1.65 ×  10–17). By using 
a genome-wide pathway analysis, there were 41 KEGG 
pathways significantly enriched (FDR ≤ 0.05, Additional 
file 2: Table S3 and Additional file 1: Fig. S2a). Based on 
the MDS analysis, these 41 pathways were grouped into 
five clusters, including Th1 and Th2 cell differentiation, 

allograft rejection, Th17 cell differentiation, cell adhesion 
molecules, and cytokine-cytokine receptor interactions 
(Additional file  1: Fig. S2b). The top-ranked pathways, 
such as Th1 and Th2 cell differentiation, allograft rejec-
tion, inflammatory bowel disease, and type I diabetes 
mellitus, were relevant to autoimmune diseases.

Furthermore, by performing a gene-property analysis 
based on mouse liver tissue with immune cells, we found 
that PBC-associated genes were significantly enriched in 
several immune-related cell types (Additional file 1: Fig. 
S3 and Additional file 2: Table S4), including  Cst3+ den-
dritic cell (P = 5.8 ×  10–3),  Trbc2+ T cell (P = 7.1 ×  10–3), 
 Chil3+ macrophage (P = 0.017), and  Gzma+ T cell 
(P = 0.03), which were in line with the results in previous 
studies [19, 20].

Integrative analysis of GWAS summary statistics with eQTL 
data for PBC
To further highlight the functional genes whose expres-
sions are associated with PBC, we leveraged the S-Mul-
tiXcan software [21] to meta-analyze tissue-specific 
associations across 49 GTEx tissues. There were 268 risk 
genes whose genetically-associated expression show-
ing notable associations with PBC (FDR ≤ 0.05, Fig.  2). 
Among these significant genes, there were 52 risk genes 
having been documented in the GWAS Catalog database 
(Additional file 2: Table S5). Moreover, there was a high 
consistency of results between MAGMA and S-Multi-
Xcan analysis (232/268 = 86.6%, Additional file  1: Fig. 
S4), such as HLA-DRB1 (P = 4.95 ×  10–69), HLA-DRB5 
(P = 1.17 ×  10–42), and BTNL2 (P = 3.26 ×  10–41).

To further validate these risk genes in two PBC-rele-
vant tissues (i.e., liver and blood) using the S-PrediXcan 
method, we found that 76 and 115 genes were signifi-
cantly associated with PBC in liver and blood, respec-
tively (FDR ≤ 0.05, Fig.  3a, b and Additional file  2: 
Tables S6, S7). In total, 29 risk genes were significantly 
associated with PBC across different methods includ-
ing MAGMA, S-MultiXcan, and S-PrediXcan analy-
ses (Fig.  3c). Using the Pearson correlation analysis, 
we observed that significant genes from S-MultiXcan 
analysis showed remarkable correlations with that from 
MAGMA and S-PrediXcan analyses (P ≤ 0.05, Fig. 3d–f). 
Moreover, by performing three independent permuta-
tion analyses, we found that the number of observed 
overlapped genes between S-MultiXcan and MAGMA 
and S-PrediXcan were significantly higher than random 
events (Empirical P < 1 ×  10–5, Fig.  3g–i and Additional 
file 1: Fig. S5a–c). Overall, we identified 29 genes contrib-
ute susceptibility to PBC (Table 1).

Based on three independent expression profiles of liver, 
blood, and peripheral CD4 + T cells, we conducted dif-
ferential gene expression analysis for these 29 risk genes 
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between PBC and matched control group. We found that 
23 of 29 genes (79.31%) showed significantly differen-
tial expressions in PBC patients compared with controls 
(Table  1 and Additional file  1: Figures  S6–S8). The co-
expression patterns among these 29 genes in the periph-
eral CD4 + T cells were prominently altered according to 
the PBC status (Additional file 1: Fig. S8a). These results 
further support these identified risk genes have crucial 
effects on PBC.

Functional analysis of these 29 PBC‑associated risk genes
Through mining the PubMed literature and GWAS Cata-
log database, we found that 10 of 29 identified risk genes 
have been reported to be associated with PBC in previ-
ous GWAS studies, and there were 19 novel genes newly 
identified (Table 1 and Additional file 1: Fig. S9a). Among 
these novel identified genes, several genes (e.g., LY6G5B 
and DDAH2) were associated with autoimmune-related 
diseases, including rheumatoid arthritis [22] and type 1 
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Fig. 1 The workflow of current integrative genomics analysis. a Integrating single cell RNA-sequencing data with GWAS summary statistics on PBC 
based on a regression-based polygenic model; Left panel: Two independent single cell RNA-seq datasets based on liver and peripheral CD4 + T 
cells, and one large-scale GWAS summary statistics on PBC; Middle panel: There were 8444 parenchymal and non-parenchymal cells obtained 
the transcriptional profiles based on the CellRanger analysis pipeline and clustered by using t-Distributed Stochastic Neighbor Embedding (tSNE) 
method, and we also obtained 1,124,241 SNPs from the whole genome with P values and Beta value; Right panel: We applied a regression-based 
polygenic model in RolyPoly to unveil the genetic mapping single-cell landscape for PBC. b Prioritization of PBC-risk genes by integrating 
GWAS summary data with GTEx eQTL data; In this step, multiple bioinformatics analyses were leveraged to prioritize PBC-risk genes, including 
MAMGA-based gene-level association analysis, gene-property analysis, S-MultiXcan- and S-PrediXcan-based integrative genomics analyses,  105 
times of in silico permutation analysis, differential gene expression (DGE) analysis, multidimensional scaling (MDS) analysis, PPI network-based 
analysis, drug-gene interaction analysis, and functional enrichment analysis. c Genetics-influenced liver cell subpopulations and its immune 
microenvironment for PBC. We performed comprehensive single cell sequencing-based analyses to uncover the biological functions of ORMDL3+ 
cholangiocytes and its interacted immune cells of macrophages and monocytes. ORMDL3+ cholangiocytes have significantly elevated metabolism 
activity score, and VEGF signaling pathway has a crucial role in cellular communications of ORMDL3+ cholangiocytes
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diabetes [23]. By conducting a PPI network enrichment 
analysis, we observed that these risk genes were signifi-
cantly interacted with each other in a subnetwork (Fig. 4). 
For example, TCF19 showed shared protein domains 
with IRF5 [24], and DDAH2 was highly co-expressed 
with CSNK2B [25].

Furthermore, we performed a phenotype-based enrich-
ment analysis, and found that these 29 risk genes were 
remarkably enriched in several phenotypes relevant to 
autoimmune diseases (FDR ≤ 0.05, Additional file 1: Fig. 
S9b and Additional file  2: Table  S8), such as type I dia-
betes mellitus, immune system diseases, and juvenile 
rheumatoid arthritis. We also performed a GO-term 
enrichment analysis, and found that several GO-terms 
were notably overrepresented (Additional file  1: Figs. 
S10–S12), such as interferon-gamma-mediated signal-
ing pathway (P = 2.8 ×  10–4) and neutrophil activation 
involved in immune response (P = 7.3 ×  10–4).

Based on the drug-gene interaction analysis, we iden-
tified that 20 of 29 genes (68.96%) were enriched in ten 
potential “druggable” gene categories (Additional file  1: 
Fig. S13a and Additional file  2: Table  S9). Five genes 
including SOCS1, TCF19, CARM1, SH2B3, and NAAA  
were directly targeted at least one known drug (Addi-
tional file  1: Fig. S13b). The gene of SOCS1 was found 
to be targeted by insulin and aldesleukin, of which both 
have been applied to treat autoimmune diseases, includ-
ing systemic lupus erythematosus [26], type 1 diabe-
tes mellitus [27], and HIV [28]. SH2B3 was targeted by 
ruxolitinib and candesartan. Previous studies [29] have 
demonstrated that the Janus kinase (JAK)-inhibitor rux-
olitinib significantly influenced dendritic cell differentia-
tion and function resulting in impaired T-cell activation, 
which could be used for the treatment of autoimmune 
diseases. These results provide a good drug repurposing 
resource to develop effective therapeutics for PBC.

Fig. 2 Circus plot showing the results of S-MultiXcan integrative genomics analysis. A circular symbol in the outer ring represents a given gene. 
Color represents the statistical significance of the gene, where red color marks significant genes with FDR ≤ 1 ×  10–8, orange color marks significant 
genes with FDR is between 1 ×  10–8 and 0.001, light blue indicates significant genes with FDR ranging from 0.001 to 0.05, and dark blue indicates 
non-significant genes with FDR > 0.05
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Identification of genetically‑influenced liver cell 
subpopulations for PBC
Using the uniform manifold approximation and projec-
tion (UMAP), there were 22 discrete clustered for the 
liver scRNA-seq dataset (Fig.  5a). Using well-known 
marker genes, these clusters were assigned into 13 dis-
tinct cell subpopulations, including portal endothelial 
cells, cholangiocytes, non-inflammatory macrophages, T 
cells, γδT cells, inflammatory monocytes/macrophages, 
natural killer (NK)-like cells, red blood cells (RBCs), 
sinusoidal endothelial cells, mature B cells, stellate cells, 

plasma cells, and hepatocytes (Fig. 5b). By calculating the 
genetic risk score of 29 PBC-associated genes using the 
AddModuleScore function in Seurat, we found that these 
risk genes were primarily enriched in non-inflammatory 
macrophage and inflammatory monocyte/macrophage 
(Fig. 5c), suggesting that these risk genes may have cru-
cial functions in innate immunity for PBC. To uncover 
genetics-regulatory cell subpopulations associated with 
PBC, we used a regression-based polygenic model to 
combine GWAS summary statistics on PBC with scRNA-
seq data with 13 distinct human liver cell types. We 

Fig. 3 Results from integrative genomics analyses. a, b Circus plot demonstrates the results of S-PrediXcan integrative genomics analysis on (a) liver 
tissue and (b) blood tissue. c Venn plot showing the overlapped genes between S-MultiXcan, MAGMA, and S-PrediXcan on both liver and blood. 
d–f Pearson correlation of top-ranked genes identified from S-MultiXcan analysis with that from d MAGMA analysis, e S-PrediXcan analysis on liver, 
and f S-PrediXcan analysis on blood. g–i In silico permutation analysis of 100,000 random selections for the overlapped genes between S-MultiXcan 
and g MAGMA, h S-PrediXcan on liver, and i S-PrediXcan on blood
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Table 1 Identification of 29 significant risk genes by using integrative genomics analysis

Gene name Z score P value 
(S‑MultiXcan)

FDR 
(S‑MultiXcan)

FDR 
(S‑PrediXcan 
on liver)

FDR 
(S‑PrediXcan 
on blood)

FDR (MAGMA 
analysis of 
GWAS)

P value 
(Differential 
gene 
expression 
analysis)

GWAS_Catalog 
database 
or PubMed 
database

CSNK2B 1.40 7.17 ×  10–19 8.41 ×  10–16 3.22 ×  10–11 2.24 ×  10–6 1.67 ×  10–11 4.96 ×  10–4 
(Blood), 2 ×  10–2 
(CD14 + T cell)

Novel gene

LY6G5B − 7.92 2.43 ×  10–16 1.93 ×  10–13 5.52 ×  10–11 1.54 ×  10–10 1.19 ×  10–11 Non-significant Novel gene

DDAH2 − 5.57 1.39 ×  10–15 9.99 ×  10–13 2.65 ×  10–9 1.56 ×  10–11 1.69 ×  10–9 2.70 ×  10–3 
(CD14 + T cell)

Novel gene

LY6G5C − 7.82 2.40 ×  10–15 1.62 ×  10–12 8.64 ×  10–13 9.05 ×  10–12 1.41 ×  10–11 2.80 ×  10–2 
(Blood)

Novel gene

IRF5 7.11 2.62 ×  10–15 1.72 ×  10–12 4.29 ×  10–13 1.12 ×  10–12 7.18 ×  10–11 7.10 ×  10–3 
(Liver)

Reported gene

SOCS1 − 3.26 9.33 ×  10–13 4.16 ×  10–10 5.25 ×  10–10 7.34 ×  10–10 1.06 ×  10–8 3.50 ×  10–2 
(CD14 + T cell)

Reported gene

SYNGR1 − 1.30 2.83 ×  10–9 8.88 ×  10–7 7.97 ×  10–4 1.30 ×  10–7 4.13 ×  10–2 1.40 ×  10–2 
(CD14 + T cell)

Reported gene

C6orf48 − 4.46 9.57 ×  10–9 2.66 ×  10–6 7.83 ×  10–4 6.19 ×  10–4 4.83 ×  10–11 4.16 ×  10–6 
(Blood)

Novel gene

HLA-DMA − 3.99 8.87 ×  10–8 1.90 ×  10–5 1.27 ×  10–3 9.16 ×  10–4 1.62 ×  10–8 2.10 ×  10–3 
(Liver)

Novel gene

SMC4 − 1.34 1.00 ×  10–7 2.10 ×  10–5 9.38 ×  10–5 2.25 ×  10–6 2.07 ×  10–4 4.80 ×  10–4 
(Blood)

Novel gene

TCF19 4.55 1.49 ×  10–7 2.99 ×  10–5 9.46 ×  10–5 2.24 ×  10–6 1.98 ×  10–4 Non-significant Novel gene

ORMDL3 − 2.92 7.07 ×  10–7 1.22 ×  10–4 2.35 ×  10–3 7.38 ×  10–5 2.33 ×  10–6 3.5 ×  10–2 (Liver) Reported gene

KPNA4 − 1.22 1.07 ×  10–6 1.82 ×  10–4 2.10 ×  10–2 3.58 ×  10–3 4.67 ×  10–4 3.40 ×  10–3 
(CD14 + T cell)

Novel gene

MANBA − 1.45 1.48 ×  10–6 2.35 ×  10–4 2.46 ×  10–6 2.39 ×  10–2 8.30 ×  10–8 9.67 ×  10–5 
(Blood)

Reported gene

MFSD6 − 0.32 1.61 ×  10–6 2.51 ×  10–4 2.55 ×  10–2 4.57 ×  10–2 2.06 ×  10–3 3.60 ×  10–2 
(Liver)

Novel gene

MED1 − 2.13 1.76 ×  10–6 2.70 ×  10–4 1.65 ×  10–2 1.53 ×  10–2 4.42 ×  10–5 Non-significant Novel gene

IDUA 3.95 2.37 ×  10–6 3.47 ×  10–4 3.94 ×  10–2 3.87 ×  10–2 8.95 ×  10–4 8.10 ×  10–3 
(Blood)

Reported gene

DGKQ 3.24 3.86 ×  10–6 5.37 ×  10–4 4.90 ×  10–4 3.36 ×  10–4 2.35 ×  10–4 8.34 ×  10–7 
(Blood)

Reported gene

FCRL3 − 4.40 8.14 ×  10–6 1.07 ×  10–3 2.84 ×  10–3 2.84 ×  10–3 5.81 ×  10–4 Non-significant Reported gene

ZCRB1 3.22 9.34 ×  10–6 1.20 ×  10–3 4.83 ×  10–3 5.02 ×  10–3 1.52 ×  10–3 5.90 ×  10–3 
(Liver); 2.8 ×  10–3 
(CD14 + T cell);

Novel gene

AGAP5 − 4.28 1.29 ×  10–5 1.59 ×  10–3 4.50 ×  10–3 3.40 ×  10–3 3.65 ×  10–2 Non-significant Novel gene

CARM1 − 2.90 2.11 ×  10–5 2.49 ×  10–3 1.14 ×  10–3 8.92 ×  10–4 1.86 ×  10–4 2.60 ×  10–2 
(Blood)

Novel gene

UBE2D3 − 4.18 2.83 ×  10–5 3.23 ×  10–3 2.76 ×  10–3 5.08 ×  10–3 5.81 ×  10–4 3.40 ×  10–2 
(Blood); 
1.6 ×  10–4 
(CD14 + T cell)

Novel gene

NAAA 4.08 6.73 ×  10–5 6.88 ×  10–3 1.25 ×  10–2 6.85 ×  10–3 7.41 ×  10–4 3.20 ×  10–2 
(Liver)

Reported gene

SH2B3 − 1.69 1.20 ×  10–4 1.17 ×  10–2 2.35 ×  10–2 1.87 ×  10–2 2.44 ×  10–3 1.40 ×  10–2 
(Blood)

Reported gene

CTSH 1.75 2.05 ×  10–4 1.84 ×  10–2 8.53 ×  10–3 3.46 ×  10–2 2.19 ×  10–5 Non-significant Novel gene

TTC34 3.56 2.82 ×  10–4 2.39 ×  10–2 5.86 ×  10–3 5.02 ×  10–3 4.98 ×  10–3 9.80 ×  10–3 
(Blood)

Novel gene

METTL1 2.19 3.11 ×  10–4 2.59 ×  10–2 4.95 ×  10–2 3.81 ×  10–2 1.68 ×  10–2 5.86 ×  10–7 
(Blood)

Novel gene
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found that cholangiocytes showed a notable enrichment 
by PBC-relevant genetic association signals (Permuted 
P < 0.05, Fig.  5d and Additional file  2: Table  S10). These 
results are consistent with previous evidence that an 

immune-mediated injury of cholangiocytes contributes 
risk to PBC [30, 31].

Using the specificity algorithm in the MAGMA method 
[32], we noticed that the risk gene of ORMDL3 exhibited 

Table 1 (continued)

Gene name Z score P value 
(S‑MultiXcan)

FDR 
(S‑MultiXcan)

FDR 
(S‑PrediXcan 
on liver)

FDR 
(S‑PrediXcan 
on blood)

FDR (MAGMA 
analysis of 
GWAS)

P value 
(Differential 
gene 
expression 
analysis)

GWAS_Catalog 
database 
or PubMed 
database

TSFM 3.45 3.14 ×  10–4 2.61 ×  10–2 4.87 ×  10–2 3.87 ×  10–2 1.54 ×  10–2 2.80 ×  10–4 
(Blood); 
1.5 ×  10–3 
(CD14 + T cell)

Novel gene

Fig. 4 PPI network analysis of 29 PBC-risk gene. This network analysis was performed using the GeneMANIA tool. Orange node represents risk 
genes identified to be associated with PBC in our current analysis. Gray node represents predicted genes that connected with PBC-risk genes. 
Purple edge represents the co-expression interactions (account for 69.52%). Light orange edge represents the shared protein domain interactions 
(account for 30.48%)
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the highest expression in cholangiocytes than other 
cell types (Fig.  5e and Additional file  2: Table  S11). The 
majority of ORMDL3-expressing cells were cholangio-
cytes with a relative high percentage of 22.38%, reminisc-
ing that ORMDL3 was demonstrated to be significantly 
associated with PBC in earlier studies [7, 9, 33]. Based 

on the liver expression profiles generated from healthy 
mice (n = 4) and mice suffering from cholangitis (n = 6) 
from the GEO database (GSE179993), we performed a 
differential gene expression analysis and found that the 
ORMDL3 gene was significantly higher expressed among 
cholangitis-affected mice than that among healthy 
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Sinusoidal endothelial cells
Inflammatory monocyte/macrophages

NK-like cells
Mature B cells

γδT cells
Non-inflammatory macrophages

RBCs
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Portal endothelial cells
Hepatocytes

T cells

-Log2(permuta�on P)
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Non-inflammatory macrophages

Inflammatory 
monocyte/macrophages

c

Gene�cs risk score

Fig. 5 Genetics-influenced cell populations for PBC. a UMAP dimensionality reduction embedding of liver and immune cells among all five 
samples from primary liver patients (n = 8444 cells) colored by each cluster. b UMAP embedding of liver and immune cells colored by orthogonally 
generated clusters labeled by manual cell type annotation (13 cell types). c UMAP embedding of all cells among 13 cell populations colored by 
the genetic risk score of 29 PBC-risk genes. d Bar graph showing genetics-influenced liver cell subpopulations for PBC. Orange color represents 
PBC-relevant genetic association signals showing a significant enrichment in cholangiocytes. e Dot plot showing the expression percentage of 29 
PBC-risk genes for each cell type from human liver tissue. The color stands for the average expression of each gene in each cell type, and the size of 
circular symbol indicates the percentage of a given gene expressed in each cell type
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age- and sex-matched mice (P = 0.036, Additional file 1: 
Fig. S14). By further performing immunohistochem-
istry experiment, we observed that the expression of 
ORMDL3 in liver tissues of PBC patients was higher than 
that in the normal liver, which is in line with the results 
from our genomics analysis (Additional file 1: Fig. S15). 
The top-ranked risk SNP associated with ORMDL3 is 
rs9303277 (P = 2.57 ×  10–11). This SNP showed signifi-
cant cell-specific eQTL of ORMDL3 among naïve B cell 
(P = 5.8 ×  10–10),  TFH+CD4+T cell (P = 3.8 ×  10–9), 
 CD56dim  CD16+ NK cells (P = 4.4 ×  10–9),  TH1+  CD4+ 
T cells (P = 6.0 ×  10–6), and memory  TREG+  CD4+ T 
cells (P = 1.1 ×  10–5), and exhibited notable cell-specific 
promoter-interacting eQTL of ORMDL3 among naïve 
B cell (P = 4.2 ×  10–13) and  CD56dim  CD16+ NK cells 
(P = 5.0 ×  10–12) (Additional file  1: Fig. S16). Among 
these immune cell types, the CC genotype of rs9303277 
shows prominent association with higher expression of 
ORMDL3 compared with other genotypes (Additional 
file 1: Fig. S16a–k).

Growing attentions have concentrated on the role of 
ORMDL3 in the development of inflammatory diseases 
including PBC [7, 9, 34]. In view of the main goal of cur-
rent study was to characterize genetics-modulated liver 
cell subpopulations for PBC, the majority of our sub-
sequent analyses focused on revealing the functions of 
ORMDL3+ cholangiocytes and its cellular communica-
tions with immune cells.

Characterization of biological functions of ORMDL3+ 
cholangiocytes
The subset of ORMDL3+ cholangiocytes account for 
22.38% (635/2837) of cholangiocytes (Fig.  6a). By cal-
culating the metabolism activity score among all anno-
tated cells, we found that the cholangiocytes showed 
remarkably higher metabolism activity score than other 
cells (Fig.  6b). Interestingly, we noticed that the metab-
olism activity score of ORMDL3+ cholangiocytes was 
significantly higher than that in ORMDL3− cholan-
giocytes (P = 1.383 ×  10–15, Fig.  6c). Furthermore, we 
compared the expression profiles of ORMDL3+ chol-
angiocytes with ORMDL3− cholangiocytes. There were 
77 significantly DEGs with six up-regulated DEGs and 
71 down-regulated DEGs among ORMDL3+ chol-
angiocytes (FDR < 0.05, Fig.  6d and Additional file  2: 
Tables S12–S13). With regard to six up-regulated DEGs, 
there were seven significant pathways overrepresented 
(FDR < 0.05, Additional file  1: Fig. S17a and Additional 
file 2: Table S14).

Among the 71 down-regulated DEGs, HLA-DRA 
has been shown to be associated with PBC [7], and 
CXCL8, CCL3, CXCL1, TIMP1, SPP1, and IRF1 were 

inflammatory and cytokine genes, which have been 
reported to be linked with the chemotaxis of immune 
cells that efflux to the site of cytokine storms in response 
to ongoing tissue damage [35, 36]. IFI16 is reported to 
be an innate immune sensor for intracellular DNA [37]. 
Pathway enrichment analysis revealed that there were 55 
significant KEGG pathways enriched by these 71 down-
regulated DEGs (FDR < 0.05, Fig. 6e and Additional file 2: 
Table S15), of which several such as inflammatory bowel 
disease, rheumatoid arthritis, Th17 cell differentiation, 
cytokine-cytokine receptor interaction, and chemokine 
signaling pathway have been demonstrated to implicate 
in inflammatory-related diseases [11, 38, 39].

To further explore the biological functions of these 71 
down-regulated DEGs, we conducted GO-term enrich-
ment analysis according to three categories of biological 
process (BP), cellular component (CC), and molecular 
function (MF). There were 19 BP-terms, 7 CC-terms, and 
13 MF-terms showing notable enrichments, respectively 
(FDR < 0.05, Additional file 1: Fig. S17b–d and Additional 
file  2: Tables S16–S18). These functional terms were 
largely linked with immune and metabolism functions, 
such as granulocyte activation, neutrophil mediated 
immunity, and S100 protein binding. These results sug-
gest that ORMDL3+ cholangiocytes have immune-mod-
ulatory effects on PBC risk.

Cellular communications of ORMDL3+ cholangiocytes 
with other cells
To gain refined insights into ORMDL3+ cholangiocytes, 
we performed a cell-to-cell interaction analysis among 
cell populations in liver tissue using the CellChat algo-
rithm. By calculating the aggregated cell–cell commu-
nication network by counting the number of links, we 
found that ORMDL3+ cholangiocytes showed the high-
est outgoing (sources) interaction strength than other 
cell types (Fig.  6e and Additional file  1: Fig. S18). By 
further summarizing the communication probability 
among cellular interactions, we observed a high connec-
tive network of ORMDL3+ cholangiocytes with other 
cells (Fig.  6f and Additional file  1: Figs. S19, S20). The 
ORMDL3+ cholangiocytes showed relatively high com-
munications with non-inflammatory macrophage and 
inflammatory monocyte/macrophages (Fig. 6f ), recalling 
that these two types of immune cells have been remark-
ably enriched by PBC-risk genes in our above analysis. 
There were 35 significant ligand-receptor interactions 
(including source and target) of ORMDL3+ cholangio-
cytes were predicted, including MIF − (CD74 + CXCR4), 
MIF  −  (CD74 + CD44), VEGFA  −  VEGFR2, and 
NAMPT-INSR (Fig. 7a, b). There existed several unique 
ligand-receptor pairs in ORMDL3+ cholangiocytes 
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Fig. 6 The biological functions of ORMDL3+ cholangiocytes. a UMAP projections of liver and immune cells colored by ORMDL3+ and ORMDL3− 
cholangiocytes. Blue color represents ORMDL3− cholangiocytes, red color represents ORMDL3+ cholangiocytes, and gray color stands for the rest 
of all other cell types. b UMAP embedding of all cells among 13 cell populations colored by the metabolism activity score of all metabolism-related 
pathways collected from the KEGG pathway resource. c Violin plot showing the difference in metabolism activity score between ORMDL3+ and 
ORMDL3− cholangiocytes. Two-side Wilcoxon test was used for assessing significance. d Volcano plot showing the differentially expressed genes 
(DEGs) between ORMDL3+ cholangiocytes and ORMDL3− cholangiocytes. Green color represents 71 significantly down-regulated DEGs, and 
orange color represents 6 significantly up-regulated DEGs. e Pathway enrichment analysis of 71 down-regulated DEGs based on the KEGG pathway 
resource. f Scatter plot showing the dominant senders (sources) and receivers (targets) in a 2D space. y axis represents incoming interaction 
strength, and x axis represents outgoing interaction strength. The size of each node represents the count of cellular interactions. g The cellular 
communications of ORMDL3+ Cholangiocyte with other cell populations in liver tissues. The width represents the number of cellular interactions
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compared with ORMDL3− cholangiocytes, including 
VEGFA-VEGFR2, VEGFA-VEGFR1R2 and VEGFA-
VEGFR1 (Additional file 1: Fig. S21).

By performing a pattern recognition analysis based 
on the non-negative matrix factorization to uncover the 
global communication patterns among all cell popula-
tions, we observed that five communication patterns 
that connect cell populations with signaling pathways in 
the context of both outgoing signaling (i.e., treating cells 
as source, Fig.  8a) and incoming signaling (i.e., treating 
cells as target, Additional file  1: Fig. S22a), respectively. 
We found that a large portion of outgoing signaling of 

ORMDL3+ cholangiocytes is characterized by pattern 
#1, which represents multiple signaling pathways, includ-
ing MIF, PARs, VISFATIN, COMPLEMENT, ANGPTL, 
PROS, CHEMERIN, AGT, VEGF, and IGF (Fig.  8b). 
Compared with ORMDL3− cholangiocytes, the VEGF 
signaling pathway is specific for ORMDL3+ cholangio-
cytes as source cells to interact with other cells (Fig. 8b). 
On the other hand, the communication patterns of both 
ORMDL3+ and ORMDL3− cholangiocytes as target cells 
showed similar patterns (Additional file  1: Fig. S22b). 
Network centrality analysis confirmed that VEGF signal-
ing pathway is not only a significant sender (i.e., source 

Fig. 7 Dot plots showing that predicted cellular interactions of ORMDL3+ Cholangiocyte with other cell populations in liver tissues. a ORMDL3+ 
Cholangiocyte as a source (outgoing) communicating with other cells, b ORMDL+ Cholangiocyte as a target (incoming) communicating with other 
cells. The circular size of represents the statistical significance of each ligand-receptor pair, and color represents the communication probability
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cells) but also a prominent influencer controlling the 
communications for ORMDL3+ cholangiocytes (Fig. 8c). 
Notably, among all known ligand-receptor pairs, VEGF 
signaling pathway is dominated by VEGFA ligand and 
its VEGFR1 receptor (Additional file  1: Fig. S23). Using 
the expression levels of all genes in the VEGF signaling 

pathway to calculate a VEGF activity score, we found 
that ORMDL3+ cholangiocytes exhibited a significantly 
higher activity score than that among ORMDL3− cholan-
giocytes (P = 1.28 ×  10–15, Fig. 8d). These results suggest 
that VEGF signaling pathway play an important role in 
cellular communications of ORMDL3+ cholangiocytes.
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Fig. 8 The inferred outgoing (source) communication patterns of cell populations in liver tissue. a Five inferred outgoing communications patterns 
of 13 cell populations, which shows the correspondence between the inferred latent patterns and cell groups, as well as signaling pathways, b The 
contribution of signaling pathways among the five outgoing communications patterns to liver and immune cell types. The red dashed box marked 
the VEGF signaling pathway. c Heatmap showing the relative importance of each cell group based on the computed four network centrality 
measures of VEGF signaling pathway network. d Violin plot showing the difference in VEGF signaling score between ORMDL3+ and ORMDL3− 
cholangiocytes. The expression levels of all genes in VEGF signaling pathway were used to calculate the VEGF signaling score. Two-side Wilcoxon 
test was used for assessing significance
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Discussion
Using an integrative genomics approach based on mul-
tiple layers of evidence, we identified that the genetics-
influenced expression of 29 risk genes were remarkably 
associated with PBC. Among them, 10 genes, including 
IRF5 [5, 6, 8, 9], SOCS1 [5], SYNGR1 [5, 7], ORMDL3 
[7, 9, 33], MANBA [5], IDUA [5], DGKQ [5], FCRL3 
[40], NAAA  [41], and SH2B3 [5], have been docu-
mented to be associated with PBC. There were 19 newly 
identified PBC-risk genes, such as GSNK2B, LY6G5B, 
DDAH2, C6orf48, and HLA-DMA. Some of these novel 
risk genes such as DDAH2 and HLA-DMA have been 
reported to be associated with the autoimmune dis-
eases, including type I diabetes [42], rheumatoid arthri-
tis [43], and systemic lupus erythematosus [44]. The 
previously-reported gene of ORMDL3 is related to bio-
logical functions of innate immune system and metab-
olism. Moreover, ORMDL3 has also been extensively 
reported to be linked with other inflammatory diseases, 
including childhood asthma [45], inflammatory bowel 
diseases [38], rheumatoid arthritis [39], and Crohn’s 
disease [46]. Functional enrichment analyses uncovered 
that these genetics-risk genes were notably enriched in 
several biological processes or disease-terms, which are 
relevant to autoimmune phenotypes [47, 48]. Together, 
these identified genes are more likely to be genuine 
genes implicated in PBC risk.

Our gene-property analysis unveiled that PBC-relevant 
genetic association signals were significantly enriched 
in several immune-related cell populations, including 
dendritic cells, T cells, and macrophage. Consistently, 
based on the genetic risk score, we revealed that these 
29 PBC-associated genes were prominently enriched in 
non-inflammatory macrophage and inflammatory mono-
cyte/macrophage. Dendritic cells have been shown to 
be relevant to the pathogenesis of PBC [19, 49]. Earlier 
studies have demonstrated that an intense biliary inflam-
matory CD8 + and CD4 + T cell response has been used 
for characterizing PBC [50]. Moreover, dendritic cells are 
crucial for inducing antigen-specific T-cell tolerance and 
for activating the self-specific T cells, which have central 
roles in many aspects of the pathogenesis of autoimmune 
liver diseases [51]. Macrophages and monocytes are key 
components of the innate immune system, and have 
tissue-repairing roles in reducing immune responses 
and enhancing tissue regeneration [52]. Multiple lines 
of evidence [53] have demonstrated that the infiltration 
of macrophages and monocytes in diseased tissues is 
considered to be a hallmark of several autoimmune dis-
eases, including PBC [20, 54]. Recently, Dorris et al. [55] 
reported that the PBC susceptibility gene C5orf30 modu-
lates macrophage-mediated immune regulations. Over-
all, these results suggest that genetics-risk genes have 

critical immuno-modulatory roles in the development of 
PBC.

To further examine the effects of liver cell populations 
and its immune microenvironments on PBC, we per-
formed a regression-based polygenic analysis based on 
human liver tissues with immune cells. Cholangiocytes 
were significantly enriched by PBC-related genetic asso-
ciation signals. Previously, the non-parenchymal chol-
angiocytes have been reported to be injury in numerous 
human diseases termed as cholangiopathies [56], includ-
ing PBC [56, 57]. Recently, Banales and coworkers [56] 
have demonstrated that cholangiocytes play pivotal 
roles in innate and adaptive immune responses relevant 
to immune-mediated cholangiopathies. Erice et  al. [58] 
reported that microRNA-506 induces PBC-like features 
in human cholangiocytes and promotes the activating 
processes of immune responses. Moreover, we found that 
there existed higher metabolism activity score of cholan-
giocytes than other cells among liver tissues, indicating 
that abnormal metabolic pathways may involve in the eti-
ology of PBC, which is in line with previous results [59]. 
Interestingly, the cell subset of ORMDL3+ cholangiocytes 
have strikingly higher metabolic activity than ORMDL3 
negative cells.

Compared with ORMDL3− cholangiocytes, we found 
77 significant DEGs among ORMDL3+ cholangiocytes, 
which contain numerous cytokine and chemokine genes, 
such as CXCL8, CCL3, and CXCL1, that may involve in 
mediating the immune-regulation for PBC risk. Fur-
thermore, based on cellular communications analysis, 
we identified ORMDL3+ cholangiocytes exhibited high 
interactions with two innate immune cell types of non-
inflammatory macrophage and inflammatory monocyte/
macrophages. Several vital signaling pathways, including 
MIF, PARs, VEGF, and IGF, were predicted to implicate 
in the cellular interactions of ORMDL3+ cholangiocytes 
with other cells. The VEGF signaling pathway showed a 
higher specificity for ORMDL3+ cholangiocytes than 
ORMDL3− cholangiocytes. VEGF is a potent stimulating 
factor for angiogenesis and vascular permeability, which 
have been reported to involve in PBC [60]. Multiple lines 
of evidence have demonstrated that VEGF has an impor-
tant role in pathological conditions that are associated to 
autoimmune diseases, such as systemic lupus erythema-
tosus, rheumatoid arthritis, inflammatory bowel disease, 
and multiple sclerosis [61].

There exist some limitations should be cautious. 
Although we leveraged integrated bioinformatics meth-
ods to highlight PBC-associated risk genes based on mul-
tiple omics data, there were many potential risk genes 
with suggestive evidence for PBC as shown in the sup-
plemental tables needed to be further studied. Due to 
the heterogeneity across different datasets used in the 
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present investigation, we leveraged different statistical 
methods for multiple testing correction for each dataset, 
such as FDR < 0.05 for MAGMA-based gene association 
analysis and S-MultiXcan analysis, permuted P < 0.05 for 
genome-wide pathway enrichment analysis, Bonferroni 
corrected P < 0.05 for gene-property analysis, and empiri-
cal P value < 0.05 for in silico permutation analysis. In 
view of current integrative genomic analysis is only based 
on samples derived from European ancestries, more 
studies based on other ancestries should be performed to 
validate the effects of these risk genes on PBC.

Conclusions
In summary, current study provides multiple lines of 
evidence to support 29 genes including 19 novel genes 
are remarkably associated with PBC susceptibility. To 
the best of our knowledge, this is the first study to parse 
genetics-influenced human liver cell subpopulations and 
its immune microenvironments that contribute risk to 
PBC, and found that ORMDL3+ cholangiocytes poten-
tially play important immune-regulatory roles in the 
pathogenesis of PBC. Current study gives several high-
lighted genetics-risk genes and disease-relevant cell types 
for unveiling the genetic mechanisms of PBC.

Methods
Datasets

1. Single-cell transcriptomes of PBC We downloaded 
two independent single cell RNA sequencing pro-
files (Accession number: GSE93170 and GSE115469) 
from the GEO database. With regard to the dataset 
of GSE93170, there were clinically and pathologically 
diagnosed six healthy controls and six PBC patients 
enrolled with written informed consent. Periph-
eral CD4 + T cells were used to extract total RNA. 
The Agilent microarray of SurePrint G3 human GE 
8 × 60  K microarray kit was leveraged to produce 
gene expression profiles according to manufacturer’s 
protocols. The GSE115469 dataset contained five 
samples from primary liver patients, which were used 
for scRNA sequencing based on the 10 × Genomics 
Chromium Single Cell Kits. A total of 8444 paren-
chymal and non-parenchymal cells have obtained the 
transcriptional profiles based on the CellRanger anal-
ysis pipeline. The raw digital matrix of gene expres-
sion (namely UMI counts per gene per cell) was fil-
tered, normalized and clustered. Cell was omitted if 
it has a very high (> 0.5) mitochondrial genome tran-
script ratio or a very small library size (< 1500).

2. Bulk-based expression profiles of PBC We also 
downloaded two independent bulk-based expres-
sion datasets based on liver tissue (Accession num-

ber: GSE159676) and blood (Accession number: 
GSE119600) from the Gene Expression Omnibus 
(GEO) database. The dataset of GSE159676 con-
tained six healthy controls and three PBC cases based 
on fresh frozen liver tissue, which were obtained 
from explanted livers or diagnostic liver biopsies. 
The Affymetrix Human Gene 1.0-st array was lever-
aged to produce bulk-based liver expression profiles 
with 17,046 probes. With respect to the dataset of 
GSE119600, there were 47 healthy controls and 90 
PBC patients with whole blood samples. The Illu-
mina HumanHT-12 V4.0 expression beadchip was 
leveraged to produce bulk-based blood transcrip-
tomes with 47,230 probes.

3. GWAS summary statistics on PBC We downloaded 
a GWAS summary dataset on PBC from the IEU 
open GWAS project (https:// gwas. mrcieu. ac. uk/) 
[5]. There were 2764 PBC patients and 10,475 healthy 
controls based on European ancestry in this dataset 
used for performing a meta-analysis of GWAS sig-
nals. A standard quality control (QC) pipeline was 
applied to remove low-quality SNPs. The software 
package of MaCH [62] with the reference of Hap-
Map3 CEU + TSI samples was implemented to per-
form a genome-wide imputation analysis. There were 
1,124,241 SNPs with minor allele frequency > 0.005 
and imputation quality score  R2 > 0.5 included in the 
current analyses.

Combination of GWAS summary statistics with scRNA‑seq 
data for PBC
We leveraged a widely-used method of RolyRoly [63], 
which was designed to gain the effects of SNPs near pro-
tein-coding genes on cell types contributing to complex 
traits, to explore genetics-influenced liver cell types for 
PBC. The regression-based polygenic model was used in 
the RolyRoly to incorporate GWAS summary data with 
scRNA-seq data (i.e., GSE115469) for identifying PBC-
associated liver cell subpopulations. Let g(i) represents a 
given gene relevant to SNP i , Sj = {i : g(i) = j} represents 
a given set with multiple SNPs relevant to the gene j , and 
βSj represents a PBC-GWAS-derived effect-size vector of Sj 
with a priori assumption that βSj ∼ MVN

(

0, σ 2
j I|Sj |

)

 . 
Under the assumption, RolyPoly offers a polygenic linear 
model for βSj:

where γ0 represents an intercept term, αji(i = 1, 2, ...,N ) 
represents a group of annotations, for example, cell-
type-specific gene expressions, and γi is the annotation’s 

σ 2
j = γ0 +

N
∑

i=1

γiαji

https://gwas.mrcieu.ac.uk/
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coefficient for αji . To fit the observed and expected sum 
squared SNP effect sizes relevant to each gene, RolyPoly 
applies the method-of-moments estimators to estimate γi 
by the following formula:

where RSj represents the linkage disequilibrium (LD) 
matrix of Sj . The 1000 Genome Project European Phase 
3 panel [64] was used to calculate the LD among SNPs. 
The major histocompatibility complex (MHC) region was 
removed due to the highly extensive LD in this region. 
RolyPoly utilized the 1000 iterations of block bootstrap to 
assess standard errors for calculating t-statistic and cor-
responding P value. P value ≤ 0.05 was interpreted to be 
of significance.

Integrative genomic analysis of combining GWAS summary 
statistics with eQTL data
To highlight the functional risk genes whose expressions 
were significantly associated with PBC, we leveraged the 
S-PrediXcan tool [65] to combine GWAS summary data 
on PBC with eQTL data for liver and blood tissues from 
the GTEx Project (version 8) [66]. A MASHR-based pre-
diction method with two linear regression models was 
used to estimate gene expression weights:

where ε1 and ε2 are independent error terms, α1 and α2 
are intercepts, Y  is the n dimensional vector for n sam-
ples, Xl is the allelic dosage for SNP l in n samples, βl is 
the effect size of SNP l , Gg =

∑

i∈gene(g) ωigXi is the pre-
dicted expression calculated by ωlg and Xl , in which ωlg 
is derived from the GTEx Project, and γg is the effect size 
of Gg . The Wald-statistic Z score for each association is 
transformed as:

where σ̂g is the standard deviation of Gg and can be calcu-
lated from the 1000 Genomes Project European Phase 3 
Panel [64], β̂l is the effect size from GWAS on PBC and σ̂l 
is the standard deviation of β̂l.

To enhance the statistical power to identify significant 
genes whose expression has similar functions across dif-
ferent tissues, we leveraged the S-MultiXcan tool [21] 
to incorporate convergent evidence across 49 different 
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GTEx tissues. The S-MultiXcan fits a multivariate regres-
sion model from multiple tissue models jointly:

where T̃j =
∑

i∈gene(j) ωiXi is the predicted expression of 
tissue j , and Tj is the standardization of T̃j to mean = 0 
and standarddeviation = 1 . gj is the effect size for the 
predicted gene expression in tissue j , e is an error term 
with variance σ 2

e  , and p is the number of chosen tissues. 
There were 22,279 genes used in the multivariate regres-
sion model. P < 6.89 ×  10–4 (FDR < 0.05) was considered 
to be significant.

Gene‑based genetic association analysis
We conducted a gene-level association analysis of the 
GWAS summary statistics on PBC by leveraging a multi-
variant converging regression model in the Multi-marker 
Analysis of GenoMic Annotation (MAGMA) [32, 67]. 
The analyzed SNP set among each gene was depended 
on whether the SNP mapped into the body of the gene or 
its extended regions (± 20 kb downstream or upstream). 
The 1000 Genomes Project Phases 3 European Panel [64] 
was used to compute the LD between SNPs. The P value 
threshold was set to 0.0016, and the method of Benja-
mini–Hochberg false discovery rate (FDR) was applied for 
multiple testing correction [68]. Furthermore, to inves-
tigate the biological processes involved in PBC, we per-
formed genome-wide pathway enrichment analysis using 
the build-in function of the MAGMA gene-set method 
[32]. The competitive P value of each pathway was com-
puted by leveraging the results that the incorporated 
effect of genes in a given pathway are prominently larger 
than the incorporated effect of all rest genes. The build-
in function of 10,000 permutations in MAGMA was used 
for adjusting competitive P values. We utilized the widely-
used pathway resource of KEGG with latest version [69] 
for the MAGMA-based pathway enrichment analysis.

Multidimensional scaling analysis
To obtain the similarity of enriched pathways identified 
from MAGMA-based pathway enrichment analysis, we 
carried out a multidimensional scaling (MDS) analysis 
to group these biological pathways. First, we arranged a 
pathway.txt file included all the significant enriched path-
ways, and then utilized the Jaccard distance algorithm 
[70] to calculate the pathway-pathway distance scores 
according to overlapped genes. Using the distance scores 
among pathways, we obtained the first two components 
of results from the MDS analysis (i.e., MDS1 and MDS2). 
Subsequently, we plotted the clusters of these identified 

Y =

p
∑

j=1

Tjgj + e = Tg+ e
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pathways via MDS1 and MDS2 using the symbols func-
tion in R platform [71]. The most significant pathway (i.e., 
pathway has the lowest P value in each cluster) was used 
to mark each cluster.

In silico permutation analysis
We referenced the method used in previous studies [11, 
67, 68, 72] to perform an in silico permutation analysis of 
100,000 times of random selections (NTotal) for validating 
the consistency of results from S-MultiXcan analysis 
(Geneset #1, N = 308, FDR ≤ 0.05) with other results 
from three distinct analyses: MAGMA analysis (Geneset 
#2: N = 563, FDR ≤ 0.05), S-PrediXcan on liver (Geneset 
#3: N = 76, FDR ≤ 0.05), and S-PrediXcan on blood (Gen-
eset #4: N = 115, FDR ≤ 0.05). First, we separately calcu-
lated the number of overlapped genes between Geneset 
#1 and Genesets #2, #3 and #4 (NObservation). Second, we 
used the total number of genes in MAGMA, S-PrediX-
can on liver, and S-PrediXcan on blood as the back-
ground genes (NBackground = 18,068, 12,033, and 12,070, 
respectively). By randomly selecting the same number of 
genes as Genesets #2, #3, and #4 from the background 
genes to overlap with Geneset #1, we computed the num-
ber of overlapped genes in each time (NRandom). The 
empirical P value was calculated by using the formula: 
P = NRandom≥NObservation

NTotal
 . The empirically permuted P 

value ≤ 0.05 is interpreted as significance. By using the 
same method as above, we also performed an in silico 
permutation analysis for results from S-MultiXcan, 
MAGMA, and S-PrediXcan (on liver and blood) at a sig-
nificant level of P value ≤ 0.05 to further explore the 
consistency.

Functional enrichment analysis of disease‑ and GO‑terms
We conducted a disease-based enrichment analysis for 
these identified risk genes associated with PBC by using 
the WEB-based Gene SeT AnaLysis Toolkit (WebGestalt: 
http:// www. webge stalt. org) [73] based on the GLAD4U 
database [74]. Moreover, we used the WebGestalt tool to 
perform a functional enrichment analysis for these com-
mon PBC-genetic risk genes based on the Gene Ontol-
ogy (GO) database [75]. There were three categories of 
GO-terms: molecular function (MF), cellular component 
(CC), and biological process (BP). The number of genes 
in each GO-term is between 5 and 2000. The over-rep-
resentation algorithm was adopted for evaluating the 
significant level for these enrichment analyses, and the 
Benjamini–Hochberg FDR method was used for multi-
ple correction. In addition, the WebGestalt tool was used 
to conduct functional enrichment analyses for these sig-
nificantly differentially expression genes (DEGs) between 
ORMDL3+ and ORMDL3− cholangiocytes.

Protein–protein interaction network analysis
To explore the functional interactions of these identified 
PBC-associated genes, we conducted a protein–protein 
interaction (PPI) network-based analysis by leveraging 
the GeneMANIA tool (http:// www. genem ania. org/), 
which is a widely-used plug-in of Cytoscape platform 
[76–78]. By using PBC-associated genes as an input 
list, the GeneMANIA would predict genes with similar 
biological functions and construct interacted links by 
incorporating current existing genomics and proteomics 
information, containing co-expression associations and 
shared protein domains.

MAGMA gene‑property analysis
To identify PBC-associated single cell subpopulations 
enriched by MAGMA-identified genes, we conducted 
MAGMA gene property analysis using the web-access 
tool of FUMA (https:// fuma. ctglab. nl/) [79], which is a 
highly efficient and easy-to-use software, to integrate 
gene-level association signals from GWAS summary 
data on PBC [5] with scRNA-seq data based on liver tis-
sue from the Mouse Cell Atlas [80]. There were 20 dis-
tinct cell types of liver tissue in the Mouse Cell Atlas. The 
Bonferroni method [81] was used for multiple testing 
correction.

Immune cell‑specific expression quantitative trait loci
To find the eQTL for PBC-risk SNPs, we first extracted 
genetic variants statistics around upstream and down-
stream 400  kb of the targeted genes from GWAS sum-
mary data. We used the LocusZoom (http:// locus zoom. 
org/) to figure a regional association plot for each gene. 
Then, we explored the cis-eQTL and promotor-inter-
acting eQTL (pieQTL) among the Database of Immune 
Cell Expression quantitative trait loci and Epigenomics 
(DICE, https:// dice- datab ase. org/ landi ng) [82] for anno-
tating functional genetic variants.

Defining cell activity scores
We applied the cell activity score (CAS) to evaluate the 
immunological degree and metabolic activity of each 
cell type by using a pre-defined expression gene set 
[83]. The CASs were obtained by using a widely-used 
equation:  CASj (n) = average [RLE  (PGSj, n)] −  aver-
age [RLE  (CGSm, n)], where  PGSj is a pre-curated gene 
set j in a given cell n, and  CGSm is a control gene set 
that was randomly selected from aggregate expres-
sion levels bins, which gain a comparable distribution 
of expression levels and over size to that of the pre-
defined gene set. RLE represents the relative expres-
sion of  PGSj or  CGSm. The AddModuleScore function 
in the Seurat tool [84] was leveraged to calculate the 

http://www.webgestalt.org
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CAS with default parameters. We used pre-collected 
85 metabolism-related pathways (N = 1667 genes) in 
KEGG database [69], such as primary bile acid biosyn-
thesis (ID: 00120), pyruvate metabolism (ID: 00620), 
and oxidative phosphorylation (ID: 00640), to define 
inflammatory score and metabolic activity score, 
respectively.

Cellular interactions among different cell types
To unveil potential cell-to-cell communications of 
ORMDL3+ and ORMDL3− cholangiocytes with other 
liver and immune cells, we leveraged the CellChat R 
package [85] to infer the cellular interactions based on 
the normalized scRNA-seq dataset (i.e., GSE115469). 
The algorithm of CellChat could examine the ligand-
receptor interactions significance among different 
types of cells based on the expression of soluble ago-
nist, soluble antagonist, and stimulatory and inhibi-
tory membrane-bound co-receptors. By summing the 
probabilities of the ligand-receptor interactions among 
a given signaling pathway, we could calculate the com-
munication probability for the pathway.

Immunohistochemistry for the expression of ORMDL3 
in liver
Through searching the information retrieval system, we 
found four patients diagnosed as PBC through pathol-
ogy in the past 2 years in the First Affiliated Hospital of 
Wenzhou Medical University, and three of them were 
able to obtain liver tissue sections. Approved by Eth-
ics Committee in Clinical Research (ECCR) of the First 
Affiliated Hospital of Wenzhou Medical University, the 
liver paraffin sections of the PBC patients and paracar-
cinoma paraffin section of intrahepatic metastasis of 
rectal stromal tumor patient as negative control were 
used in this research. Immunohistochemistry was per-
formed to assess the differential expression of ORMDL3 
in liver between PBC patient and normal control. 
Briefly, 5-mm paraffin sections were deparaffinized with 
xylene and then rehydrated through descending grades 
of alcohol. Antigen retrieval was performed by heating 
heated (95 °C) in the 0.01 M sodium citrate buffer (pH 
6.0) for 15 min and incubating in 3% hydrogen perox-
ide for 10  min to block endogenous peroxidases. The 
paraffin-embedded liver sections were incubated over-
night at 4  °C with Anti-ORMDL3 antibody (Abcam, 
Cambridge, MA, USA), followed by the appropriate 
horseradish peroxidase-conjugated secondary antibod-
ies (zsbio, Beijing, China). Diaminobenzidine (DAB) 
was used as the chromogenic substrate and the sections 
were observed under the microscopy.

Statistical analysis
Differential gene expression (DGE) analyses between 
controls and PBC patients of three RNA expression data-
sets (i.e., GSE93170, GSE159676, and GSE119600) were 
examined by using the Student’s T-test. P value ≤ 0.05 
was of significance. We also performed a co-expression 
pattern analysis in the dataset of GSE93170 for genetics-
risk genes among PBC and healthy controls to evaluate 
whether the co-expression patterns were changed due to 
the disease status. The PLINK (v1.90) [86] was used to 
calculate the LD values among SNPs. The hypergeomet-
ric test was used to evaluate the significant enrichment 
for the disease- and GO-term enrichment analysis. The 
Jaccard distance algorithm [70] was used to assess the 
similarities among pathways.
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