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ABSTRACT Microbial cells experience physiological changes due to environmental
change, such as pH and temperature, the release of bactericidal agents, or nutrient
limitation. This has been shown to affect community assembly and physiological
processes (e.g., stress tolerance, virulence, or cellular metabolic activity). Metabolic
stress is typically quantified by measuring community phenotypic properties such as
biomass growth, reactive oxygen species, or cell permeability. However, bulk com-
munity measurements do not take into account single-cell phenotypic diversity,
which is important for a better understanding and the subsequent management of mi-
crobial populations. Raman spectroscopy is a nondestructive alternative that provides
detailed information on the biochemical makeup of each individual cell. Here, we intro-
duce a method for describing single-cell phenotypic diversity using the Hill diversity
framework of Raman spectra. Using the biomolecular profile of individual cells, we ob-
tained a metric to compare cellular states and used it to study stress-induced changes.
First, in two Escherichia coli populations either treated with ethanol or nontreated and
then in two Saccharomyces cerevisiae subpopulations with either high or low expression
of a stress reporter. In both cases, we were able to quantify single-cell phenotypic diver-
sity and to discriminate metabolically stressed cells using a clustering algorithm. We also
described how the lipid, protein, and nucleic acid compositions changed after the expo-
sure to the stressor using information from the Raman spectra. Our results show that Ra-
man spectroscopy delivers the necessary resolution to quantify phenotypic diversity
within individual cells and that this information can be used to study stress-driven meta-
bolic diversity in microbial populations.

IMPORTANCE Microbial cells that live in the same community can exist in different
physiological and morphological states that change as a function of spatiotemporal
variations in environmental conditions. This phenomenon is commonly known as
phenotypic heterogeneity and/or diversity. Measuring this plethora of cellular ex-
pressions is needed to better understand and manage microbial processes. However,
most tools to study phenotypic diversity only average the behavior of the sampled
community. In this work, we present a way to quantify the phenotypic diversity of
microbial samples by inferring the (bio)molecular profile of its constituent cells using
Raman spectroscopy. We demonstrate how this tool can be used to quantify the
phenotypic diversity that arises after the exposure of microbes to stress. Raman
spectroscopy holds potential for the detection of stressed cells in bioproduction.

KEYWORDS Raman spectroscopy, microbial population, stress, phenotypic diversity,
single-cell analysis, Hill numbers, Escherichia coli, Saccharomyces cerevisiae

Monoclonal microbial populations can exhibit heterogeneous genetic expression,
which underlies phenotypic differences between cells. Phenotypic diversity has

been shown to increase population survival or fitness in a changing environment and
allows microorganisms to divide tasks and organize as a group. This differential gene
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expression can arise due to environmental pressure, stochastic events, periodic oscil-
lations, or cell-to-cell interactions (1–3). When a deviation from optimal growth condi-
tions occurs, such as changes in temperature, pH, nutrients, salts, and/or oxygen levels,
a stress response is triggered in microorganisms (both prokaryotes and eukaryotes),
resulting in a biochemical cascade to promote stress tolerance, virulence, or other physi-
ological changes. These strategies can result in enhanced survival, virulence, cross-
protection, or cell death (4–6). Usually, microorganisms show mixed behavioral strategies,
maximizing the chances of survival (7), making phenotypic diversity a crucial characteristic
of stress-driven phenotypes. However, cellular stress is often measured at the community
level using bulk technologies, such as cell concentration, quantity of reactive oxygen
species (ROS), cell permeability, or protein content. While these methods reveal important
information, they provide average information for the whole population, thereby failing to
describe cell-to-cell variability and bet-hedging strategies (8). To better understand stress-
driven changes, single-cell technologies provide new opportunities.

There are several single-cell technologies available to study the response of indi-
vidual cells to stress. For example, fluorescent labels that tag certain cellular functions
(membrane potential, intracellular enzyme activity, or a stress reporter) can be used in
combination with flow cytometry (9, 10) or imaging techniques (11). Single-cell (mul-
ti)omics opens the door to a very detailed understanding of the metabolism of
individual cells, although it is a low-throughput technique that still presents many
challenges in its accuracy (12). Raman spectroscopy is an alternative single-cell tool that
can detect individual phenotypes without the use of fluorescent probes. It is an optical
method that uses a laser to excite the molecules present in the cell and records their
inelastic scattering, thereby generating a single-cell fingerprint that contains (semi-
)quantitative information on its constituent molecules, such as nucleic acids, proteins,
lipids, and carbohydrates. This technique has been used to study stress-induced
phenotypic differences of the cyanobacterium Synechocystis sp. (13): the fingerprints of
cells treated with different concentrations of acetate or NaCl and nontreated cells were
differentiable using the discriminant analysis of principal-component analysis (PCA).
Also, Teng and colleagues (14) found that Escherichia coli cells exposed to several
antibiotics, alcohols, and chemicals had distinct Raman fingerprints. However, there are
currently no quantitative methods to describe phenotypic diversity in single cells using
their unlabeled Raman spectra.

A widely used set of metrics to quantify the diversity of microbial communities are
Hill numbers, also known as the effective number of species, as they express in intuitive
units the number of equally abundant species that are needed to match the value of
the Hill number. Hill numbers respect other important ecological principles, such as the
replication principle, which states that in a group with N equally diverse groups that
have no species in common, the diversity of the pooled groups must be N times the
diversity of a single group (15, 16). They are commonly used to quantify microbial
diversity based on 16S rRNA sequencing techniques but have also been applied to flow
cytometry yielding similar results (17). However, phenotypic diversity at the single-cell
level— defined as the diversity of observable characteristics or traits in single cells— has
not yet been described. This would require multiparametric information of individual
cells, something Raman spectroscopy can provide.

Quantifying phenotypic diversity at the single-cell level could be useful to follow
and manage stress in bioproduction: to maintain high bioproduction rates, it is impor-
tant to find or create stress-tolerant organisms. For instance, in microbial production of
alcohol (considered a sustainable alternative source for chemicals and fuels), one of the
major limitations is the toxicity and/or growth inhibition caused by the alcohol that is
produced. The alcohol increases the fluidity of the cell membrane and causes a
disruption of the phospholipid components that inhibits growth and can lead to death.
It also affects nutrient uptake and ion transport. Therefore, there have been efforts in
evolutionary and synthetic engineering to increase alcohol tolerance in several organ-
isms, for example, Escherichia coli and Saccharomyces cerevisiae, widely used in biopro-
duction (18).
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Here, we describe a method to quantify single-cell phenotypic diversity using
Raman spectroscopy based on the Hill diversity framework. We defined the necessary
steps to preprocess Raman spectra and demonstrated its integration into the Hill
diversity framework. The necessary functionalities were also embedded in the open
source MicroRaman package (https://github.com/CMET-UGent/MicroRaman). To illus-
trate the use of this method, we applied it to two popular strains in bioproduction. First,
we compared an E. coli population under stress conditions (cultivated with ethanol)
with a control population. Second, we applied the method to two subpopulations of a
green fluorescent protein (GFP)-labeled S. cerevisiae culture that was grown under
nutrient-limiting conditions. In both cases, we show how the stress-induced single-cell
phenotypic diversity can be quantified using the Raman spectra of the single cells and
how this information can be used to detect a shift in the phenotype of the population.
Finally, we use this information to infer how the molecular profile of the cells changes
after being exposed to the stressors.

RESULTS
Phenotypic diversity quantification of Raman spectra using Hill numbers. To

infer the phenotypic properties of individual cells, raw Raman spectra data need to be
subjected to quality control and trimming steps (Fig. 1, preprocessing). This step aims
to remove noise from spectra to be able to extract meaningful biological information.
First, the spectrum that contains cosmic rays needs to be removed manually or
automatically (19). Then, we select the spectral region that is most relevant for
microbial fingerprinting, around 500 to 2,000 cm�1 (20). Once this region of the
spectrum is selected, the first step in the preprocessing is to correct the baseline, which
can be degraded due to instrument fluctuations or background signal influence (19,
21). Then, the spectra are normalized to avoid the absolute intensity from masking the
variation of signals of interest (22, 23). It is also possible to align and/or smooth the
Raman signal, but these steps can introduce noise to the measurements or remove
relevant information and thus should be carefully considered.

After the spectra have been preprocessed, several analyses can be performed (Fig. 1,
analysis). For example, peaks of interest can be selected for semiquantitative analysis or
quantitative analysis using a calibration curve (24). Also, the whole spectrum can be used
to classify cells using several clustering methods, such as principal-component analysis,
principal-coordinate analysis, nonmetric multidimensional scaling, or T-distributed stochas-
tic neighbor embedding. This information can also be used to construct dendrograms (25).
Here, we used the preprocessed spectra to quantify the single-cell phenotypic diversity
using Hill numbers. Every Raman peak corresponds to a different metabolite or a combi-
nation of metabolites, called components (x) (Fig. 1). To calculate the relative abundance of
each peak, the intensity of the signal of each component was normalized by the sum of all
intensities, and this information was then used in the Hill equations.

The order of diversity (q) can be any integer but is usually restrained to 0, 1, or 2,
meaning that the richness and evenness of peaks can be weighed in the metric.
Single-cell D0 (sc-D0) contains information about the number of components (xi) in the
Raman spectra and is calculated as shown in equation 2 in Materials and Methods. sc-D1

informs about the evenness of each component and is described in equation 3. In this
paper, we mostly focus on single-cell D2 (sc-D2) (q � 2), as it takes both richness and
evenness of the Raman components into account.

Sample size dependence of phenotypic diversity (sc-D2) measurements. To
understand the distribution of single-cell phenotypic diversity in a population, we did
area scans in 2-�m droplets of four axenic cultures of Cupriavidus necator, Methylobac-
terium extorquens, Yarrowia lipolytica, and Komagataella phaffii, obtaining �450 mea-
surements per culture. We calculated the average diversity estimation for an increasing
number of spectra, bootstrapped 1,000 times. The average of the total number of
measurements is plotted in gray in the graphs shown in Fig. 2, and 5% of this average
is represented as a dotted gray line.

sc-Phenotypic Diversity with Raman Spectroscopy
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We looked at how many measurements were needed to calculate the population
average (gray line) and how many are needed to have an accurate estimation (95%,
dashed lines). For the estimation of sc-D0, few measurements (�10 to 50) were needed
to obtain the population average. The sc-D1 calculation grants a greater weight to
high-intensity wavenumber and/or peaks of these components and required �100
measurements, although M. extorquens reaches it after �20 measurements. The sc-D2

estimation takes both the number of components and their evenness into account and
needed between �50 (C. necator) to �180 (Y. lipolytica) measurements to estimate the
population average.

Case studies: phenotypic diversity quantification in stress-induced pheno-
types. When stress is applied to a microorganism, a set of genes and proteins are
expressed, changing the metabolic phenotype of the cell. This metabolic change can be
captured by Raman spectroscopy, which collects information on the (bio)molecules
present in individual cells. To compare stressed and nonstressed cells, we quantified
their phenotypic diversity using our proposed methodology, as shown in Fig. 3. First,
we compared two E. coli cultures growing under different conditions: with ethanol

FIG 1 Summary of the preprocessing and analysis of the Raman spectra. First, the baseline is corrected and the spectra are normalized. Spectra
can be smoothed and aligned; however, smoothing can erase potentially relevant information and should be carefully considered. Similarly,
alignment can produce faulty spectra by displacing the signal and thus need to be used reasonably. Once the spectra are preprocessed, it is
possible to (i) extract (semi)quantitative information, (ii) cluster cells or create phenotypic trees, or (iii) calculate the single-cell phenotypic
diversity. For the latter, Raman peaks that correspond to one or several metabolites are considered components. The intensity of these
components (x) is used to quantify phenotypic diversity. The number of components is i. The order of diversity (q) can be 0, 1, or 2, meaning
that richness, evenness, or both parameters, respectively, are considered in the metric. This equation considers richness and estimated
evenness of metabolites in a single cell.
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(stressed) or nontreated (control). Then, we compared two subpopulations of the same
S. cerevisiae culture, separated based on their expression of the GFP stress reporter
under nutrient-limiting conditions.

Tracking E. coli population diversification dynamics following exposure to
ethanol stress. We used a data set from the study by Teng et al. (14) consisting of
spectra of Escherichia coli sampled at different time points (5, 10, 20, 30, and 60 min, 3
h, and 5 h) after being cultured under standard conditions or with ethanol. There were
three biological replicates of the cell culture, and 20 cells were measured per replicate.

The stress-induced metabolic diversity of single cells was quantified using the sc-D2

Hill diversity metric, and the average diversity for each population (stress and non-

FIG 2 Effect of sampling size on the single-cell phenotypic diversity average. We calculated the average single-cell phenotypic diversity using the Hill equations
(single-cell D0, D1, and D2) for an increasing number of measurements and repeated the calculation picking spectra randomly 1,000 times. We used the Raman
spectra of four pure cultures and �450 measurements on each. The smears represent the standard deviations. The gray lines represent the average sc-D values
of the total population, and the dashed lines represent a 5% deviation from the mean.

FIG 3 Overview of the case studies. (A) Study of two E. coli populations grown separately with ethanol in the medium or nontreated. (B)
Two subpopulations were isolated from a S. cerevisiae culture based on the expression of the GFP-marked chimeric stress reporter after
nutrient limitation. The Raman spectra of single cells were used to calculate their phenotypic diversity (sc-D2).
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stressed) was plotted (Fig. 4A). After testing for normality, a two-way analysis of
variance (ANOVA) showed a significant difference between the ethanol and the control
groups and also a significant difference in both the ethanol-treated and control groups
over time (P � 0.0001). A post hoc Tukey’s test showed that the ethanol and control
groups were significantly different at time points 60 min and 180 min (P � 0.0001).
Then, we used a principal-coordinate analysis (PCoA), a common clustering method to
visualize the dissimilarities in the fingerprints. The Raman fingerprints of the stressed
and control cells were similar at the beginning and then shifted over time (Fig. 4B). We
used a clustering algorithm to define exactly when this shift takes place: after 20 min
for the ethanol-treated population and 180 min for the control population (Fig. 4C).

Discriminating S. cerevisiae subpopulations following exposure to nutrient
limitation. An S. cerevisiae population was cultured under nutrient-limiting conditions.

FIG 4 (A) Single-cell phenotypic diversity (sc-D2) of the stressed (ethanol treated) and nonstressed (nontreated) E. coli populations. Treatments and treatments
over time were significantly different (two-way ANOVA, P � 0.0001). A post hoc Tuckey’s test showed that the ethanol and control groups are significantly
different at time points of 60 min and 180 min (P � 0.0001). (B) Raman fingerprint of the stressed (ethanol treated) and nonstressed (nontreated) E. coli
populations, plotted using principal-component analysis (PCoA). The time progression is represented with a darker color. Every point represents a single cell.
(C) The clustering algorithm shows the phenotypic shift happens after 20 min for the ethanol-treated population and after 180 min for the control. Two
phenotypes were found. Every point represents the average “phenotypic type” of the population. N � 60.

García-Timermans et al.

September/October 2020 Volume 5 Issue 5 e00806-20 msphere.asm.org 6

https://msphere.asm.org


Based on GFP expression as an indicator of stress activation, we separated two
subpopulations (one that activated the stress reporter and one that did not) using
fluorescence-activated cell sorting (FACS). Then, we analyzed 65 cells in each subpop-
ulation using Raman spectroscopy.

First, we calculated the single-cell phenotypic diversity (sc-D2) of the subpopulations
with high (�) or low (�) stress reporter expression. To demonstrate that sc-D2 calcu-
lations were quantitative, we also created an in silico group by mixing the data of the
two subpopulations (Fig. 5A). The in silico mix group was expected to have an average
sc-D2. Then, we checked the dissimilarity of the fingerprints using PCoA (Fig. 5B). Two
clusters were differentiated depending on the reporter expression.

The information of the Raman spectra from each group was used to understand the
effect of the stress reporter activation on the metabolic response of S. cerevisiae. Using
a tentative assignment based on that by Teng et al. (14), we estimated the protein
(1,006 cm�1), total lipid (1,450 cm�1), nucleic acid (786 cm�1), and saturated lipid
(1,132 cm�1) contents in in the subpopulations with high or low stress reporter
expression (Fig. 6). There can be spectral shifts between databases, due to the use of
a different laser and instrument and/or because of the handling of the sample. To
examine these phenomena, we took as a reference the 1,002-cm�1 peak, which
corresponds to the aromatic amino acids phenylalanine and/or tyrosine. It is a very
prominent band that is usually recognizable in biological samples (26). We observed
that this peak occurred at 1,006 cm�1 in the S. cerevisiae data set, and so we accounted
for a 4-cm�1 shift between data sets. We found that both groups have a significantly
different metabolism: the subpopulation with high (�) expression of the stress reporter
had a higher protein content but contained less total and saturated lipids and nucleic
acids (Wilcoxon rank-sum test, P � 0.0001). However, this peak assignment is only
tentative and needs to be validated using another technique. We cannot claim with
certainty the exact molecular identity corresponding to each Raman wavenumber, as
further explained in the Discussion section.

DISCUSSION

This work shows how Raman spectra data can be used to study stress-driven
metabolic heterogeneity at the single-cell level. The laboratory and computational
workflow is relatively fast and nondestructive and can provide (semi)quantitative

FIG 5 (A) Single-cell phenotypic diversity of a S. cerevisiae subpopulations with high or low stress reporter expression and an in silico mix
of both groups. The in silico mix is a random selection of cells coming from the stressed and nonstressed populations. (B) Visualization of
the stress-induced phenotypic change of Saccharomyces cerevisiae subpopulations with high or low stress reporter expression using
principal-coordinate analysis (PCoA). Every dot is a single cell. The size of the dot corresponds to the single-cell phenotypic diversity (sc-D2).
N � 65.
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information about the biomolecular composition of cells. Although Raman spectros-
copy has been previously used to detect stress-driven phenotypes (13), we argue that
there is a need for quantitative single-cell measurements for phenotypic diversity and
propose the use of Hill numbers. We chose Hill numbers for our calculations because
they are widely used in microbial ecology.

To estimate the phenotypic diversity using the Hill diversity framework, we consid-
ered that each normalized Raman signal corresponds to a component (a single or
multiple molecules) and that the intensity of these components is correlated with their
quantity (27, 28) (Fig. 1). Although we chose to use the whole spectrum for this
calculation, it is possible to select only the peaks. However, this could influence the
resolution: algorithms for peak detection typically divide the spectrum according to a
certain window size and look for the local maximum (29). Also, this algorithm did not
take into account the width of components, which is a characteristic of the molecules.
It would be interesting to study how these two phenomena— using only spectral peaks
or using the width information—affect the single-cell diversity calculation. Additionally,
some components with a close signal would be ignored, and the choice of window size
would affect the final result. Additionally, the acquisition and preprocessing of the
spectra can have an impact on the results. It would be worth exploring whether using
a higher grating (i.e., 600 g/mm) could increase the resolution and result in a more
accurate diversity calculation. Second, the region used for fingerprinting needs to be
considered so that all the molecules relevant to address the hypothesis are reported.
We used the 600- to 1,800-cm�1 region in this work, but it would be interesting to test
the impact of using other spectral regions. When preprocessing, the methods chosen
for baseline correction and normalization will have an impact on the intensity reported
for the different components. The use of smoothing functions can lead to wrongfully
assuming that certain spectral points are noise and thus needs to be considered
carefully. Finally, aligning spectra when unnecessary can misplace the signals. There-
fore, using the same preprocessing steps when comparing samples is crucial as well as
detailing the preprocessing steps and providing the raw data.

To explore the importance of the sample size in these estimations, we used a large
data set consisting of �450 Raman spectra from 2 axenic bacterial cultures (C. necator
and M. extorquens) and 2 axenic yeast cultures (Y. lipolytica and K. phaffii). Then, the
effect of the sampling size on the average single-cell phenotypic diversity and its

FIG 6 (A and B) Raman spectra of S. cerevisiae subpopulations with high (�) or low (�) expression of the stress reporter. The average of the spectra is plotted
with a black line and the standard deviation in gray. The putative peaks corresponding to proteins, lipids, nucleic acids, and saturated lipids according to Teng
and colleagues (14) are plotted over the spectra. (C) The intensity of the metabolic peaks highlighted in plots A and B for the subpopulations with high or low
expression of the stress reporter. The peak assignment is tentative and needs to be validated by another technique. N � 65.
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standard deviation were calculated. Our results show that this is highly population
dependent: for example, while C. necator only needed 15 spectra to approach the
expected sc-D2 average, Y. lipolytica needed more than 150 measurements (Fig. 2). This
could be due to a different degree of phenotypic diversity in the populations. Sample
size should be explored for every experiment to make sure that the estimations are
representative.

After developing the methodology to quantify single-cell phenotypic diversity, we
applied it to two case studies to demonstrate its use. We focused on sc-D2, as it
considers how many components are being expressed per cell and their evenness. In
the first case study, we compared an ethanol-treated and a control E. coli population.
We found that when E. coli is grown under standard conditions, there is a phenotypic
shift after 60 min. This shift happens earlier in stressed cells (20 min) (Fig. 4C). The shift
in the fingerprint in the control group could be due to the entering of log phase. Our
group previously showed how E. coli cells start their log phase after �1 h of cultivation
in rich medium and how, at different growth stages, bacteria change their phenotype
(30). Although both the ethanol-treated and the control populations end up having
similar phenotypes after 60 min, the stressed population has a lower metabolic
diversity (Fig. 4A), a lower nucleic acid content, and higher protein and lipid
contents. Clustering algorithms are useful to automatically identify phenotypes and
quickly assess when the phenotype of a population has changed in a reproducible
way. While here we use PCA, other metrics can be used, such as nonmetric
multidimensional scaling (NMDS), t-distributed stochastic neighbor embedding
(t-SNE) and other clustering methods. The choice of the clustering method should
be based on the hypothesis and how important it is to conserve the distances
between the cells and the relative size of the cluster.

In the second case study, we analyzed the response of two S. cerevisiae subpopu-
lations. When under nutrient-limiting conditions, S. cerevisiae resorts to a bet-hedging
strategy where some yeasts will enter a quiescent state and others will activate a
stress-induced response (31). The strain used in this experiment produces GFP upon
activation of nutritional stress, so when the S. cerevisiae culture diversified into two
populations—with either high or low expression of the stress reporter—these were
separated using FACS and analyzed with Raman spectroscopy. Because the Raman
spectroscope used has a 785-nm laser, we do not expect the fluorescent signal (excited
at 510 nm) to be picked up with this instrument. Single-cell phenotypic diversity (sc-D2)
in the stressed subpopulation is higher than in the nonstressed population (Fig. 5A). As
expected, the in silico mix shows a diversity that is close to the average for both
subpopulations. We then checked that the subpopulations with high and low stress
reporter expression had a different fingerprint using PCoA, a tool widely used for
Raman spectra in microbial ecology. This confirmed that the fingerprints of both
subpopulations are visibly different (Fig. 5B). Using the metabolic information con-
tained in the Raman spectra, we found a higher nucleic acid content in the nonstressed
subpopulation (in line with the findings of Teng et al. [14] in stressed E. coli cells). This
could be explained by the higher ribosome content in nonstressed cells. We also found
that the stress response triggered by the activation of the chimeric promoter results in
a raise in protein production (Fig. 6), similar to the results found in stressed E. coli cells.
We cannot, on the other hand, exclude that GFP production may somewhat influence
the molecular fingerprint of cells (e.g., via depletion of amino acid pools, reducing
ribosomal availability). Also, differences in protein abundance between the stressed
and nonstressed subpopulations could be (at least partially) due to the GFP protein
itself. To explore these possibilities, a proteomics and/or transcriptomics analysis at the
single-cell level would be required. The choice of this promoter based on a fusion of
glc3 and hsp26 as a single proxy to define a metabolically stressed population is cross
validated by these findings, which show two clearly metabolically distinct subpopula-
tions. It is important to mention that these metabolic estimations were made using an
external database and should be considered tentative assignments. To confirm these
results, a second technique should be used. Other authors that previously explored
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stress-induced responses in yeast using Raman spectroscopy found that the 1,602-
cm�1 band, which corresponds mainly to ergosterol production (32), can indirectly
measure oxidative stress and cellular metabolism after atmospheric or nutrient changes
(33). This band can be used as a label-free in vivo activity indicator in both S. cerevisiae
and Schizosaccharomyces pombe.

Finally, we explored whether the number of cells measured in both case studies was
enough to capture the diversity of the cultures. In S. cerevisiae, 65 cells were enough to
estimate single-cell diversity and most biomolecules (see Fig. S2 and S3 in the supple-
mental material). However, to properly estimate the protein content in the nonstressed
subpopulation, more cells would have been needed. The laser spot used for these
measurements had a diameter of 1.7 �m; thus, the spectra of the yeasts could have
varied depending on the position of the laser inside the yeast. To avoid this variation,
the operator aimed at the center of the yeast to the best of her ability. The center of
S. cerevisiae most likely contains nuclear components, although the nucleus is not
necessarily located at the center of cells, and its shape can deviate consistently from
that of a sphere (34). This deviation occurs most notably under conditions of starvation,
hence, very similar to those used to induce GFP expression in our study. Apart from
nuclear information, we expect the spectra to bear information over the nuclear
surroundings (most notably the cytosol), and the biomolecules positioned on the same
longitudinal plane as the nucleus. Additionally, Fig. S3 shows how after measuring 40
to 50 cells, the measurements become quite representative of the population. How-
ever, a space-resolved experiment would help in gaining insight into the effect of stress
in the cell wall or other structures of S. cerevisiae. In the E. coli population, we tested the
sample size in the ethanol-treated population at time points of 5 min and 300 min. Very
few cells are needed to have a representative single-cell diversity estimation: the sc-D0

is the same for all cells (Fig. S4). This metric looks at the number of components present
in each cell, which in this case, seem to be the same for all individuals. It could be that
these cells express the same molecules but different amounts and/or an artifact of the
preprocessing carried out by Teng et al. (14), which could have erased some of the
smaller peaks. This highlights the importance of making the raw data available,
following the trends of other disciplines such as new-generation sequencing (NGS) or
flow cytometry.

Inferring metabolic expression from Raman spectra in microbial cells is not without
challenges. For instance, many databases propose different peaks to identify the same
biomolecules. In the manuscript, we have chosen those presented in the study by Teng
et al. (14) to be able to compare the results they found in E. coli with those we found
in S. cerevisiae. To account for the wavelength shift between these two databases (due
to the use of a different laser and instrument and/or because of the handling of the
sample), we took as a reference the 1,002-cm�1 peak, which corresponds to the
aromatic amino acids phenylalanine and/or tyrosine. It is a very prominent band that is
usually recognizable in biological samples (26). This is at 1,006 cm�1 in the S. cerevisiae
data set, and so we accounted for a 4-cm�1 shift between data sets. When studying the
content of biomolecules with Raman spectroscopy, we also need to consider that some
molecules are not Raman active (i.e., their chemical bonds have a weak signal) and thus
will not be reflected in the spectra. Conversely, some Raman active molecules can be
overrepresented in the analysis because certain chemical bonds exhibit a strong Raman
signal. Also, Raman peaks can correspond to several molecules due to the presence of
shared chemical bonds. These limitations should be considered when using Raman
spectroscopy for microbial ecology. A better assignment of the Raman signals will also
contribute to an improved understanding of the metabolic changes driving single-cell
phenotypic heterogeneity.

Most ecological studies use low-dimensional physiological data or use single-marker
gene expression to understand microbial populations. Raman spectroscopy is a prom-
ising single-cell technology able to quantify phenotypic diversity in individual cells,
identify changes in phenotypes, and infer metabolic information (semi)quantitatively.
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This tool will allow microbial ecologists to go beyond community measurements and
shed light on how heterogeneity shapes communities.

Conclusions.

● Raman spectrum data can be used to quantify single-cell stress-driven phenotypic
diversity in microbial populations.

● Raman spectral points correspond to different chemical bonds (or to multiple
ones), which are expressed with a certain intensity and evenness. This information
can be combined with the Hill diversity framework to estimate the phenotypic
diversity of single cells. We show that these methods can be used to study
changes at the population and subpopulation levels in various microbial systems.

● We propose an automatic classification of phenotypic groups using clustering
methods. As Raman spectroscopy can detect stressed phenotypes, we propose it
as a tool for monitoring microbial populations in bioproduction.

MATERIALS AND METHODS
Data sets. The strains used and the incubation medium are described in Table 1. We performed

�450 measurements in 4 axenic cultures using Raman spectroscopy. Samples were cultured at 28°C with
120-rpm orbital shaking. Each strain was recultivated via transferring 10% (vol/vol) of active culture in
fresh liquid medium (described in Table 1) every 24 to 48 h for 2 months. Cultures were harvested by
centrifugation at 6,603 � g for 5 min, washed with 0.1 M phosphate-bufferd saline (PBS), and stored at
�4°C until further use.

Case studies: single-cell phenotypic diversity quantification in stress-induced phenotypes. To
test the capacity of the single-cell phenotypic diversity (sc-D2) calculation to identify metabolic changes,
we used two case studies. First, we studied two E. coli populations that had been grown together under
different conditions: one was treated with ethanol while the other was not. Second, an S. cerevisiae
culture was grown under nutrient-limiting conditions, which resulted in differential expression of the
chimeric stress reporter (tagged with enhanced GFP [eGFP]). The two subpopulations (high-expressing
and low-expressing eGFP) were isolated (Fig. 3).

Population resolution: E. coli exposed to ethanol. The data set from Teng et al. (14) was used to
validate the diversity calculations. According to their manuscript, this data set consists of Raman spectra of
Escherichia coli at different time intervals (5, 10, 20, 30, and 60 min, 3 h, and 5 h) after being cultured with
different chemical stressors. We used the ethanol-treated samples and the controls to illustrate our point. The
data set consists of three biological replicates of the cell culture, and we measured 20 cells per replicate.

Subpopulation resolution: S. cerevisiae after nutrient limitation. The prototrophic haploid yeast
strain Saccharomyces cerevisiae CENPK 113-7D was used in this study (35). eGFP was produced under the
control of a chimeric promoter composed of fragments of the HSP26 and GLC3 promoters. The promoter
sequence was previously published (chimera 2 in [36]). A synthetic construct containing the promoter,
the eGFP gene, and the G418 resistance marker was integrated in the genome via homologous
recombination at the uga1 site. The correct insertion was confirmed via PCR analysis and lack of growth
on gamma-aminobutyrate (GABA) as the sole nitrogen source.

Samples were collected after 10 residence times in a continuous culture operated at D � 0.1 h�1 in
a 2-liter stirred-tank bioreactor with 1-liter operating volume. Defined yeast mineral medium containing
7.5 g liter�1 was used (37). The culture temperature was maintained at 30°C, the stirrer speed at
1,000 rpm, and the air provision at 1 volume of air per volume of culture per min (vvm). The culture pH
was controlled at 5.0 through the automated addition of either 25% KOH or 25% H3PO4.

Before cell sorting, samples were fixed in formaldehyde 4% according to the protocol from García-
Timermans (25). Paraformaldehyde is known to preserve the Raman spectral features better than other
fixatives, such as ethanol or glutaraldehyde (38). Upon reaching steady state in nutrient-limited contin-
uous culture, we collected a cell suspension from the bioreactor and diluted it 10 times in PBS (Thermo
Fischer Scientific, Belgium) and further analyzed and sorted it using a FACSaria (Becton, Dickinson,
Belgium). Two distinct subpopulations were sorted using fluorescence-activated cell sorting (FACS): the
first subpopulation exhibited a high GFP content (high GFP) and the second a low GFP content (low GFP).
Cells were collected following an enrichment sorting mode, in fractions containing 106 cells of each
subpopulation. Gating details used for cell sorting can be found in Supplemental Fig. S1.

Raman spectroscopy. For the S. cerevisiae samples, three drops of 2 �l were placed on a CaF2 slide
(11-mm-diameter by 0.5-mm polished disc; Crystran Ltd.). We measured 65 single cells using a WITec

TABLE 1 List of organisms and media used to grow them

Organism Liquid medium

Cupriavidus necator LMG 1199 Nutrient broth (Oxoid CM0001)
Methylobacterium extorquens DSM 1338 Nutrient broth with 1% methanol
Yarrowia lipolytica ATCC 20362 YM broth (BD 271120)
Komagataella phaffii ATCC 76273 Sabouraud broth (BD 238230)
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Alpha300R� with a 785-nm excitation diode laser (Topotica) and a 100�/0.9 numerical aperture (NA)
objective (Nikon) with 40 s of exposure and 1 accumulation using a 300-g/mm grating. The laser was
positioned at the center of the yeast to the best of the operator’s ability.

For the samples from C. necator, M. extorquens, Y. lipolytica, and K. phaffii, we used a sterile tip to
smear a 2-�l drop and obtain a more uniform surface. Then, using the area scan function, �450 points
were measured using 5 s of exposure and 1 accumulation with a 300-g/mm grating. Area scanning allows
us to rapidly obtain a high number of measurements. However, because we did not individually aim for
single cells using the microscope, we cannot claim these are single-cell measurements and, hence, refer
to these spectra as “points.”

As a control for the instrument performance, a silica gel slide was measured with a grating of 300
g/mm, with a 1-s time exposure and 10 accumulations. Laser power was monitored to detect possible
variations. More information can be found in the Raman metadata aid (see Table S1) collected following
the guidelines of García-Timermans et al. (25).

Data analysis. The data analysis was conducted using R (R version 3.6.2) in RStudio version 1.2.1335
(39, 40). Figures were produced using the package ggplot2 (version 3.3.2) and ggpubr (version 0.2)
(41, 42).

Preprocessing. We manually eliminated the spectra that contained cosmic rays. The remaining
spectra were preprocessed using the R packages “MALDIquant” (version 1.16.2) (29) or “HyperSpec”
(version 0.99.20200527) (43). To reduce the noise in the spectra, we smoothed it using the spc.loess()
function. The 400 -to 1,800-cm�1 region of the spectrum, which contains the biological information in
bacteria, was selected for fingerprinting. The baseline was corrected for instrumental fluctuations and
background noise using the sensitive nonlinear iterative peak (SNIP) algorithm (using 10 iterations). Then,
the spectra were normalized using the calibrateIntensity() function with the method total ion current
(TIC) and aligned per group with the alignedSpectra() function. The HyperSpec object was smoothed
using the spc.loess() function. These preprocessed data were used to calculate the single-cell phenotypic
diversity and principal-coordinate analysis.

Single-cell phenotypic diversity calculation for single cells with Raman spectroscopy. The Hill
equations were adapted in the manuscript to quantify the phenotypic diversity of single cells (sc-D2)
using preprocessed Raman spectra. Every Raman signal corresponds to single or multiple metabolites,
which we have called components (x). The relative abundance of each component was normalized by
calculating their relative abundance. Then, they were used in the Hill equation as described in Results.

Hill numbers are commonly used to calculate microbial diversity based on 16S rRNA gene sequencing
techniques but have also been applied to flow cytometry, yielding similar results (17, 44). Although there
are many diversity calculations, Hill numbers are widely used. They are also known as the effective
number of species, as they express in intuitive units the number of equally abundant species that are
needed to give the same value of the diversity measure. Hill numbers respect other important ecological
principles, such as the replication principle, which states that in a group with N equally diverse groups
that have no species in common, the diversity of the pooled groups must be N times the diversity of a
single group. The general Hill equation is:

D � ��pi
q�1 ⁄(1�q)

(1)

where pi is the relative abundance of an i number of taxa, and q is the sensitivity parameter, also known
as the diversity order, which can be 0, 1, or 2. The diversity index of order 0 (D0, when q � 0) corresponds
to the taxon richness (the total number of species in the sample), D1 weighs each taxon proportionally
to their abundance, and D2 considers both richness and evenness. When q � 1, the result is undefined,
but Hill (45) proved its limit to be

D1 � exp���pi ln pi� (2)

When q � 2, the Hill equation corresponds to

D2 �
1

�pi
2

(3)

More information on the diversity measures used in microbial ecology and the advantages of Hill
numbers can be found in reports by Chao et al. (15) and Daly et al. (16).

Statistical analysis. The significance of the stress-induced metabolic diversity (sc-D2) of E. coli cells
was evaluated. First, we tested the normality of the groups using ggdensity() and ggqqplot() from the
package “ggpubr” (version 0.2). The significance between the treatment and control groups was tested
using ANOVA with the function aov(), and post hoc testing was done using Tukey_HSD(), both functions
from the package “stats” (version 3.6.3).

We also evaluated the statistical difference in the expression of total lipids, proteins, nucleic acids,
and saturated lipids between the stressed and control S. cerevisiae subpopulations. After testing the
normality of the groups using ggdensity() and ggqqplot() from the package “ggpubr” (version 0.2), we
used the Wilcoxon test with the function wilcox.test() from the package “stats” (version 3.6.3).

Principal-coordinate analysis. We performed a principal-coordinate analysis (PCoA) on the pro-
cessed spectra using the custom function beta.div.Raman(). This function first normalizes each spectral
point by dividing it by the maximum value for that wavelength in the data set. Then, it calculates the
dissimilarity of the spectra using Bray-Curtis through the vegdist() function of the “vegan” package
(version 2.5.6). Finally, the principal-coordinate analysis is calculated using the cmdscale function of the
“stats” package (version 3.6.3).
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Sampling size. We measured of four axenic cultures of C. necator, M. extorquens, Y. lipolytica, and
K. phaffii. First, we put a 2-�l droplet of the sample on a slide. Once it was dry, we did and area scan,
obtaining �450 measurements per culture. Then, we calculated the phenotypic diversity of single
cells (sc-D2). We did 1,000 simulations where we calculated the average D2 when using an increasing
number of bootstrapped spectra. The average and standard deviation of these 1,000 simulations
were plotted.

Subpopulation types. Subpopulation types were calculated by adapting the code for flow cytom-
etry data. The method was originally intended to separate sample clusters, while in its application for
Raman spectroscopy, we aimed to identify and differentiate cell clusters (16).

First a PCA is performed to reduce the dimensionality of the data. A reduced data set with the
principal components that explain the majority of the variance (�40%) is used to calculate the optimal
number of clusters using the silhouette index and then used partitioning around medoids (PAM) as a
clustering algorithm to determine to which cluster cells belong to. This was conducted using the pam()
function from the package “cluster” (version 2.1.0). Once every cell was assigned a phenotype (cluster),
the median phenotype to which the (sub)population corresponds was calculated.

Data availability. The analysis pipeline, raw data, and code to reproduce the analysis shown in the
manuscript can be found in the repository at https://github.com/CMET-UGent/Raman_PhenoDiv. The
data set from the study by Teng et al. (14) was used to validate the diversity calculations as well as
the “subpopulation type” definition.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
TABLE S1, DOCX file, 0.1 MB.
FIG S1, TIF file, 0.4 MB.
FIG S2, TIF file, 0.5 MB.
FIG S3, TIF file, 0.3 MB.
FIG S4, TIF file, 0.6 MB.
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