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Genetic and functional 
characterization of disease 
associations explains comorbidity
Carlota Rubio-Perez1,2, Emre Guney1,3, Daniel Aguilar2,4, Janet Piñero5, Javier Garcia-Garcia2,5, 
Barbara Iadarola2, Ferran Sanz   5, Narcís Fernandez-Fuentes   6, Laura I. Furlong   5 &  
Baldo Oliva   2

Understanding relationships between diseases, such as comorbidities, has important socio-economic 
implications, ranging from clinical study design to health care planning. Most studies characterize 
disease comorbidity using shared genetic origins, ignoring pathway-based commonalities between 
diseases. In this study, we define the disease pathways using an interactome-based extension of known 
disease-genes and introduce several measures of functional overlap. The analysis reveals 206 significant 
links among 94 diseases, giving rise to a highly clustered disease association network. We observe that 
around 95% of the links in the disease network, though not identified by genetic overlap, are discovered 
by functional overlap. This disease network portraits rheumatoid arthritis, asthma, atherosclerosis, 
pulmonary diseases and Crohn’s disease as hubs and thus pointing to common inflammatory processes 
underlying disease pathophysiology. We identify several described associations such as the inverse 
comorbidity relationship between Alzheimer’s disease and neoplasms. Furthermore, we investigate the 
disruptions in protein interactions by mapping mutations onto the domains involved in the interaction, 
suggesting hypotheses on the causal link between diseases. Finally, we provide several proof-of-principle 
examples in which we model the effect of the mutation and the change of the association strength, 
which could explain the observed comorbidity between diseases caused by the same genetic alterations.

Comorbidity is the co-occurrence of two or more diseases in the same patient. It has been proposed that in 
some cases, comorbidities can be explained by shared genetic components such as disease-associated genes or 
biological pathways. Thus, disease comorbidity could be studied through shared disease-associated genes. In 
this sense, recent studies have provided insights on comorbidity patterns among patients1–4. They found that 
many pairs of diseases sharing genes fail to show significant comorbidity5, 6 and vice versa: comorbid diseases 
may not have a common genetic component7. As gene products rarely act in isolation, we need to consider the 
interactions between the disease-associated gene products to fully understand comorbidities between diseases. 
For instance, there are diseases that may be linked through the interaction of two proteins, each associated with a 
different disease. Thus, although there may be no genes in common, comorbidity relationships can be governed 
by protein-protein interactions8, 9.

On one hand, protein interaction networks (PIN), or interactomes, have helped extending our view of the 
causes, sometimes genetic, of common diseases10, 11. To this end, we have developed BIANA, a platform that 
integrates protein-protein interaction data from various publicly available resources12. Through the use of BIANA 
in a previous study, we found that the integration of protein interaction sources could highlight the well-known 
comorbidity between diabetes type 2 and Alzheimer’s disease13, 14, simply by quantifying the overlap in the direct 
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neighbourhood of the disease genes12. More recently, Menche and co-workers showed that, albeit incomplete, the 
current view of the human interactome provides enough information to uncover molecular mechanisms of related 
diseases, including comorbidities15. They calculated the shortest distance between proteins associated to each 
disease (measuring inter-disease and intra-disease pairs of proteins) and defined the network-based separation 
(named Sab) to establish a quantitative measure of disease-disease relationships. Therefore, approaches that inte-
grate different aspects of cellular networks (i.e. protein-protein interactions, metabolic relationships and signalling 
pathways) and disease information are required to better understand the molecular basis of comorbidity5, 15.

On the other hand, several network-based methods have been developed to expand our incomplete knowl-
edge of the disease-associated interactome. Based on the “guilt-by-association” principle suggesting that genes 
that interact with each other tend to exhibit similar functions, these methods prioritize genes for their association 
to a given disease by leveraging their connectedness to known disease-associated genes in the interactome16, 17. 
The interactome also provides a powerful framework for understanding the mechanisms underlying diseases 
through the analysis of the interfaces of protein-protein interactions involved in the modules associated with the 
diseases18, 19 and for characterizing edgetic disease-disease associations8, 9.

In this study, we have extended our knowledge about disease comorbidity by: i) integrating data from sev-
eral protein interaction databases to uncover latent connections between diseases; and ii) analysing their com-
mon disease-associated genes and their functions. Firstly, we have used BIANA12 to integrate several databases 
into a protein interaction network (PIN). Secondly, we have used the guilt-by-association principle, applying 
the Genes Underlying Inheritance Disorders (GUILD) method16, 20, to extend the number of genes associated 
to each disease in the network and assuage the incompleteness of gene-disease associations. Thirdly, to consider 
gene pleiotropy, in which different genomic alterations in the same gene can have different functional impact and 
give rise to different pathophenotypes21, 22, we have incorporated functional information. Given that comorbidity 
does not only arise from common genes involved in diseases but also from shared disease-pathways7, we have 
used disease-disease functional associations to characterize potential comorbidity links. Adding a functional 
view can occasionally be more specific for the association of two diseases than sharing a gene. Finally, we have 
automatically gathered structural information of the interfaces of protein interactions associated with potential 
comorbidities to support the prediction of disease-disease relationships.

Results
Characterization of disease-disease associations using genetic and functional measures.  To 
understand the common mechanisms underlying disease comorbidity, we start with 3,084 diseases annotated 
in DisGeNET v1.0 database (DGN1) and investigate the genetic overlap among all possible 4,753,986 disease 
associations (Fig. 1A). Only 13,064 disease-disease associations (DDAs) (0.0027%) have at least one gene in com-
mon and most of these pairs (97.8%) share 3 or less genes (Figure S1). To assess the significance of the genetic 
overlap of these DDAs we use one-sided Fisher’s exact test (see methods for details) and we find 11,395 out of 
13.064 pairs with significant overlap (P-value < 0.05) (Figure S2). When corrected for multiple hypothesis testing 
using Bonferroni method, the percentage of the significant DDAs among all potential disease pairs is even lower 
(≪0.001%), highlighting limitations of using common genes to characterize relationships between diseases.

The low number of the significant DDAs can be attributed to the incompleteness of the current knowledge 
of disease-associated genes15, 23, 24. To overcome this hurdle, we expand the information on the genes associated 
to a disease using interactions of known disease-associated genes (seeds) in the human interactome. For this 
expansion, we use GUILD, a network-based disease-gene prioritization tool to identify genes that are likely to 
participate in the disease-related biological processes based on their topological closeness in the interactome 
to the seeds)16, 20. We define seeds as the disease-associated genes in DGN1 for the diseases that have at least 4 
proteins in the interactome, accounting for 259 diseases (Fig. 1A). Using only these diseases from DGN1, we 
find 2,494 significant DDAs based on seed overlap. Then, after GUILD expansion, we assess the significance of 
the genetic overlap between them (Figure S2A, Supplementary Methods) and the number of significant DDAs 
increases to 8,012 (Figure S2C). Moreover, we demonstrate that network-based prioritization of disease genes 
can unravel disease relationships even when two diseases do not have seeds in common (see Figure S2B and C in 
Supplementary Methods).

Next, we ask whether network-based expansion of disease-associated gene information produces biologi-
cally meaningful associations between diseases. We use DisGeNET v2.0 (DGN2), an updated version of DGN1 
containing text-mining and curated associations and focus on 234 diseases that are both represented in DGN1 
and DGN2 and for which we can apply the expansion with GUILD (Fig. 1A, see Methods for details). We group 
the disease-associated genes of these 234 diseases into two sets: exploratory and validation sets, containing the 
genes in the GUILD expansion and the genes that are in DGN2 but not in DGN1, respectively (Fig. 1B). In the 
validation set, the disease-associated genes from DGN1 are removed to avoid circularity. Then, we define the 
“common gene” measure (CG) quantifying the significance of the overlap between two data sets (assessed by 
one-sided Fisher’s exact test, see Fig. 1C and methods). CG measure ensures that the DDAs identified by genetic 
overlap in network-based expansion (exploratory set) are also supported by new evidences in the updated version 
of DisGeNET (validation set).

The study of the shared genes between two diseases has been used to explain the association between dis-
eases in previous studies6, 15. Nevertheless, the genetic overlap provides only a partial picture of comorbid diseases 
mechanisms. Thus, in addition to the CG measure relying on common genes between two diseases in the two data 
sets, we design two functional measures based on the overlap of the biological pathways between the diseases: i) 
a functional measure of common genes (FCG); and ii) a functional measure of common functions (FCF). FCG 
extends the CG by calculating the significance of the overlap between the exploratory and validation data sets in 
terms of biological functions performed by the genes shared by two diseases (Fig. 1D). FCF, on the other hand, 
first checks the enrichment of biological functions carried out by the disease-associated genes and then quantifies 
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the significance of the overlap between the exploratory and validation data sets in terms of the biological functions 
shared by two diseases (Fig. 1E). These measures aim to characterize the associations between diseases not only by 
the genes involved in each of them but also by the biological processes in which these genes are involved, giving a 
more holistic view of the potential DDAs. For both functional measures, we define the functional terms using Gene 
Ontology (GO) biological processes (named FCG-GObp and FCF-GObp measures), GO molecular functions 
(named FCG-GOmf and FCF-GOmf measures) and Reactome pathways (named FCG-RP and FCF-RP measures).

Next, we seek to characterize the DDAs between the 234 diseases using the seven measures defined above, 
i.e., CG, FCG-GObp, FCG-GOmf, FCG-RP, FCF-GObp, FCF-GOmf, FCF-RP. We identify 206 DDAs involving 
94 diseases, in agreement with a strict criterion of multiple testing correction (see Methods and Fig. 2) and 2,688 
DDAs involving 158 diseases, considering a relaxed multiple testing criterion (Figure S3). Strict criterion, which 
minimizes the inclusion of false positives, has been used for the investigation of the Disease Network and the case 
studies, introduced in following sections. As each pair of diseases can be identified by any of the seven measures 
above, we define a composite score as the number of significant measures supporting each DDA. Figure 3 shows 
the composite scores of all DDAs found in accordance with the strict criterion ranging from 1 to 7. The list of all 
DDAs is provided in Table S2 and a summary of the significant DDAs using both criteria can be found in Table S3.

It is noteworthy that the functional measures reveal novel disease-disease links, complementing the genetic 
overlap based approach. Indeed, 196 significant relationships between 71 diseases are found using the strict crite-
rion by means of FCG and FCF measures but not CG, spanning 95% of all identified significant DDAs.

Comparison to previous works (state-of-the-art).  To systematically compare our approach to pre-
vious works we turn to the data set by Hidalgo and colleagues, containing information on how often two dis-
eases appear together in health insurance claims25. Although, this data set is not manually curated, one can 
compute the relative risk (RR) based on the co-occurrence frequencies of a given disease pair and use it as an 
indicator of disease comorbidity. Accordingly, we compare the prediction accuracy of the composite score cal-
culated using genetic and functional overlap to the interactome based separation measure introduced recently15 
using the disease-disease associations identified in health insurance claims at a range of RR values. For each RR 
threshold, we calculate the true positive rate and false positive rate over various prediction score cut-offs (com-
posite score or separation measure) to generate a ROC curve and calculate the area under ROC curve (AUC, 
Fig. 4). Interestingly, the AUC increases as disease pairs with low RR values are filtered from the gold standard, 
an observation we attribute to the skewness of RR toward higher values in the original data set (Figure S4A). 
Furthermore, we observe that when the disease-disease associations with a RR higher than 2 are considered, the 
composite score outperforms the separation measure. We also find that integrating functional information of the 

Figure 1.  Schema of data collection and methods applied. (A) Disease data collection and filtering (left panel). 
Venn diagrams show the number of diseases in DGN1 and DGN2, for the diseases having at least four disease-
associated genes (DAG). (B) Schematic representation of the exploratory and validation sets. Methods to 
quantify disease relationships: (C) Genetic score of common genes: a′ ∩ b′ and a ∩ b are the common DAGs of 
diseases “a” and “b” in the validation and exploratory sets, respectively. The intersection of both sets is used to 
compute the p-value with respect to a background of genes. (D) Functional score of common genes: a′ ∩ b′ and 
a ∩ b are defined as before, while F(a ∩ b) and F(a′ ∩ b′) are the sets of functions enriched with genes in a ∩ b and 
a′ ∩ b′, respectively. The set of significant common enriched-functions (after multiple testing correction) is used 
to compute the p-value of this relationship with respect to a background set of functions. (E) Functional score 
of common functions: We first find the set of functions enriched among the DAGs of diseases “a” and “b” in the 
exploratory (A and B) and validation (A′ and B′) sets;. Next, we extract the set of common functions of diseases 
“a” and “b”, A ∩ B and A′ ∩ B′ respectively. The final p-value of the relationship is then calculated with the set of 
significant common enriched-functions (after multiple testing correction) with respect to a background set of 
functions. A multiple testing correction is applied after computing final p-values of scoring methods introduced 
in C to E (see Methods).
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disease-associated genes (FCG and FCF measures) improves the prediction accuracy compared to using common 
genes alone (Figure S4A).

In addition to the large-scale comparison using clinical data, we perform an exhaustive search on the rele-
vant literature describing disease comorbidities. The proposed functional measures (FCG-GObp, FCG-GOmf, 
FCF-GObp, FCF-GOmf and FCF-RP) reveal connections between seemingly unrelated diseases that belong to 
different MeSH classes26, yet still share common functional processes. For example, multiple sclerosis and rheu-
matoid arthritis are significantly linked at the functional level (corrected p-values 2.8 × 10−4 and 2.5 × 10−7 using 
FCG-GObp and FCF-GObp measures in the relaxed criterion, respectively) through GO terms related to inflam-
mation (i.e. GO:0019221, GO:0050852 and GO:0002606). These two diseases have been recently associated using 
the network-based separation15 and had already been highlighted by Hidalgo et al.25, in their comorbidity analysis 
on MedPAR records–clinical records of patients admitted in Medicare system. Similarly, the association between 
asthma and celiac disease identified in both studies15, 25, are also identified using FCG-GObp, FCF-GObp and 
FCF-RP measures (corrected p-values 1.7 × 10−4, 3.6 × 10−3 and 5.1 × 10−4, respectively).

Moreover, we compare our work to that of Menche’s15 (Table S4). Using the 71 diseases common in both 
studies, we find a considerable overlap between our significant (corrected p-value < 0.05) DDAs and DDAs in 
Menche’s work: 36 diseases with 55 DDAs and 67 diseases with 582 DDAs, according strict and relaxed criteria, 
respectively. From the mapped DDAs, most of them have a Sab close to 0 or negative (separation Sab is the cri-
terion in Menche’s study to establish disease-disease links). Precisely, from the previously mentioned DDAs, 15 
out of 55 and 96 out of 582 have a Sab < 0 (see Sab distribution in Figure S4B). Of the 15 DDAs found through 
the strict criterion and with a Sab < 0, only two have genetic support in our study (i.e. significant using the CG 
measure) and the rest are associated through functional measures (either FCF or FCG).

Clusters in the disease network highlight known comorbidity links.  To gain a better understanding 
of the interplay between diseases and their relationships, we assemble a weighted disease network (DN) con-
necting 94 diseases with the 206 identified links using the strict criterion (Fig. 5). In the DN, nodes represent the 
diseases and edges are weighted by the composite score, that is, the number of measures that identified significant 
links (i.e. CG, FCG-GObp, FCG-GOmf, FCG-RP, FCF-GObp, FCF-GOmf and FCF-RP, see Tables S3 and S4).

The disease with the highest degree (connectivity) in the DN is asthma (kasthma = 20), followed by rheumatoid 
arthritis and chronic obstructive pulmonary disease with kRA = 16 and kCOPD = 15, respectively. Note that rheu-
matoid arthritis is well-known in the clinic for having several comorbid conditions27, thus, it is not surprising that 
it is among the most connected diseases in the DN. We observe that the connections between asthma, rheumatoid 
arthritis, chronic obstructive pulmonary disease and respiratory hypersensitivity tend to be supported by multiple 
measures, hinting toward the common inflammatory processes underlying them.

Clustering the DN using MCL28, yields a total of 8 clusters, each with more than three diseases, and 7 
non-clustered pairs (Fig. 5). In agreement with previous observations25, most of the clusters are represented by a 
homogeneous pathophysiology (i.e. cluster III is mostly formed by cardiovascular diseases). Moreover, seemingly 
heterogeneous clusters (i.e. cluster IV including neoplasms with mental disorders and cluster II including neo-
plasms and Alzheimer diseases) are supported by the literature29–32.

Cluster I includes diseases with the highest degree in the DN and those with highest composite score. 
Although it involves diseases in different MeSH disease classes, most diseases in this cluster have a prominent 
inflammatory component. The remaining clusters are much smaller in size, each consisting of 3 to 8 diseases. 

Figure 2.  Number of disease-disease associations according to the strict criterion. (A) Light bars represent 
the number of diseases considered in each measure. Dark bars represent the number of significantly associated 
disease pairs identified according to each measure (CG in yellow colour, FCG in purple and FCF in green) 
using the strict multiple hypothesis testing criterion. The number of disease pairs linked by at least one of the 
measures are given in black, showing the total number of associations obtained. (B) Venn diagram of the sets of 
associations found by the CG, FCG and FCG measures and their intersections.
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Among these, the largest clusters are cluster II, enriched in neoplasms and including Alzheimer disease; cluster 
III, enriched in cardiovascular diseases and cluster IV, enriched in neoplams and mental disorders.

Coronary atherosclerosis (in cluster V) and hypertension (in cluster III) present the highest number of 
inter-cluster links mainly with cluster I, 7 and 6 links respectively (see Fig. 5 and Fig. 6A). In fact, the strong 
association between cluster I and V is mainly because of coronary atherosclerosis DDAs (Fig. 6A) whereas the 
association between cluster I and III is mainly due to hypertensions’ DDAs.

Protein-protein interactions mediating potential comorbid relationships between dis-
eases.  Having established i) the pair-wise relationships between diseases by means of common genes and 
shared functions and ii) the highly connected modules of diseases, we turn to investigate the molecular basis 
entailing these links. To this end, we first consider the interactions between proteins that are involved in identified 
disease pairs. For any given pair of diseases, three different categories of links are defined based on the interac-
tions of proteins (i.e. gene products) associated with each disease (Fig. 6B): (i) direct, when the two proteins of 
the interaction are associated with both diseases; (ii) semi-direct, when one of the proteins is associated with both 
diseases and the other is associated with only one disease; and (iii) indirect, when the interacting proteins are 
solely related to one or the other disease, i.e. none of the genes that produce them are common of both diseases.

Semi-direct and indirect links are of interest because they can potentially explain associations between dis-
eases as the result of mutations at protein interaction interfaces. A mutation at the interface may disrupt the 
interaction between key proteins, or produce an edgetic perturbation21, which in turn would explain why per-
turbations on a single protein can lead to different phenotypes22. In total, about 39% of PPIs are indirect, 44% are 
semi-direct, and 17% direct (see Table S5). Therefore, although most predicted associations between diseases are 
derived from proteins associated and shared with both diseases, more than one third of them are purely caused 
by “edge” (indirect) contributions.

To further understand the mechanistic and structural details of these disease relationships, point mutations 
from different sources are compiled and mapped onto PPIs whose interface has been resolved at an atomic level 

Figure 3.  Heatmap of the composite score of disease-disease associations according to the strict criterion. 
Heatmap of the disease relationships showing the disease-disease association composite score, from 1 (pale 
blue) to 7 (dark blue) (see Methods for details on the score). Diseases are shown with their MeSH disease IDs 
(see the corresponding disease names in Table S1) and were ordered according their diseases class. Right bar of 
the heatmap shows the disease class where each disease belongs to.
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or it can be inferred (see Materials and Methods). Details on disease-disease associations with mutations affecting 
the interfaces of the PPIs that link both diseases, for which at least one of the mutations is directly associated with 
a disease, are provided in Table S5B and S5C.

In Figure S5, we show the example with available structural information of a protein complex that associates 
two diseases. This protein complex is formed by the interaction between the transforming growth factor ß recep-
tor type-2 (TGFBR2, accession number P37173) and the transforming growth factor ß-3 (TGFB3, accession num-
ber P10600). The genes that produce TGFBR2 and TGFB3 are associated with diseases in cluster I. TGFBR2 is also 
associated with diseases in cluster II. This molecular interaction yields semi-direct types of links between colonic/
pancreatic neoplasms and i) skin neoplasms, ii) osteoporosis and iii) pulmonary fibrosis. TGFBR2 (TGF-beta 
type I serine/threonine kinase receptor) is part of the TGF-β signaling pathway, one of the most commonly 
altered pathways in cancer33. It binds isoforms of TGF-β (TGFB3 among them), which are tumour suppressors 
in the healthy intestinal epithelium, inhibiting cell proliferation and promoting apoptosis34. A mutation affecting 
the association between TGFBR2 and TGFB3 would potentially affect the transduction of TGFB3 signal to the 
cytoplasm, affecting the expression of cell-cycle checkpoint genes. Furthermore, both proteins are associated with 
multiple types of neoplasms, while TGFB3 has been associated with lung neoplasms, liver cirrhosis, osteoporosis 
and pulmonary fibrosis35, 36.

We observe that TGFBR2 and TGFB3 interact through PFAM domains PF08917 (ectodomain of the trans-
forming growth factor ß receptor type-2) and PF00019 (transforming growth factor ß-like domain), respectively. 
The three-dimensional structure of this interaction is known37 and deposited in the PDB38 (PDB code 2PJY). The 
structural analysis reveals that the substitution I50V in TGFBR2 (i.e. the residue I73V in the UniProt sequence of 
P37173) affects the interface between both proteins. The analysis of the effect of the mutation on the interaction 
with ROSETTA39 shows a decrease of binding energy in the mutant form I50V of TGFBR2, with ΔΔG≈ + 1 kcal/
mol (see Table 1), indicating a potential loss of the interaction. Likewise, PCRPi-Webserver40 assigns the highest 
probability among all interface residues of TGFBR2 to I50, as a critical (i.e. hot spot) residue in the interaction. 
Furthermore, this mutation has been associated with colorectal cancer41, thus further supporting the significant 
association we identify between colorectal and lung cancer through functional measures (Table S3). The com-
bined functional and molecular level evidence suggests I50V mutation on TGFBR2 as a potential biomarker for 
lung cancer.

Alzheimer’s disease and cancer comorbidity: from genetics to structural characteriza-
tion.  Alzheimer’s disease comorbidity with cancer has recently raised the interest of the scientific community. 

Figure 4.  Prediction accuracy of composite score and network-based separation approach in characterizing 
disease comorbidities. The bars show the area under ROC curve (AUC) using the disease-disease associations 
reported previously by Hidalgo et al.25, at varying relative risk (RR) thresholds as the gold standard. For each 
RR threshold, we calculate the true positive rate and false positive rate over various prediction score cutoffs 
to generate a ROC curve and find the area under ROC curve. We randomly sample among the unknown 
(negative) associations to balance the number of positive associations with the number of negative associations 
and repeat the procedure 100 times to have robust estimates for mean AUC. The bars represent mean AUC and 
the error bar correspond to the standard error over 100 runs. The measures are the composite score calculated 
using genetic and functional overlap based on strict and relaxed criteria, their combination (relaxed+) or the 
interactome based separation measure introduced recently15.

http://S5B and S5C
http://S5
http://S3


www.nature.com/scientificreports/

7SCIENtIfIC RePortS | 7: 6207 | DOI:10.1038/s41598-017-04939-4

Nonetheless, the mechanism underlying the link between these two diseases is still not well understood. While 
some early studies argue that this is a case of direct comorbidity42, 43, more recent evidence suggests that it would 
be an example of inverse comorbidity44, 45. Inverse comorbidity is a lower-than-expected probability of developing 
a disease in individuals who have been diagnosed of a previous condition32. In this case, patients with Alzheimer’s 
disease have a decreased probability of developing cancer and vice versa.

On the basis of these epidemiological studies, the current evidence suggests that the inverse comorbidity stems 
from the pathogenesis of neurodegeneration, involving the following players: PIN1 (altered or under-expressed in 
Alzheimer’s disease and over-expressed in cancer); TP53 (promoting cell cycle arrest in Alzheimer’s disease and 
preventing from it in cancer, due to its loss or mutation), γ-secretase inhibition and trade-off effects of APOE; and 
impairment of the proteasome (with a dysfunction in Alzheimer’s disease which increases the deposit of Lewy 
bodies and an up-regulation in cancer)44, 45. Yet, the functional evidence of the molecular basis underlying the 
inverse comorbidity has been reported recently in the studies of Sorrentino et al.46 and Ibáñez et al.31, attributing 
mitochondrial apoptosis deregulation by PIN1.

In our DN, we observe significant associations between Alzheimer’s disease and five different types of neo-
plasms (hepatocellular carcinoma, the generic term carcinoma, lung-, colorectal- and thyroid- neoplasms), giv-
ing rise to a disease cluster containing Alzheimer disease and 7 neoplasms (cluster II in Fig. 5). Moreover, if 
the relaxed criterion is used, we identify 19 additional neoplasm types associated with Alzheimer (including 
non-solid tumors, e.g. leukemia). Interestingly, the associations between Alzheimer disease and neoplasms are 
found by means of commonly enriched GO terms -FCF-GObp and FCG-GObp, see (Table S3A).

Figure 5.  Disease-disease association (DDA) network. Disease network formed by 94 diseases (nodes) and 206 
DDAs (edges) clustered using the MCL algorithm. Edge width is proportional to the composite score. Node size 
is proportional to its degree. Colour labels of clusters are shown at the bottom, along with the total number of 
diseases, the number of DDAs in the cluster and the sum of the composite score within the cluster.
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The GO terms enriched both in Alzheimer disease and neoplasms point to induction of apoptosis through 
caspase activation by the mitochondrial cytochrome C, implicating programmed cell death as the underlying 
common mechanism behind the comorbidity of these diseases (see Table S6A and B). These findings suggest 
that apoptosis triggered by neurodegeneration in Alzheimer’s disease may play a protective role in various cancer 
types by promoting programmed death of cancer cells and vice versa.

An analysis of the semi-direct and direct PPIs between Alzheimer’s disease and neoplasms identifies the 
interaction between the apoptosis regulator BAX, from BCL2 apoptosis regulators family (PF00452) and the 
BH3-interacting domain death agonist BID (PF06393) (PDB code 4BD247), a pro-apoptotic regulator which pro-
motes BAX oligomerization (see Reed48 and references therein). Both proteins are known to be associated with 
neoplastic processes. BAX has also been associated with Alzheimer’s disease49, 50. Based on our findings, a per-
turbation of this interaction may lead to an association between Alzheimer’s disease and some neoplasms. This 
interaction is predicted as indirect links between hepatocellular carcinoma and Alzheimer’s disease and between 
stomach neoplasm and Alzheimer’s disease. The mutation G108V of BAX, in the interface of the interaction with 
BID, has been associated with Burkitt Lymphoma51, 52. We find that the predicted impact of the mutation in the 
interaction can be important (Table 1). Moreover, the mutation R65L, also near the interface, has been associated 
with lymphoblastic leukemia51, 52 and it can play a role in the interaction. We also identify three mutations of BID 
in the interface (L105P, R84W and G94E). Although they are not currently associated with any disease, the energy 
analysis and the predictions of its relative importance in the interaction (i.e. hot spots) shows that these mutations 
can greatly impair the interaction between BAX and BID (Table 1).

It has been shown that the elimination of BAX prevents almost half of apoptotic cell-deaths by chemother-
apeutic agents, which otherwise induce apoptosis in embryonic fibroblast in a p53-dependent manner53. Also, 
BID is up-regulated by p5354 and mediates apoptosis by interacting with BAX, leading to its insertion in the mito-
chondrion outer membrane to open the mitochondrial voltage-dependent channel and forming an oligomeric 

Figure 6.  Clusters in the disease network. (A) Disease network represented by clusters of diseases. A node 
corresponds to a cluster of diseases and its size is proportional to its degree. Edges represent inter-cluster 
relationships and are weighed as the sum of the composite scores over inter-cluster DDAs. Numbers on top of 
the edges show the number of DDAs connecting the clusters. (B) Schematic representation of categorical links 
between diseases A and B: direct, semi-direct and indirect.

Protein interaction SNP ΔGwildtype ΔGSNP ΔΔG Hot-spot probability

TGFBR2-TGFB3 TGFBR2 I50V −10.03 −7.34 2.69 0.9947

BAX-BID BAX R65L −16.75 −13.29 3.46 N/A*

BAX-BID BAX G108V −16.75 138.88 155.63 0.9999

BAX-BID BID R84W −16.75 −14.11 2.64 0.0526

BAX-BID BID G94E −16.75 36.02 52.77 0.9999

BAX-BID BID L105P −16.75 6.09 22.84 0.9864

Table 1.  Energy analysis of interface mutations in TGFBR2-TGFB3 and BAX-BID complexes. The first and 
second columns indicate the complex and the SNP affecting the interface. The next two columns show the 
ΔG calculated with Rosetta of the wild-type complex (ΔGwild-type) and the SNP mutant form (ΔGSNP). The 
third column shows the (ΔΔG = ΔGwild-type − ΔGSNP) –energies are represented in Rosetta units, which are 
approximately the same as kcal/mol. The fourth column show the probability calculated by PCRPi-Webserver. 
*Residue not considered by PCRPi-Webserver as part of the interface.

http://S6A and B
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pore complex known as Mitochondrion Apoptosis-induced channel (Fig. 7A). Therefore, the loss of BAX-BID 
interaction produces the wane of apoptosis and diminishes its p53-dependent induction. Hypothetically, this 
could produce predisposition for cancer and an inhibition of neurodegeneration, resulting in the inverse rela-
tionship between both diseases. Consequently, the functional analysis (i.e. based on GO enriched functions) 
and the molecular structural analysis (i.e. detailed by the BAX-BID interaction, Fig. 7B) may explain the inverse 
comorbidity between cancer and Alzheimer’s disease.

Discussion
The relationship between diseases is often characterized by their common genes. Yet, despite the availability of 
GWAS and the “omics” revolution in the recent years, our understanding of the genetic basis of complex diseases 
and disease associations remains limited. Motivated by the observation that the interactome neighbourhood of 
the disease genes contain relevant information on the disease, we have used network-based disease-gene prioriti-
zation to extend our knowledge on disease-disease associations. We have proposed functional measures to define 
relationships between diseases and we have showed that expanding the disease-gene information could recover 
existing relationships between diseases. The expansion of associations based on the protein interaction network 
has helped us to find new potential disease-disease associations by filling the gaps in our current experimental 
and clinical knowledge. We have defined a composite score based on seven measures quantifying genetic and 
functional overlap between diseases and using this score, we have obtained 206 disease-disease associations. 
Indeed, we have found that many disease-disease associations were predicted by functional overlap and would be 
missed if only genetic overlap is considered.

We have contrasted our work with previous studies and we found that our results recapitulate known disease 
associations, obtained not only by network-based approaches, but also associations supported by epidemiological 
data. We have compared our predictions to those obtained by network-based separation15, finding support for 
25% of the associations among diseases appeared in both studies. The associations in Menche’s work correspond 
to the closeness of disease related proteins in the network but also supports the functional overlap that we have 
identified. Taken together with other disease-disease associations, these results suggest that protein-protein inter-
actions between genes associated with one or more diseases can be used to explain disease-disease relationships, 
extending our knowledge about the molecular underpinning of human diseases. Interestingly, the measures based 
on functional overlap can detect and confirm associations of diseases described in previous works, such as mul-
tiple sclerosis and rheumatoid arthritis or celiac disease. In addition to the network-based connectivity, some 
DDAs are supported by functional measures, such as asthma and respiratory hypersensitivity, which share several 
associated genes, or the connections between asthma, liver diseases, celiac disease and rheumatoid arthritis that 

Figure 7.  Proposed molecular mechanism underlying Alzheimer’s and neoplasms comorbidity. (A) Diagram 
of mitochondrial meditated apoptosis and TP53. Representation of the apoptosis pathway. Note that most 
genes cited in the text are pro-apoptotic molecules. (B) Interaction between the apoptosis regulator BAX and 
BH3-interacting domain death agonist BID. Cartoon representation of BAX (light blue) and BID (light orange) 
protein complex. Residues associated with mutations involved in neoplasm are shown in sphere representation 
in red for BID (L105P, R84W and G94E) and in blue for BAX (G108V). It is worth noting that G108 in BAX 
faces G94 in BID and that R65L mutation is not detected in the structure of the complex.
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were highlighted in previous works. Our functional overlap based approach also uncovers a substantial amount 
of disease relationships in which none of the genes are common to both diseases. Moreover, through a systematic 
comparison we verify that the predicted DDAs coincide with the epidemiological data and achieve favourable 
accuracy compared to the network-based separation measure. We also identify the modules of related diseases 
and investigate the implications of the protein-protein interactions in characterizing the links between diseases.

The clusters of similar diseases in the disease network show that many related diseases form modules. The 
largest interconnected cluster contains mostly diseases associated with the digestive system as well as rheumatoid 
arthritis, asthma and Chron’s disease. The remaining seven clusters are much smaller, containing DDAs that span 
various disease categories. Although many DDAs are within the cluster, some DDAs occur between pairs of clusters, 
such as coronary atherosclerosis in cluster V linked with diseases with an inflammatory component in cluster I.

We have also focused on the protein-protein interactions involved in DDAs. We have categorized DDAs 
according to the involvement of interacting proteins in one or both diseases. We have defined direct, semi-direct 
and indirect disease-disease associations and have used these definitions to analyse the disease network. The 
number of indirect and semi-direct links among different clusters (inter-cluster) is much larger than the number 
of indirect and semi-direct links within clusters (intra-cluster), while the number of direct intra-cluster links is 
about the same as the number of direct inter-cluster links. These results indicate that most links between diseases 
grouped in different clusters involve interactions of proteins whose genes are associated with one or other disease 
but not shared by both. Thus, the molecular analysis of protein-protein interfaces of interactions involved in 
disease-links becomes crucial to understand potential comorbidity relationships, capturing disease associations 
that would be missed by analysing only the genes in common.

In the analysis of mutations found in protein-protein interactions of genes associated with disease pairs, we 
find 15 and 96 similar DDAs, as per strict and relaxed criteria, respectively, that are also found in Menche’s study 
with Sab < 0. We have predicted the location of each mutation in the interface using the alignment of the protein 
sequence with the Hidden Markov profile and the structure of its known interactions in the 3DiD structural data-
base55. Most DDAs found by our approach, with mutations in the interface of at least one of the proteins involved 
in interactions associated with both diseases (direct, semi-direct or indirectly associated), are found for diseases 
within the same cluster (i.e., intra-cluster diseases). Among them, we find some examples where the mutations 
were directly associated with at least one of the diseases. For example, the association between rheumatoid arthri-
tis and liver cirrhosis is an indirect link between the metalloproteinase Inhibitor 2 (Uniprot accession P16035), 
associated with cirrhosis and the ubiquitinous collagenase type 2 (Uniprot accession P08253), associated with 
rheumatoid arthritis, with three mutations in the interface directly associated with rheumatoid arthritis. Another 
example is the semi-direct link through the Tumor Necrosis Factor (TNF) and its receptor in the superfamily 
1B (TNFR1B), associated with rheumatoid arthritis and asthma, respectively. In this example, we highlight one 
mutation in the interface of the interaction directly associated with rheumatoid arthritis. It is worth noting that 
the link between asthma and rheumatoid arthritis was already described both in Hidalgo et al.25 and Menche et 
al.15. Moreover, in the past decade, several strategies have been proposed to target TNF receptor as a treatment for 
asthma (i.e. adalimumab, etanercep, infliximab)56, 57 and rheumatoid arthritis (i.e. in the DREAM Challenge 8.558, 
in several cohorts with similar surveys59–61 and in ref. 62).

In this work, we have also provided a potential explanation for the inverse comorbidity observed between 
Alzheimer’s disease and cancer (such as leukemia, lung, colorectal, stomach and prostatic neoplasms and carci-
noma) by means of the functional study and the enrichment of functions associated with apoptosis. The associ-
ation between leukemia and Alzheimer’s disease was previously found by Hidalgo et al.25, but in Menche’s work 
this association was disregarded (Sab = 0.36), in which, among all cancer types, lung neoplasm had the smallest 
network-based separation with Alzheimer’s disease (Sab = 0.29). Furthermore, according to separation measure, 
Alzheimer’s disease is not associated with other diseases, the separation with arteriosclerosis being the small-
est (Sab = 0.06). In agreement with this, by using our composite score we have linked Alzheimer’s disease with 
coronary heart disease and hypercholesterolemia. Interestingly, Alzheimer’s disease and myocardial infarction 
produces one of the few inter-cluster links with known mutations in the interface of the proteins involved in this 
association. However, our criteria on the genes/functions overlap significance and the network-based separation 
(with Sab > 0) are not sufficient to consider this link.

Finally, to demonstrate the molecular implications of the mutations in the interfaces of relevant interactions 
linking two diseases, we have characterized the interfaces of several examples for which the structure of the 
complex had been obtained by X-ray crystallography. We have characterised the protein interaction of TGFBR2 
associated with potential colorectal and lung cancer comorbidity, explaining how the mutation of Ile 73 to Val 
(residue 50 in the PDB structure) can cause the loss of the interaction and this, in turn, distorts the function. We 
have also analysed the interaction between BAX and BID, providing molecular evidence on the inverse comor-
bidity between cancer and Alzheimer’s diseases by means of changes in the pathways associated with apoptosis.

In conclusion, we have developed a new approach to uncover genetic and functional relationships between 
diseases that can be applied to investigate disease comorbidities. As a proof of principle, we have highlighted 
the interactions with known mutations associated with several disease pairs, corroborating the implication of 
mutations and their effect on the loss (or decrease of the strength) of relevant interactions that affect the network 
rewiring. Our results shed light on the common genetic and molecular mechanisms potentially giving rise to 
comorbidity between two diseases.

Material and Methods
Protein-Protein interaction network.  The human interactome was derived using BIANA12 (see supple-
mentary information), by integration of interactomic data from: HPRD63, DIP64, MIPS65, BioGRID66, BIND67, 
IntAct68 and MINT69 databases. The resulting protein interaction network (PIN) was formed by 11,123 proteins 
and 149,931 interactions.
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Genetic disease data.  The collection of genes associated with diseases was obtained from DisGeNET data-
base70, 71. DisGeNET contains gene-disease and variant-disease associations from different sources, including 
but not limited to the GWAS catalog72, Orphanet73, the Comparative Toxicogenomics Database74, UniProt75. 
Two different versions of DisGeNET were used in this study: DisGeNET v1.071 (DGN1) and DisGeNET v2.070 
(DGN2). DGN1 contains 8,246 disease-gene associations from curated data (see Supplementary Methods for 
more information) and DGN2, which also includes disease-gene associations derived from text mining, has 
57,912 disease-gene associations. In comparison to DGN1, DGN2, includes more data sources and integrates 
text-mining information, representing a more complete picture of the genetic underpinnings of human diseases. 
For our analysis, we focused on 234 diseases in DGN1 that had at least four genes in the PIN and that had addi-
tional disease-associated genes in DGN2 (Fig. 1A).

Network-based prioritization of disease-associated genes.  DGN1 genes were used as seeds, known 
set of disease-associated genes, for the network prioritization. We defined the genes in the GUILD expansion of 
DGN1 seeds as the exploratory set and the genes that were in DGN2 but not in DGN1 as the validation set. The 
exploratory set was obtained with the NetScore method in GUILD (see supplementary information). The genes 
annotated in DGN1 for each disease were initialized with a seed score of 1.0 and all the remaining proteins were 
assigned the score of 0.01. For each disease, GUILD calculates a disease-association score for all the genes by 
considering alternative shortest paths between seeds and all the other nodes in the network. GUILD scores for 
disease-associated genes were normalized to Z-scores (as described in ref. 20) and genes with a Z-score >= 2 were 
selected as part of the exploratory set of genes associated to the specific disease (see Fig. 1B).

Quantifying disease-disease associations using genetic and functional measures.  Uncovering 
links between diseases by expanding the number of genes can identify disease-disease associations (DDAs). To 
quantify the associations we defined a score, named composite score, which was formed by the implementation 
of seven different measures: Genetic measure of common genes (CG), based on the overlap of common genes 
between diseases; Functional measure of common genes (FCG)–for Gene Ontology (GO) biological processes 
(FCG-GObp), GO molecular functions (FCG-GOmf) and Reactome pathways (FCG-RP) - based on the func-
tions enriched in the set of common genes between two diseases; and Functional measure of common functions 
(FCF)–FCF-GObp, FCF-GOmf and FCF-RP–based on the independent enrichment of functions by each disease 
and the overlap of them (Fig. 1C to E shows a schematic representation of the different measures and more details 
are provided in Supplementary Methods).

These seven measures were then used to assess the statistical significance of a link between two diseases 
using the exploratory and validation sets. For each pair of diseases, we compared the overlap of: genes (CG), 
gene-related functions (FCG-RP, FCG-GObp, FCG-GOmf) and functions (FCF-RP, FCF-GObp, FCF-GOmf) in 
the exploratory set and in the validation set. Then, we used the hypergeometric distribution to calculate a p-value, 
as in Eq. 1, for each measure.
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For instance, to calculate the CG measure for a DDA: N is the sample size (number of genes in the PIN), K is the 
number of common genes associated to the diseases in the exploratory set, n is the number of common genes 
associated to the diseases in the validation set, k is the number of correct predictions (i.e. number of genes of K set 
within n) (see Supplementary Methods the details for the other measures).

We defined two different criteria for multiple testing p-value correction, strict and relaxed, applying 
Bonferroni or Benjamini Hochberg FDR correction, respectively. P-values were corrected at the level of func-
tional enrichment and the final p-value obtained for each pair of diseases. After correcting all p-values, we com-
puted the composite score (from 1 to 7) for each DDA, corresponding to the number of significant measures with 
corrected p-value smaller than 0.05 (a 0 value on composite score implies no DDA).

The full implementation of the seven measures is available at: https://bitbucket.org/carlotarp1/
disease_disease_associations.

Benchmarking identified DDAs using relative risk.  To compare the results obtained by our approach 
with those of the work by Menche et al. and evaluate the performance of the method, we used a data set contain-
ing data from hospital claims for over 30,000,000 of patients25. We downloaded the file corresponding to the ICD9 
codes at the 5 digit level from Hudine data resource25 (http://barabasilab.neu.edu/projects/hudine/resource/data/
data.html). We performed the mappings of the ICD9 codes to the disease identifiers used in DisGeNET using the 
Unified Medical Language System (UMLS) Metathesaurus (version 2016AA). We obtained the Relative Risk (RR) 
as computed by Hidalgo et al.25. The RR is the ratio of the co-occurrence of a given disease pair and the random 
expectation based on each disease prevalence in the population under study. RR is sensitive to diseases with low 
prevalence, that is, diseases seen in a small number of patients and the RR values for such diseases is exceptionally 
high (≫10). Accordingly, we filtered the disease pairs with less than 100 patients in common, focusing on the dis-
ease pairs with strong underlying evidence for potential comorbidity. We retrieved the network-based separation 
values from the supplementary material of Menche et al.15. We mapped the diseases in this file to the vocabular-
ies used in DisGeNET by strict matching of the disease names to the diseases in the Unified Medical Language 
System (UMLS) Metathesaurus (version 2016AA), using only MeSH as source vocabulary. Next, to compare the 
prediction accuracy of the composite score calculated using genetic and functional overlap to the interactome 

https://bitbucket.org/carlotarp1/disease_disease_associations
https://bitbucket.org/carlotarp1/disease_disease_associations
http://barabasilab.neu.edu/projects/hudine/resource/data/data.html
http://barabasilab.neu.edu/projects/hudine/resource/data/data.html
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based separation measure we calculated the true positive rate and false positive rate, where the disease-disease 
associations larger than a certain RR value were used as positive associations and negative associations are ran-
domly sampled from the remaining associations to match the size of the positive associations. We have used 1, 
1.5, 2, 5, 10 RR thresholds to call positive associations and reported the mean AUC over 100 different samplings 
of negative associations.

Deriving a disease network and clustering diseases.  A disease network (DN) was derived as explained 
in the text: diseases (nodes) were connected (edges) based on the number of significant measures that yields the 
composite-score. Diseases on the DN are have been clustered using the network-based Markov Cluster Algorithm 
(MCL)28 with default parameters.

Mapping mutations to protein interfaces.  To further understand the structural basis between two 
linked diseases, we have selected the interactions between pairs of proteins produced by the genes associated 
with each disease and mapped in the proteins the missense mutations extracted from: SNPdb76, the Human 
Polymorphisms and Disease Mutations database at UniProt75, the ClinVar database77, the Genetic Association 
Database78 and the NHGRI GWAS Catalog72. Overall, 5,241 proteins have mutational information of which 2,472 
are associated to at least one disease. Of those, 108 complexes, i.e. pairs of proteins, have structural information 
and mutations associated to them can be analysed in their structural context.

Whenever possible, we have characterized the mutations located in protein-protein interfaces by using the 
structure of protein complexes from 3DiD55. In the case of protein complexes with known structure, the interface 
is defined as the set of residues of each protein within less than 12 Angstroms Cβ-Cβ distance, as defined in 3DiD. 
For complexes of proteins highly similar to the known interactions (usually referred as interologs), we inferred 
the residues in the interface from the alignment with the corresponding template structure using Align79.

Calculation of ΔG of a protein-protein interaction and hot spot predictions.  We have used the 
program InterfaceAnalyzer of ROSETTA package to calculate the ΔG39. A single mutation in the interface is 
modelled and optimized with MODELLER80 and the energy of the interaction is calculated using ROSETTA. 
The difference between ΔG of the mutant and the wild-type form is the ΔΔG. Hot spots on interfaces are pre-
dicted using PCRPi-Webserver81 employing a naïve Bayesian Network trained in a dataset that does not include 
Antigen-Antibody complexes (as described in the original method40).
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