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Abstract

Boosted Regression Trees. Excellent for data-poor spatial

management but hard to use

Marine resource managers and scientists often advocate spatial approaches to manage

data-poor species. Existing spatial prediction and management techniques are either insuffi-

ciently robust, struggle with sparse input data, or make suboptimal use of multiple explana-

tory variables. Boosted Regression Trees feature excellent performance and are well suited

to modelling the distribution of data-limited species, but are extremely complicated and

time-consuming to learn and use, hindering access for a wide potential user base and there-

fore limiting uptake and usage.

BRTs automated and simplified for accessible general use with rich

feature set

We have built a software suite in R which integrates pre-existing functions with new tailor-

made functions to automate the processing and predictive mapping of species abundance

data: by automating and greatly simplifying Boosted Regression Tree spatial modelling, the

gbm.auto R package suite makes this powerful statistical modelling technique more acces-

sible to potential users in the ecological and modelling communities. The package and its

documentation allow the user to generate maps of predicted abundance, visualise the repre-

sentativeness of those abundance maps and to plot the relative influence of explanatory var-

iables and their relationship to the response variables. Databases of the processed model

objects and a report explaining all the steps taken within the model are also generated. The

package includes a previously unavailable Decision Support Tool which combines esti-

mated escapement biomass (the percentage of an exploited population which must be

retained each year to conserve it) with the predicted abundance maps to generate maps

showing the location and size of habitat that should be protected to conserve the target

stocks (candidate MPAs), based on stakeholder priorities, such as the minimisation of fish-

ing effort displacement.

PLOS ONE | https://doi.org/10.1371/journal.pone.0188955 December 7, 2017 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Dedman S, Officer R, Clarke M, Reid DG,

Brophy D (2017) Gbm.auto: A software tool to

simplify spatial modelling and Marine Protected

Area planning. PLoS ONE 12(12): e0188955.

https://doi.org/10.1371/journal.pone.0188955

Editor: James P. Meador, Northwest Fisheries

Science Center, UNITED STATES

Received: February 6, 2017

Accepted: November 16, 2017

Published: December 7, 2017

Copyright: © 2017 Dedman et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data are available

within the gbm.auto package available at github.

com/SimonDedman/gbm.auto as detailed within

the paper.

Funding: Research funding was received from the

European Community’s Seventh Framework

Programme (FP7/2007–2013) under grant

agreement MYFISH number 289257. DGR also

acknowledges funding from a Beaufort Marine

Research Award, carried out under the Sea Change

Strategy and the Strategy for Science Technology

and Innovation (2006–2013), with the support of

https://doi.org/10.1371/journal.pone.0188955
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188955&domain=pdf&date_stamp=2017-12-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188955&domain=pdf&date_stamp=2017-12-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188955&domain=pdf&date_stamp=2017-12-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188955&domain=pdf&date_stamp=2017-12-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188955&domain=pdf&date_stamp=2017-12-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188955&domain=pdf&date_stamp=2017-12-07
https://doi.org/10.1371/journal.pone.0188955
http://creativecommons.org/licenses/by/4.0/


Gbm.auto for management in various settings

By bridging the gap between advanced statistical methods for species distribution modelling

and conservation science, management and policy, these tools can allow improved spatial

abundance predictions, and therefore better management, decision-making, and conserva-

tion. Although this package was built to support spatial management of a data-limited

marine elasmobranch fishery, it should be equally applicable to spatial abundance model-

ling, area protection, and stakeholder engagement in various scenarios.

Introduction

Spatial management of data-limited species

Some of the key barriers to implementation of scientific research are accessibility of evidence,

quality of evidence, and organisational capacity/resources [1]. A lack of data commonly com-

plicates conservation of marine and terrestrial species [2]. Marine spatial management typi-

cally involves the selection of appropriate Marine Protected Areas (MPAs) [3]. Fisheries

managers and scientists recommend various spatial management tools to support MPA selec-

tion [4–6]. These methods generally involve predictive mapping of species distribution and

abundance in relation to available habitat and human activities such as fishing (e.g. [7–10]),

and there are a number of such approaches available. However, predicting abundance (espe-

cially to fine spatial scales) is often hampered by lack of data [8,11]. Evaluating the suitability

of an MPA is often difficult due to incomplete knowledge of specific ecologically important

habitats such as nursery and spawning areas [12,13], and uncertainty regarding species move-

ment and larval dispersal patterns [14,15]. MPAs that ignore the biology of the species to be

conserved (e.g. home range size) may be inappropriately sized and subsequently fail [16,17].

BRTs compared to other spatial management tools

Various spatial management tools exist, with different capabilities and strengths, one of which

is Boosted Regression Tree (BRT) modelling. Compared to other such tools, BRTs are robust

to poor or absent data, which Marxan may not be [18–20], and can use abundance data, unlike

Maximum Entropy (MaxEnt) models. They are relatively insensitive to the effects of missing

predictor values, outliers, and multicollinearity [21,22] and can accommodate large numbers

of explanatory variables without penalty. They can provide more robust predictions than gen-

eralised linear and additive models (GLMs and GAMs)[20], with less variance (oversensitivity

to noise leading to overfitting/imprecision) and bias (false assumptions in the algorithm lead-

ing to underfitting/inaccuracy), a lower risk of misspecification, and the ability to model com-

plex interactions (see comparative evaluation in [23]). BRTs have a demonstrated ability to

generate predicted abundance maps at fine spatial scales for data-poor stocks [7,24,25], as well

as for age- and gender-subsets of those stocks [26]. Species may be managed as an assemblage

[27,28], which BRTs can assist with [7,29].

The case for simplified BRTs

Functions exist in the repository of the R programming language [30] to run BRTs on sparse

datasets [31,32], and one can then display the resulting predicted abundance data tables using

either a Geographic Information System (GIS) package or functions within R (e.g. mapplots),
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thus producing fine-spatial-scale predicted abundance maps for data-poor stocks and their

subsets. However, despite guidance existing for the stepwise running of some of these func-

tions [33], much time and technical proficiency is required to understand and run the compli-

cated programming functions in a piecemeal fashion. Even when successfully run, BRTs are

complex, acknowledged as being “challenging to understand”, with the model object often

treated as a “black box” [31]. The application of these methods therefore requires time, techni-

cal and financial resources that are often unavailable to scientists or marine managers (e.g.

[1,34,35]), and could disincentivise potential users. A software tool that automates and simpli-

fies the BRT mapping process could greatly reduce the barriers preventing access to these

methods by the potential user base, and thus increase the uptake of this high performance

method [20], assisting and improving fisheries management.

Managing multiple species or life history groups

Protection of spawning and/or nursery grounds is often proposed as a spatial management

solution for species conservation [4,12,36,37].This can be achieved by mapping the abundance

of a particular life history stage (such as mature females (e.g. [38]) and BRT mapping can sup-

port this approach. However, simply summing predicted abundance maps (e.g. [7]), sees more

abundant (probably less threatened) subsets obfuscating less abundant (more threatened) sub-

sets. There is a need for a software function that allows users to generate synthesis maps for

multiple species or life history groups and to weight each subset according to conservation pri-

orities, to facilitate management of multiple species and their subsets.

Decision support tools for MPA selection

Generating predictive maps of species distribution and abundance from the available data only

addresses half of the problem of species conservation within an impacted multi-use environ-

ment. While MPAs can improve decision making [39], a common mistake made when design-

ing them is failing to acknowledge that conservation plans are prioritisations [40]. This means

that socioeconomic costs must be considered [14,41], not only to the primary stressor (e.g.

fishermen) but all affected parties (e.g. tourism, oil and gas extraction, etc.). Insufficient stake-

holder engagement—often by involving them only at the final stage of the process—is a com-

mon reason for MPAs to fail [16,39,42]. Unfortunately, the tools and guidance required to

incorporate biologically-derived MPA candidates into a multi-stakeholder environment are

lacking ([43,44] in [45]). While tools to support qualitative evaluation of candidate MPAs are

available [35,45], they could be enhanced by the incorporation of quantitative metrics (e.g.

Maximum Sustainable Yield (MSY), fishing effort) [43,46]. There is a need for a DST that can

generate MPA candidates across a whole region, which weigh harvest-limit-based conserva-

tion against quantified displacement of the stressor, e.g. fishing effort, catch per unit effort

(CPUE), or profit. This would allow much-needed [43] evaluation of trade-offs within a frame-

work of scientist, manager, and stakeholder discussion. A review of 39 MPA-generation and

decision support tools found that most were only usable by scientists, and custom-tailored

rather than generic; they concluded a practical and simple tool is required [41].

Aims

In this paper we present the gbm.auto package that we have written, and describe its usage and

functionality. Its core function—also named gbm.auto—assists decision makers in mapping

species distributions by addressing the need for a simplified BRT mapping process. It reduces

thousands of lines of code to as few as two, and automatically outputs maps of predicted abun-

dance and representativeness maps of those abundance maps. It produces bar plots of the
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relative influence of explanatory variables, dot and line plots describing the relationships

between explanatory variables and response variables, and databases of the processed model

objects. These outputs provide insight into the factors underlying observed distribution and

abundance patterns that can be disseminated to all stakeholders to catalyse and enrich discus-

sions. Finally, the function produces a report detailing the steps taken by the model, the opti-

mal BRT argument combinations, the size of variable influence and variable interactions, and

performance statistics of the final models. This provides the user with the important technical

information the model used, and allows them to evaluate the robustness of the outputs

In running the gbm.auto function, functions gbm.rsb, gbm.map, and gbm.basemap are called

and run. Users can test optimal parameters beforehand with gbm.bfcheck, and run any of the

aforementioned functions independently. Gbm.cons can then be used to generate maps synthe-

sising the predicted abundances of multiple subset components of stocks, such as juveniles and

mature females, a highly desirable output for marine managers.

Separate from the machine-learning spatial-modelling function gbm.auto, the other major

function within the gbm.auto package is a DST called gbm.valuemap. The function combines

an MSY-based conservation value metric with the predicted abundance maps from gbm.auto
to propose MPAs that ensure the target stocks are harvested sustainably, while also minimising

fishing effort displacement as a proxy for stakeholder priorities. This bridges the gap between

species distribution modelling and decision-making, whereas most existing tools specialize in

one or the other.

This is a DST software package that vastly simplifies the process of generating fine-spatial-

scale predicted abundance maps for data-poor species, then produces MPAs combining fisher-

ies stock science with quantified stakeholder preferences. The process of spatial conservation is

thus facilitated with a rich collection of tools and outputs. Scientists, conservation managers

and policymakers can benefit from the power of these statistical methods without a significant

upfront penalty of time and effort. The availability of this specialist software package will

increase the uptake of this class-leading analysis method, vastly the diminishing the work

required to produce a suite of valuable outputs, and facilitating the engagement of stakeholders

into the management process.

Guide to software functions

We wrote the gbm.auto package in R. It incorporates existing packages calibration, roc, gbm.

predict.grids (from [31]’s appendix, bundled into gbm.utils by Dedman), beepr, dismo, gbm,

mapplots, mgcv, raster, rgdal and vegan, and functions also built by the authors for this task:

gbm.map, gbm.basemap, gbm.rsb, gbm.cons, gbm.valuemap, gbm.bfcheck and gbm.loop. All

R source code is publicly available via GitHub (see ‘Availability’ and S3 File).

Below follows a brief explanation of the usage of BRTs which are the central engine of the

gbm.auto modelling process, then an introduction to the case study for which this software

was initially developed, and a description of the required data format. Subsequently, the indi-

vidual functions are introduced and explained. See Fig 1 for a schematic describing the func-

tionality of gbm.auto functionality.

Delta log-normal BRT models for abundance predictions

A high proportion of zeros and few very high values are common features of marine species

abundance data acquired through fisheries sampling methods such as trawling; in fisheries sci-

ence these issues are commonly addressed using a delta log-normal approach. Delta log-nor-

mal boosted regression trees split the data into zero/non-zero catches (a binary response

variable), and log-normalised non-zero catches (a continuous variable representing
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Fig 1. Conceptual diagram of main modelling processes and outputs.

https://doi.org/10.1371/journal.pone.0188955.g001
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abundance). The model then uses machine learning to infer a relationship between the explan-

atory variables and these two sets of response variables, separately predicting the probability

of occurrence, and the expected abundance (this is the delta process, also known as a hurdle

model). The abundance variable is reverse log-transformed and the two datasets combined

into one abundance probability metric which is mapped to the whole study area, including

areas with explanatory data but no response data. For more detailed explanation see Reference

7] and references therein, including R packages; the conceptual diagram (Fig 1); and [26,29]

for expounded applications to these sample data. An explanation of the history and mathemat-

ics of BRTs is comprehensively covered by Reference 31]. If data are not zero-inflated and

long-tailed, the log-normalisation and reversal stages can be omitted, and the BRT run only a

single time using the distribution model most appropriate for the data (e.g. binomial, Gauss-

ian, Poisson), as opposed to using the delta/hurdle model. Users are able to specify which

model(s) gbm.auto should direct BRTs to fit to their data, if they wish.

Sample dataset

Management bodies and scientists recommend exploration of novel spatial approaches to

conserve vulnerable elasmobranch species, as an alternative to typical Total Allowable Catch

(TAC) based management, which often fails such species [4,12]. Of the 1088 chondrichthyan

species in the IUCN Red List, 480 (44%) are categorised as Data Deficient [47] and a high per-

centage of these could qualify as threatened [48]. Chondrichthyans are thus appropriate candi-

dates for this data-poor spatial approach [49,50].

In the worked example we use a dataset of CPUEs from surveys for four rays (cuckoo ray

(Leucoraja naevus), thornback ray (Raja clavata), blonde ray (Raja brachyura) and spotted ray

(Raja montagui)) from 1447 survey stations in the Irish Sea over 12 years. Relationships with

fishing pressure, environmental correlates (bottom temperature, depth, salinity, current speed,

substrate grain size, and distance from shore), and juvenile ray and eggcase reducing variables

(fishing effort, predatory fish CPUE, scallop dredging effort, whelk CPUE) are used to map

predicted CPUEs for the whole study area. The example data set and images can be retrieved

from GitHub (see ‘Availability’ section).

While the example pertains to marine fishes, the gbm.auto approach may be equally appli-

cable for the management of marine, estuarine, riverine, or terrestrial species.

Input data format

For predicting abundance, two data tables are expected–‘samples’, containing the response

variable (e.g. CPUE of fish) and predictor variables (e.g. environmental variables such as tem-

perature, depth, etc.) at various sites; and ‘grids’, containing the same environmental variables

at (ideally regularly-spaced (gridded)) sites where the response variable was not measured.

‘grids’ can be omitted if the objective is not to predict abundance at new sites. A model object

of the relationship between predictor and response variables will still be created, and the dot,

bar, and line plots, and progress report will all be generated in R. In our example, these data

come from a variety of sources; an explanation of how they were compiled and treated is pro-

vided in ‘Data sources and processing’ (S2 File).

Worked examplePre-run parameter scoping with gbm.bfcheck

Before starting often-lengthy gbm.auto runs, the gbm.bfcheck function allows users to calculate

the minimum binary and Gaussian BRT bag fraction sizes (the portion of the data that is ran-

domly selected at each iteration to train the model), as insufficiently sized datasets or over-
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large subsampling rates can cause BRT runs to fail. Its arguments are ‘samples’, ‘resvar’ and

‘ZI’, all as per gbm.auto.

gbm.bfcheck(samples = mysamples, resvar = 11) # Run code with defaults

Abundance predictions with gbm.auto

The gbm.auto code loops through the arguments resvar, tc, lr and bf, either left as default or

provided by the user, then checks whether the response variable data are zero inflated, and that

the data are correctly formatted. For a binomial distribution or delta log-normal approach

(which includes binomial), zeroes are expected to be present in the raw data, denoting zero

catches. Column names in the samples data must match those in the grids data. Binary and

non-zero Gaussian data vectors are then created from the original samples data, for input to

the subsequent BRT model runs.

The remaining argument loops are then begun, with bag fraction nested within learning

rate nested within tree complexity. Binomial and Gaussian BRTs are run on the binary and

non-zero Gaussian data respectively (assuming the model families have been left at their

defaults), with the best-performing combination of arguments selected then tested for simplic-

ity, in case it performs better with any explanatory variables omitted.

Line plots of partial deviance are created, first all on one matrix figure, then for each vari-

able separately, for binary and Gaussian as usual. Next are dot plots of the spread of partial

deviance against the explanatory variable values. The influence of each variable’s contribution

to the model is then tabulated and saved as a comma-separated-values (csv) file, then output as

binary and Gaussian bar plots. Gaussian data are reverse log-transformed if they were zero

inflated and thus log-normalised earlier, using Duan’s Smearing Estimator [51]. Binary and

Gaussian data are then multiplied to give a single index of predicted abundance which is saved

as a csv file twice: once alongside all of the explanatory variables and once alongside just the

cell centroid latitude and longitudes. The binary and Gaussian model objects are saved—these

can be loaded back into R for re-processing outputs and additional analysis later. A report of

all model metrics, which allow the model performance to be quantified, is also saved as a csv

file (see S1 File for more).

The predictions are then mapped, followed by the representativeness surface builder maps

(Fig 2A and 2B respectively) for binary, then Gaussian, then both combined, in colour then

greyscale.

Here we run the gbm.auto function with all option parameters left at their default values.

Explanatory variable columns are 4 to 9 and 11; the response variable column is 12.

gbm.auto(grids = mygrids, samples = mysamples, expvar = c
(4:8,10), resvar = 11)

Acquiring global coastlines with gbm.basemap

The acquisition and processing of coastline data at the appropriate scale and resolution is usu-

ally required for mapping, but can be time- and technically demanding. Gbm.basemap auto-

mates the acquisition and cropping of NOAA’s global coastline shapefiles database to user-

defined extents, for gbm.map. This lowers memory use and processing time, and allows the

user to set the map resolution. The difference in resolution between the highest (full, “f”) and

the lowest (coarse, “c”) of the NOAA datasets used by gbm.basemap is shown in Fig 3 using the

example of the British Isles. While the coarse dataset sacrifices a large amount of detail, this

may be acceptable for large-area maps focusing more on mid-oceans than coastlines.

mymap <- gbm.basemap(grids = grids, gridslat = 2, gridslon = 1)
# run the function with defaults
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Representativeness surface builder with gbm.rsb

The representativeness surface builder function compares the frequency distribution of the

explanatory variables from the ‘grids’ data with those from the ‘samples’ data, summing (the

modulus of) the differences into a score which indicates how well the samples data captures

that variable’s full range. This is calculated for every cell in ‘grids’ and exported to a csv file,

which gbm.auto has gbm.map output to a figure. Higher values signify poor coverage of those

explanatory variable range sections by the samples data, and thus where users should be more

cautious when drawing conclusions from the corresponding predicted abundance maps.

expvar = c(4:10) #list explanatory variable columns (as gbm.auto)

resvar = 11 #list explanatory variable columns (as gbm.auto)

rsbdf_bin <- gbm.rsb(samples = mysamples, grids = mygrids,
expvarnames = names(mysamples[expvar]), gridslat = 2, gridslon = 1)
# create binary data RSB

Mapping with gbm.map

The gbm.map function handles the mapping, calculating the cell size automatically and allow-

ing the user to alter most elements of the output. This can be run manually within R’s standard

plotting framework, and is called by gbm.auto, cons, and valuemap.

data <- gbm.auto::AllPreds_E # load abundance predictions produced by gbm.

auto
png(filename = paste("./Cuckoo_Map2.png",sep = ""), width =

4�1920, height = 4�1920, units = "px", pointsize = 4�48, bg =
"white", res = NA, family = "", type = "cairo-png") # opens the PNG

image format writing process; change type to “quartz” for non-Linux systems.

Fig 2. (A) Predicted CPUE map, from gbm.auto. (B) Representativeness Surface Builder map, from gbm.auto.

https://doi.org/10.1371/journal.pone.0188955.g002
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par(mar = c(3.2,3,1.3,0), las = 1, mgp = c(2.1,0.5,0),xpd =
FALSE) # sets plot boundaries and sizes

gbm.map(x = data[,2], y = data[,1], z = data[,3]) # run gbm.map
function

dev.off() # closes the PNG writing device, saving the image.

Conservation mapping with gbm.cons

Gbm.cons runs gbm.auto for multiple subsets of the dataset, scaling and amalgamating the

combined results, producing maps which highlight areas of high conservation importance for

multiple species in the same study area. In a previous study [24] this function was used to map

predicted CPUEs for juvenile and adult subsets and to locate potential nursery grounds and

spawning areas. The code maps the results via gbm.map as well as saving the data as a csv file.

Stepwise guides for running gbm.map, gbm.basemap, gbm.rsb, gbm.loop and gbm.cons are pro-

vided in S1 File.

mygrids <- gbm.auto::grids# load grids file

Juveniles <- gbm.auto::Juveniles# load juveniles subset

Adult_Females <- gbm.auto::Adult_Females # load adult females subset

gbm.cons(mygrids = mygrids, subsets = c("Juveniles", "Adult_
Females"),

Fig 3. Comparison of NOAA basemaps at full (f; black, under) and coarse (c; red, over) resolution basemaps from

gbm.basemap.

https://doi.org/10.1371/journal.pone.0188955.g003
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resvars = c(43:44,10:11), expvars = list(c(4:10,14,16,20,24,
28,36), c(4:10,14,17,21,25,29,37), 4:9, 4:9), tcs = list(c(2,13),
c(2,13), c(2,6), c(2,6)), lrs = list(c(0.01,0.005), c(0.01,
0.005), 0.0001, 0.0005), zeroes = rep(FALSE,4))# 4 entries, 4 gbm.auto
runs, small lrs fail for the more data-limited subsets and were removed, zero category removed

for maps, all other arguments omitted and default to their gbm.auto defaults (mostly TRUE).

Closed area generation with gbm.valuemap

Once the predicted abundance maps have been produced by gbm.map in gbm.auto, gbm.value-
map is the DST that can generate MPA options using those species’ predicted abundance

maps. Effort displacement was chosen as the value to minimise since it is the classic problem

of fisheries management [16,41,52], but other proxies for the preferences of that stakeholder

group (e.g. CPUE, profit) or any other stakeholder group (e.g. windfarms, fossil fuel or aggre-

gate extraction) can be used instead—see Reference [29] for further details. The conservation

value metric used by this function is based on the MSY principle of escapement biomass. This

is the percentage of the stock which must be retained each year to conserve it, expressed as

Harvest Rate at MSY (HRMSY). In the S1 File we generate closed areas under four different sce-

narios, to demonstrate the effect of different weighting choices.

Gbm.valuemap scales the response variable data based on importance ratios specified by the

user, maps a user-defined explanatory variable to be avoided, e.g. fishing effort (Fig 4A), then

combines the response variable data (e.g. cuckoo ray CPUE) with reversed avoid-variable data

(fishing effort), both scaled to 1. This results in a combined map ranging from areas to avoid

closing (value 0: maximum high fishing effort and no cuckoo ray CPUE) to areas to preferen-

tially close (value 1: no fishing effort and maximum cuckoo ray CPUE)(Fig 4B). The data are

then sorted by one of four sorting schemes and the rows summed until Bpa—the precaution-

ary biomass required to protect the spawning stock—is reached. These rows correspond to a

closed area / MPA candidate map for each (combination sort example in Fig 4C).

The code then builds a growing MPA, starting with MPA map for the most conservationally

at-risk species (as set by the user), then counting those MPA data rows against the next species,

before beginning that species’ Bpa cumulative sum. In essence, this is asking ‘how much of

Fig 4. (A) Fishing effort map, from gbm.valuemap; (B) Predicted CPUE of cuckoo ray plus reversed fishing effort map, from gbm.valuemap; (C)

Predicted CPUE of cuckoo ray plus reversed fishing effort map, with overlaid closed area, from gbm.valuemap.

https://doi.org/10.1371/journal.pone.0188955.g004
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blonde ray’s Bpa is already protected by the cuckoo ray MPA?’. This results in one MPA map

per species, and a single four-colour MPA map, with colours corresponding to the species

responsible for that part of the MPA (four-species cumulative closure maps for all four sorting

scenarios shown in Fig 5). All maps generated by gbm.valuemap list the percentage of the

Fig 5. Cumulative area closure maps derived under the biomass (top left), effort (top right), combination (bottom left) and conservation (bottom

right) sorting techniques, from gbm.valuemap.

https://doi.org/10.1371/journal.pone.0188955.g005
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avoid-variable’s total that is overlapped by the MPA, in the map legend. Finally a report is pro-

duced (see S1 File).

The sorting strategies mentioned earlier are as follows. The first is the combination metric

as previously discussed (‘combination sort’), combining the response variable (ray CPUE)

with reversed avoid-variable (fishing effort). The second (‘biomass sort’) is response variable

only, preferentially protecting the areas of highest CPUE with no regard for fishing effort. The

third is the opposite, preferentially avoiding fishing effort reductions (‘effort sort’). The fourth

is a conservation sort, preferentially closing areas of high nursery area or spawning ground

CPUE based on the conservation map produced by gbm.cons, ignoring fishing effort like the

biomass sort.

conserve <- gbm.auto::AllScaledData # load data from gbm.cons.
mydata <- gbm.auto::AllPreds_E # load dataset with latitude, longitude, fishing

fleet effort and all four rays’ predicted CPUE.

mydata <- cbind(mydata, conserve = conserve[,3]) #add conservation

data from gbm.cons as a column to mydata.

To run gbm.valuemap with standard weightings and known HRMSY values:

gbm.valuemap(dbase = mydata, loncolno = 2, latcolno = 1,
goodcols = c(3,5,6,4), badcols = 7, conservecol = 8, HRMSY = c
(0.08,0.14,0.08,0.15))

Calculating the coefficient of variation of predicted abundance with gbm.

loop

Gbm.loop repeats exactly the same gbm.auto run a user-specified number of times and collates

the multiple outputs. Before the prediction stage it calculates the minimum, average, maxi-

mum, and variance of the variable influence values as seen in the bar plots, as well as plotting

the minimum, average, and maximum partial dependence values for each x value in the vari-

able’s range, for the partial dependence line plots. After the prediction stage it calculates the

coefficient of variation for the predicted abundance surface, i.e. the variance of values at each

cell in ‘grids’. Map and csv files are produced, enabling users to further quantify the robustness

of their predictions.

gbmlooptest <- gbm.loop(loops = 5, grids = mygrids, samples =
mysamples, expvar = c(4:10), resvar = 11, simp = F) # Run code with

most defaults.

Overview and benefits of gbm.auto

The gbm.auto suite of functions develop the BRT functions previously available in R’s ‘CRAN’

repository into an easily-usable and feature-rich resource primarily for fisheries, scientists to

disseminate to managers and stakeholders, putting the power of these powerful mathematical

tools into the hands of those who need their answers most. The package allows users to easily

produce predicted abundance maps, explanatory variable diagnoses, conservation priority

area maps and area closure proposals, with little work or prior knowledge required. This can

facilitate and expedite fisheries managers’ jobs of conserving data-poor species using MPAs

that balance competing priorities with the full engagement of stakeholders.

The ability to run subfunctions separately and reload saved model objects allows users to

adjust and re-run sections of the analyses without having to re-run the whole BRT modelling

process. The ability to switch off most elements in the functions (e.g. producing maps, saving

data) means users can reduce analyses to the essentials they require. The default formatting,

plus customisation options, allow users to quickly generate high quality outputs from these

Gbm.auto: A software tool to simplify spatial modelling and Marine Protected Area planning

PLOS ONE | https://doi.org/10.1371/journal.pone.0188955 December 7, 2017 12 / 16

https://doi.org/10.1371/journal.pone.0188955


functions (gbm.map, gbm.cons, gbm.valuemap) for use in presentations and academic journals,

without the need for lengthy or repeated formatting. Together these options can save users

much time, accelerating the management process.

Here we have demonstrated the use of the gbm.auto package to map predicted abundances

for four Irish Sea ray species, predicated on environmental and human inputs, including map-

ping nursery area and spawning ground candidates with gbm.cons (see S1 File), and finally

resulting in MPA prediction maps under four scenarios with gbm.valuemap. These output

maps and their complementary variables plots can drive collaborative MPA siting discussions

with stakeholders and fisheries managers, leading to biologically-underpinned MPA proposals

that have the full buy-in of the impacted industry. Such discussions should also include the

range of diagnostic tools provided by gbm.auto in order to assess the strength and representa-

tiveness of the outputs, such as the RSB maps, coefficient of variation map, and model reports.

This software is generalizable to other fields, other areas of marine biology most intuitively,

but conceptually any spatially distributed abundance data one wishes to predictively map

based on associated variables.

The main improvement scheduled for the gbm.auto package is to complete the design and

build of a JavaScript frontend that will incorporate the outputs of the gbm.auto package and

allow stakeholders to design their own closed areas, with displayed levels of species conserva-

tion dynamically changing as their designs evolve. This will allow stakeholders to propose

MPAs underpinned by their own preferences and harvest-rate fisheries science. They could do

this alone or collaboratively as a collective of fishermen, handled within the existing manage-

ment framework and leading to a scientist/manager/stakeholder discussion as normal. This

would increase stakeholder buy-in and allow the industry a greater degree of autonomy. In

addition, many processing speed increases, completion time estimates, argument auto-optimi-

sation, and similar performance improvements are planned.

The hope is that this software becomes established as the standard tool for scientists to con-

duct spatial predictions using BRTs in R. We intend to submit the package to the CRAN repos-

itory, and continue to develop and maintain it there and on GitHub, where collaborations are

fuelling its on-going development.

Conclusion

The novel tool we have built and showcase here greatly simplifies the process of predictively

mapping the distribution of species and their subsets using powerful machine-learning mathe-

matics, without the need for rich datasets. Socioeconomic costs and harvest-rate data are then

integrated into a closed-area generating decision support tool that allows (fisheries) scientists

and managers to fully involve stakeholders in the conservation processes. This tool facilitates

the use of powerful BRT mapping to assess and manage single species as well as multiple spe-

cies and subsets collectively, assisting practitioners and benefiting managers with a rich suite

of graphical outputs and statistical results. By making spatial BRT analysis more readily avail-

able to the ecological- and wider scientific community, we anticipate that adoption of this

approach will grow, improving the quality of spatial prediction analyses.

Supporting information

S1 File. A supplementary document explaining the running of the code in more detail, list-

ing the functions’ arguments and their usage, a guide to running the functions together

and separately, as well as additional results outputs, accompanies this manuscript.

(PDF)
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S2 File. A short document detailing the data sources and their processing techniques.

(PDF)

S3 File. R functions and packages used.

(PDF)
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Gerritsen, Elliott Hazen, Cóilı́n Minto, Jane Elith and Greg Ridgeway. We gratefully acknowl-

edge the critical comments of the reviewers, which helped to improve the present paper.

Author Contributions

Conceptualization: Simon Dedman, Rick Officer, Maurice Clarke, David G. Reid, Deirdre

Brophy.

Data curation: Simon Dedman.

Formal analysis: Simon Dedman.

Funding acquisition: Simon Dedman, Rick Officer, Maurice Clarke, David G. Reid, Deirdre

Brophy.

Investigation: Simon Dedman.

Methodology: Simon Dedman, Rick Officer, Maurice Clarke, David G. Reid, Deirdre Brophy.

Project administration: Simon Dedman, Rick Officer, David G. Reid, Deirdre Brophy.

Software: Simon Dedman.

Supervision: Rick Officer, Maurice Clarke, David G. Reid, Deirdre Brophy.

Validation: Simon Dedman, Rick Officer, Deirdre Brophy.

Visualization: Simon Dedman.

Writing – original draft: Simon Dedman.

Writing – review & editing: Simon Dedman, Rick Officer, David G. Reid, Deirdre Brophy.

References
1. Walsh JC (2015) An inventory of the barriers and solutions to bridging the conservation research-prac-

tice divide. Barriers and solutions to implementing evidence-based conservation. Cambridge, UK.

2. ICES WKLIFE (2012) ICES’ Implementation of RGLIFE advice on Data Limited Stocks (DLS) DRAFT.

3. CBD (2012) Aichi biodiversity targets. http://www.cbd.int/sp/targets/. Accessed 3–5 2016.

4. ICES WGEF (2012) Report of the Working Group on Elasmobranch Fishes (WGEF). Lisbon, Portugal:

ICES CM.

5. Speed CW, Field IC, Meekan MG, Bradshaw C (2010) Complexities of coastal shark movements and

their implications for management. Marine Ecology Progress Series 408: 275–293.

6. Ellis JR, Clarke MW, Cortés E, Heessen HJ, Apostolaki P, et al. (2008) Management of elasmobranch

fisheries in the North Atlantic. Advances in Fisheries Science 50: 184–228.

7. Dedman S, Officer R, Brophy D, Clarke MW, Reid DG (2015) Modelling abundance hotspots for data-

poor Irish Sea rays. Ecological Modelling 312: 77–90. https://doi.org/10.1016/j.ecolmodel.2015.05.010

8. Fulton EA, Bax NJ, Bustamante RH, Dambacher JM, Dichmont C, et al. (2015) Modelling marine pro-

tected areas: insights and hurdles. Philosophical Transactions of the Royal Society B: Biological Sci-

ences 370: 20140278.

Gbm.auto: A software tool to simplify spatial modelling and Marine Protected Area planning

PLOS ONE | https://doi.org/10.1371/journal.pone.0188955 December 7, 2017 14 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0188955.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0188955.s003
http://www.cbd.int/sp/targets/
https://doi.org/10.1016/j.ecolmodel.2015.05.010
https://doi.org/10.1371/journal.pone.0188955


9. Rassweiler A, Costello C, Siegel DA (2012) Marine protected areas and the value of spatially optimized

fishery management. Proc Natl Acad Sci USA 109: 11884–11889. https://doi.org/10.1073/pnas.

1116193109 PMID: 22753469

10. Klein CJ, Steinback C, Watts M, Scholz AJ, Possingham HP (2009) Spatial marine zoning for fisheries

and conservation. Frontiers in Ecology and the Environment 8: 349–353. https://doi.org/10.1890/

090047

11. Warton DI, Foster SD, De’ath G, Stoklosa J, Dunstan PK (2015) Model-based thinking for community

ecology. Plant Ecology 216: 669–682.

12. Ellis JR, Silva JF, McCully SR, Evans M, Catchpole T (2010) UK fisheries for skates (Rajidae): History

and development of the fishery, recent management actions and survivorship of discards. ICES.

13. Delavenne J, Metcalfe K, Smith RJ, Vaz S, Martin CS, et al. (2011) Systematic conservation planning in

the eastern English Channel: comparing the Marxan and Zonation decision-support tools. ICES Journal

of Marine Science: fsr180.

14. Kelleher G (1999) Guidelines for Marine Protected Areas. Cambridge, UK: IUCN.

15. Sale PF, Cowen RK, Danilowicz BS, Jones GP, Kritzer JP, et al. (2005) Critical science gaps impede

use of no-take fishery reserves. Trends in Ecology & Evolution 20: 74–80.

16. Agardy T, Di Sciara GN, Christie P (2011) Mind the gap: Addressing the shortcomings of marine pro-

tected areas through large scale marine spatial planning. Marine Policy 35: 226–232.

17. Halpern BS, Warner RR (2003) Matching marine reserve design to reserve objectives. Proceedings of

the Royal Society B: Biological Sciences 270: 1871–1878. https://doi.org/10.1098/rspb.2003.2405

PMID: 14561299

18. Vincent MA, Atkins SM, Lumb CM, Golding N, Lieberknecht LM, et al. (2004) Marine nature conserva-

tion and sustainable development—the Irish Sea Pilot. Peterborough, UK.

19. Loos SA (2006) Exploration of MARXAN for utility in Marine Protected Area zoning [Masters Thesis].

BC, Canada: University of Victoria.

20. Elith J, Graham CH, Anderson RP, Dudı́k M, Ferrier S, et al. (2006) Novel methods improve prediction

of species’ distributions from occurrence data. Ecography 29: 129–151. https://doi.org/10.1111/j.2006.

0906-7590.04596.x

21. Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, et al. (2013) Collinearity: a review of methods to

deal with it and a simulation study evaluating their performance. Ecography 36: 27–46. https://doi.org/

10.1111/j.1600-0587.2012.07348.x

22. Hastie T, Tibshirani R, Friedman J (2009) The Elements of Statistical Learning: Data Mining, Inference,

and Prediction. Second. Springer.

23. Abeare SM (2009) Comparisons of boosted regression tree, GLM and GAM performance in the stan-

dardization of yellowfin tuna catch-rate data from the Gulf of Mexico longline fishery [Ph.D Thesis]. Gau-

teng, South Africa: University of Pretoria.

24. Froeschke JT, Froeschke BF (2011) Spatio-temporal predictive model based on environmental factors

for juvenile spotted seatrout in Texas estuaries using boosted regression trees. Fisheries Research

111: 131–138.

25. Froeschke J, Drymon M (2013) Atlantic Sharpnose Shark: Standardized index of relative abundance

using boosted regression trees and generalized linear models. SEDAR34-WP-12 SEDAR, North

Charleston, SC 31 pp.

26. Dedman S, Officer R, Brophy D, Clarke M, Reid DG (2017) Advanced Spatial Modeling to Inform Man-

agement of Data-Poor Juvenile and Adult Female Rays. Fishes 2: 12. https://doi.org/10.3390/

fishes2030012

27. Babcock R, Shears N, Alcala A, Barrett N, Edgar G, et al. (2010) Decadal trends in marine reserves

reveal differential rates of change in direct and indirect effects. Proceedings of the National Academy of

Sciences 107: 18256–18261.

28. Barrett NS, Edgar GJ, Buxton CD, Haddon M (2007) Changes in fish assemblages following 10 years of

protection in Tasmanian marine protected areas. Journal of Experimental Marine Biology and Ecology

345: 141–157.

29. Dedman S, Officer R, Brophy D, Clarke MW, Reid DG (2016) Towards a flexible Decision Support Tool

for MSY-based Marine Protected Area design for skates and rays. ICES Journal of Marine Science:

fsw147. https://doi.org/10.1093/icesjms/fsw147

30. R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statis-

tical Computing, v3.4.1. www.R-project.org. Accessed 1–8 2017.

31. Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. Journal of Animal

Ecology 77: 802–813. https://doi.org/10.1111/j.1365-2656.2008.01390.x PMID: 18397250

Gbm.auto: A software tool to simplify spatial modelling and Marine Protected Area planning

PLOS ONE | https://doi.org/10.1371/journal.pone.0188955 December 7, 2017 15 / 16

https://doi.org/10.1073/pnas.1116193109
https://doi.org/10.1073/pnas.1116193109
http://www.ncbi.nlm.nih.gov/pubmed/22753469
https://doi.org/10.1890/090047
https://doi.org/10.1890/090047
https://doi.org/10.1098/rspb.2003.2405
http://www.ncbi.nlm.nih.gov/pubmed/14561299
https://doi.org/10.1111/j.2006.0906-7590.04596.x
https://doi.org/10.1111/j.2006.0906-7590.04596.x
https://doi.org/10.1111/j.1600-0587.2012.07348.x
https://doi.org/10.1111/j.1600-0587.2012.07348.x
https://doi.org/10.3390/fishes2030012
https://doi.org/10.3390/fishes2030012
https://doi.org/10.1093/icesjms/fsw147
http://www.R-project.org
https://doi.org/10.1111/j.1365-2656.2008.01390.x
http://www.ncbi.nlm.nih.gov/pubmed/18397250
https://doi.org/10.1371/journal.pone.0188955


32. Ridgeway G (2006) Generalized Boosted Models: A guide to the gbm package. R-project.org 1: 1–12.

33. Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees, Supplementary

Material 1 & 2. Journal of Animal Ecology 77: 802–813.

34. Sale PF (2008) Management of coral reefs: Where we have gone wrong and what we can do about it.

Marine Pollution Bulletin 56: 805–809. https://doi.org/10.1016/j.marpolbul.2008.04.009 PMID:

18456286

35. Teh LCL, Teh LSL, Pitcher TJ (2012) A tool for site prioritisation of marine protected areas under data

poor conditions. Marine Policy 36: 1290–1300.

36. Edgar GJ, Stuart-Smith RD, Willis TJ, Kininmonth S, Baker SC, et al. (2014) Global conservation out-

comes depend on marine protected areas with five key features. Nature 506: 216–228. https://doi.org/

10.1038/nature13022 PMID: 24499817

37. ICES WGEF (2012) ICES advice: Rays and skates in Subarea VI and Divisions VIIa–c, e–j (Celtic Sea

and west of Scotland).

38. Johnston G, Tetard A, Santos AR, Kelly E, Clarke MW (2014) Spawning and nursery areas of selected

rays and skate species in the Celtic Seas. Marine Institute, Oranmore.

39. Katsanevakis S, Stelzenmüller V, South A, Sørensen TK, Jones PJ, et al. (2011) Ecosystem-based

marine spatial management: review of concepts, policies, tools, and critical issues. Ocean & Coastal

Management 54: 807–820.

40. Game ET, Kareiva P, Possingham HP (2013) Six common mistakes in conservation priority setting.

Conservation Biology 27: 480–485. https://doi.org/10.1111/cobi.12051 PMID: 23565990

41. Klein CJ, Tulloch VJ, Halpern BS, Selkoe KA, Watts ME, et al. (2013) Tradeoffs in marine reserve

design: habitat condition, representation, and socioeconomic costs. Conservation Letters 6: 324–332.

42. Christie P (2004) Marine protected areas as biological successes and social failures in Southeast Asia.

American Fisheries Society Symposium. Vol. 42. pp. 155–164.

43. Kendall MS, Eschelbach KA, McFall G, Sullivan J, Bauer L (2008) MPA design using sliding windows:

Case study designating a research area. Ocean & Coastal Management 51: 815–825.

44. Young JC, Jordan A, Searle KR, Butler A, Chapman DS, et al. (2013) Does stakeholder involvement

really benefit biodiversity conservation? Biological Conservation 158: 359–370.

45. Stortini CH, Shackell NL, O’Dor RK (2015) A decision-support tool to facilitate discussion of no-take

boundaries for Marine Protected Areas during stakeholder consultation processes. Journal for Nature

Conservation 23: 45–52. http://dx.doi.org/10.1016/j.jnc.2014.07.004.

46. Derous S, Agardy T, Hillewaert H, Hostens K, Jamieson G, et al. (2007) A concept for biological valua-

tion in the marine environment. Oceanologia 49.

47. IUCN (2015) IUCN Red List category summary for all classes and orders 19/11/2015. http://cmsdocs.

s3.amazonaws.com/summarystats/2015-4_Summary_Stats_Page_Documents/2015_4_RL_Stats_

Table_4a.pdf. Accessed 19–2 2016.

48. Walsh JC, Watson JE, Bottrill MC, Joseph LN, Possingham HP (2013) Trends and biases in the listing

and recovery planning for threatened species: an Australian case study. Oryx 47: 134–143.

49. Musick JA, Bonfil R (2005) Management techniques for elasmobranch fisheries. Food & Agriculture

Organisation.

50. Musick J, Burgess G, Cailliet G, Camhi M, Fordham S (2000) Management of sharks and their relatives

(Elasmobranchii). Fisheries 25: 9–13.

51. Duan N (1983) Smearing estimate: a nonparametric retransformation method. Journal of the American

Statistical Association 78: 605–610.

52. Suuronen P, Jounela P, Tschernij V (2010) Fishermen responses on marine protected areas in the Bal-

tic cod fishery. Marine Policy 34: 237–243.

Gbm.auto: A software tool to simplify spatial modelling and Marine Protected Area planning

PLOS ONE | https://doi.org/10.1371/journal.pone.0188955 December 7, 2017 16 / 16

https://doi.org/10.1016/j.marpolbul.2008.04.009
http://www.ncbi.nlm.nih.gov/pubmed/18456286
https://doi.org/10.1038/nature13022
https://doi.org/10.1038/nature13022
http://www.ncbi.nlm.nih.gov/pubmed/24499817
https://doi.org/10.1111/cobi.12051
http://www.ncbi.nlm.nih.gov/pubmed/23565990
http://dx.doi.org/10.1016/j.jnc.2014.07.004
http://cmsdocs.s3.amazonaws.com/summarystats/2015-4_Summary_Stats_Page_Documents/2015_4_RL_Stats_Table_4a.pdf
http://cmsdocs.s3.amazonaws.com/summarystats/2015-4_Summary_Stats_Page_Documents/2015_4_RL_Stats_Table_4a.pdf
http://cmsdocs.s3.amazonaws.com/summarystats/2015-4_Summary_Stats_Page_Documents/2015_4_RL_Stats_Table_4a.pdf
https://doi.org/10.1371/journal.pone.0188955

