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ABSTRACT: In the context of Pharma 4.0, pharmaceutical quality
control (PQC) is beset by issues such as uncertainties from ever-
changing critical material attributes and strong coupling between
variables in the multi-unit pharmaceutical tablet manufacturing
process (PTMP), and how to timely adjust the operational
variables to deal with such challenges has become a key problem in
PQC. In this study, we propose a novel data-knowledge-driven
modeling and operational adjustment framework for PTMP by
integrating Bayesian network (BN) and case-based reasoning
(CBR). At the modeling level, first, a distributed concept is
introduced, i.e., the BN model for each subunit of PTMP is
established in accordance with the operation process sequence, and the transition variables are given by the BN model established
first and retrieved as the new query for the next unit. Once the BN models of all subunits are built, they are integrated into a global
BN model. At the operational adjustment level, by taking the expected critical quality attributes (CQAs) and related prior
information as evidence, the operational adjustment is achieved through global BN reasoning. Finally, the case study in a sprayed
fluidized-bed granulation-based PTMP demonstrates the feasibility and effectiveness in improving the terminal CQAs of the
proposed method, which is also compared with other methods to showcase its efficacy and merits.

1. INTRODUCTION
Drugs are special commodities used to cure diseases and save
lives, and their quality is of vital importance to people’s well-
being. Pharmaceutical manufacturing is therefore an area
consisting of strict regulation and precise quality control of
drug products.1 However, owing to the potential variations or
disturbance in the incoming raw materials, equipment
conditions, or environmental factors, the departures of critical
quality attributes (CQAs) of drugs from their acceptable
scopes may be generated. In the context of Pharma 4.0,2 in
particular, the increasingly strong trend of and demand for
drug customization lead to complex uncertainties manifesting
as frequently changing critical material attributes (CMAs),
which make it extremely challenging for traditional “experience
+ experiment”- or model-based pharmaceutical quality control
(PQC) methods to successfully reduce costs and improve
efficiency during pharmaceutical development.1,3 Therefore, in
response to the possible variations or disturbances, the
automatic and optimal adjustment for operational variables
would be urgently necessary to bring the CQA variables back
to the established acceptance criteria while improving resource
allocation efficiency.

Researchers have directed many efforts toward proposing
precise and efficient PQC approaches for operational adjust-

ment in order to ensure the drug quality. The related
methodologies can roughly be divided into two categories of
model-based control (MBC) and model-free control (MFC)
depending on whether predictive models are used. As a typical
representative of MBC, model predictive control (MPC) has
found broad application in PQC studies for various
pharmaceutical process units,4 such as crystallization,5

blending,6,7 hot-melt extrusion,8,9 continuous tableting,10−12

etc. However, such studies generally rely on process
mechanism models, and the real-time decision making are
seriously hampered by whose modeling complexities and
analytical solutions. Therefore, researchers tend to use data-
driven models instead of mechanism models for MPC-based
PQC, with related works including application studies in
crystallization,13 and tableting processes.14,15 In contrast, MFC
is a kind of heuristic and model-free control methodology
based on process analysis and measurement technologies, and
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the related studies in PQC mainly focus on the applications of
data-driven feedback control in granulation and tableting
processes, such as the proportional−integral−derivative (PID)
control16 and data-driven iterative learning control (ILC).1

Nevertheless, due to the rising costs and falling efficiency
resulting from the large number of fragmented, inefficient, and
repetitive experiments, the infeasibility of MBC has been
asserted in the PQC tasks facing the challenge of ever-changing
CMAs.1 Although MFC methods, in which the controller is
designed directly using the measured input−output (I/O) data
instead of explicit information from models, can alleviate this
problem to a certain extent, it is a pity that such approaches
simultaneously ignore some visible or latent knowledge
captured in material streams, process mechanisms, and
topological structures. This knowledge contains much addi-
tional information that precedes and is independent of data
and meanwhile objectively reflects some of the laws and trends
governing pharmaceutical process operations, which can
greatly contribute to making up for any insufficiencies in the
information provided by process data. Therefore, it is critically
necessary to break through the traditional PQC modes and
design more powerful PQC strategies by integrating data and
knowledge from diverse sources, thus effectively solving the
above PQC problems.

In recent years, data-knowledge-driven approaches have
attracted increasing attention and interest in academia and
have achieved the broad applications in solving various
engineering problems such as system modeling and control,
process monitoring, fault diagnosis, and so on.17−23 Specifi-
cally, as an important artificial intelligence (AI) technique, the
Bayesian network (BN) is a type of probabilistic graphical
model that is capable of effectively integrating data and
knowledge to simulate human reasoning. It represents the
causal relations of variables by a directed acyclic graph, and so
it has better interpretability than other AI methods.24,25 Owing
to the advantages in interpretability, probabilistic modeling,
and dealing with data uncertainties, BNs have been widely
applied to a variety of industrial systems and processes in
different areas to successfully solve problems such as process
monitoring, fault diagnosis, prognosis, risk assessment, decision
making, etc.26,27,30 However, the BN-based PQC studies in the
pharmaceutical field are rarely reported. Because of its
significant advantages and application potential, we attempt
to utilize BN for PQC (or operational adjustment) tasks for
the first time.

As far as our research background is concerned, although
BN is showing great industrial application values, it still faces
great challenges if ever-changing CMAs, strong coupling
between variables and high nonlinearities exist. Additionally,
the traditional discrete BN modeling has low adaptability to
the frequently changing working conditions, and its network
performance is also greatly affected by discretization.30

Fortunately, as another important AI technique representing
the knowledge in form of a case, case-based reasoning (CBR)
is an empirical and knowledge-based reasoning method that
draws on human thinking to deal with uncertain problems and
is becoming widely popular for implementing the intelligence
in various engineering areas.30,31 CBR can make use of its idea
of selecting similar (even the same) cases to cope with the
frequently changing working conditions and provide targeted
solutions. In view of the excellent combined performance of
CBR and BN, as well as its sound application effects, the
integration of BN and CBR has attracted increasing attentions

and interests from lots of experts and scholars in various
areas.30−35 Nevertheless, none of the existing literature
considers the integration of BN and CBR to study the
operational adjustment for the PQC problem of pharmaceut-
ical manufacturing processes.

Inspired by the advantages of integrated strategies, the
motivation for this article is to introduce the idea of data-
knowledge-driven approaches into PQC and present a
modeling and operational adjustment framework by integrating
BN and CBR based on two phases: distributed BN modeling
and global operational adjustment. To demonstrate the
preliminary implementation of above framework, a case
study in a sprayed fluidized-bed granulation (SFBG)-based
pharmaceutical tablet manufacturing process (PTMP) is
presented, and the feasibility and effectiveness of the proposed
framework are verified through a data experimental study. The
main contributions of this case study are three-fold:
(1) A CBR-based data selection approach is proposed to

pick similar cases out from database to construct the
local incremental datasets used for dynamically training
local BNs for different CMAs. In this way, the features of
ever-changing CMAs can be substantially reflected by
their similar cases and will further be learned by local
BNs, thus effectively adapting to the variations from
CMAs and offsetting their influences.

(2) To overcome the strong coupling between variables that
seriously affects the modeling and control effects, SFBG
and tableting processes are separated for distributed BN
modeling, in which the process knowledge is used to
preconfigure BN structures and the constructed local
incremental datasets are responsible for the identifica-
tion of BN parameters.

(3) According to the inheritance relationship between SFBG
and tableting, the developed BN models for two units
are integrated into a global BN, based on which the
adjustment suggestions for each subunit’s operational
variables can be deduced by feeding the evidences to
global BN, such as new CMAs, desired CQAs, and initial
operational variables.

The rest of this article is organized as follows. Section 2
introduces the problem description and the preliminaries.
Section 3 proposes a data-knowledge-driven modeling and
operational adjustment framework for SFBG-based PTMP. In
Section 4, a data experimental study is explored to demonstrate
the feasibility and effectiveness of proposed framework. Finally,
Section 5 concludes this article.

2. PROBLEM DESCRIPTION AND PRELIMINARIES
2.1. Problem Description. The most typical and common

PTMP via wet granulation involves several successive units,37

as is shown in Figure 1. Among the various types of wet
granulation, SFBG is superior to others due to its inherent
advantages of integrating blending, granulation and drying for
granules in a single unit, which helps to improve material flows
and densification, strengthen dust containment, and facilitate
to achieve homogenous mixtures,36 and thus SFBG is widely
used in the pharmaceutical industry. For more details about
the process description please refer to ref 37.

The CQAs are the target variables to represent drug quality
and ensure the safety of medication for patients. The key
factors affecting CQAs are CMAs and operating variables. In
an SFBG-based PTMP, CMAs, operational variables, CQAs of
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tablets and their relationships are shown in Figure 2, in which
their symbolic definitions are also given for ease of expression.

Note that as the CQAs of SFBG, average particle size (APS)
and moisture content are also the CMAs of tableting, which
relate SFBG and tableting by acting as the transition variables.
The SFBG-based PTMP is briefly described as a general
repeatable nonlinear system as follows:

= fT M O( , )k s k s k, (1)

= fQ T O( , )k t k t k, (2)

where k ∈ Z+ is the iteration number, fs( · ) and f t( · ) are the
unknown nonlinear functions.

The operational adjustment aims to adjust Os, k and Ot, k so
that CQAs follow a desired range of [Qd − δ, Qd + δ], even
when internal or external variations (or disturbances) occur,
such as the changing CMAs. Here, Qd is the median vector of
desired range and is also the CQAs most expected to be
achieved. The process is assumed as currently operating under
an initial working condition of CMAs, i.e., Mini, with its
operational variables defined as Os, ini and Ot, ini. When a new

working condition (Mnew) comes, the operational adjustment
should be activated to respond to such variations and give the
operational adjustment values of Os, adj and Ot, adj, thus
ensuring the conformity of drug quality. After compensation,
the desired operational variables giving qualified CQAs under
Mnew can be obtained as follows:

= +O O Os d s ini s adj, , , (3)

= +O O Ot d t ini t adj, , , (4)

2.2. Preliminaries. A BN is a type of acyclic graphical
model that is widely utilized in the field of uncertain
knowledge expression and reasoning. It is composed of
variables, causal relationships between these variables, and
the associated transfer probabilities. For a BN comprising n
variables or nodes, its universal mathematical representation
can be expressed as38

= |
=

P X X X P X Pa( , , ..., ) ( )n
i

n

i i1 2
1 (5)

where P(X1, X2, ..., Xn) is the joint probability distribution of a
BN andP(Xi | Pai) is the conditional probability distribution of
Xi conditioned on its parent nodes denoted as Pai.

Based on the data types of node variables, BN can be
classified into discrete, continuous and hybrid BNs. In pursuit
of more precise drug quality indexes, all the node variables are
continuous types, which allows the BN model to be regarded
as a continuous BN, or, namely, a Gaussian BN.30 In this case,
the conditional probability distribution of each continuous
node with respect to its continuous parent nodes can be
defined as follows:39

| = + + ···+P X Pa N x( ) ( x , )i i i n n i0 1 1( ) ( )
2

(6)

where Pai = {X1(i), X2(i), ..., Xn(i)} is the set of parents of node
Xi, x1(i), x2(i), ..., xn(i) are the values of X1(i), X2(i), ..., Xn(i), ε0 is
the independent coefficient, ε1, ..., εn are the coefficients
assigned to each parent, and σ2 is the variance of Xi.

In BN modeling, there exist two fundamental components:
the structure learning and parameter learning. There are three
primary methods for constructing a BN model: utilizing expert
knowledge, utilizing data, or a combination of both. Since a
large amount of knowledge, such as process mechanism,
potential relationship between subunits, and coupling relation-
ship between variables, is contained in PTMP, this paper uses
process knowledge to acquire BN structure. After the structure
is established, parameter learning for each BN node should be
considered immediately in the next step, which is carried out in
a data-driven way. Given the sufficient and complete historical
data available in this paper, we choose to employ the maximum
likelihood estimation (MLE) algorithm to estimate BN
parameters, and the objective function can be defined as
follows:28

= |
=

J LL Pa D( ) ( ; )
i

n

i X i
1

i
(7)

where Θ represents the parameter of BN, θXdi
∈ Θ is the

conditional probability distribution associated with Xi , LLi(θXdi

| Pai; D) is the logarithm of the likelihood function, Li(θXdi
| Pai;

D) is the likelihood function with respect to the parent node

Figure 1. Schematic diagram of typical PTMP via wet granulation.

Figure 2. Diagram of variable relationships in the SFBG-based PTMP.
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set Pai and parameters θXdi
, D is the observed data points {xi, k},

where k denotes the node index, namely, training data.
CBR is an analogical reasoning method that extracts the

solutions of previous cases to cope with the problems in new
cases. For multi-unit processes such as SFBG-based PTMP,
their historical operation information can be directly called by
CBR, making the solution implementation process relatively
simple and easy to implement in the real industrial scenarios.
On this basis, this paper further introduces CBR as a
supplement to solve the problem of inaccurate BN modeling
in SFBG-based PTMP facing ever-changing CMAs. Please
refer to refs 30 and 32 for more details about solving a new
problem by CBR.

3. DATA-KNOWLEDGE-DRIVEN MODELING AND
OPERATIONAL ADJUSTMENT FRAMEWORK FOR
SFBG-BASED PTMP

Here, a data-knowledge-driven modeling and operational
adjustment framework for dealing with SFBG-based PTMP
is presented by integrating BN and CBR, as illustrated in
Figure 3, which broadly divided into two key components: (1)
distributed BN modeling and (2) global operational adjust-
ment. As previously mentioned, SFBG and tableting processes
are strongly coupled and highly nonlinear after integration. So,
to reduce the caused modeling complexity, a distributed BN
modeling idea is adopted. Concretely, SFBG and tableting
processes are modeled separately, and the models are finally
fused together for global operational adjustment.
3.1. Database Formulation. As the pharmaceutical

manufacturing process proceeds and is accompanied by
PQC, historical data under different CMAs (M#1, M#2, ···,
M#n) will be accumulated. A database is assumed to have been
established and to include a certain amount of historical data,
whose schematic structure is illustrated in Figure 4. Based on
whether CQAs fall within the desired range of [Qd − δ, Qd +
δ], there are two types of data in the database: one is called

successful data (see the blue block data in Figure 4), that is, the
operational variables after adjustment result in well qualified
CQAs (Q ∈ [Qd − δ, Qd + δ]) under specific CMAs M#1, ···,
M#n; the other is unsuccessful, that is, the CQAs are still
unqualified after operational adjustment, as is represented by
the gray block in Figure 4. These two types of data are chosen
to be half of each for balance. That is, the data needed to train
BN comes in pairs, and they impart implicit experience from
operational failure to success to the BN. Therefore, these two
types of data form the basis for proposing effective operational
adjustment schemes. Finally, the database will also be
dynamically updated when a complete piece of data under
Mnew is acquired.
3.2. BN Modeling for SFBG-Based PTMP. Here, the BN

modeling for SFBG-based PTMP is given based on the
following several steps.

3.2.1. Step 1: Data Standardization. When Mnew comes,
standardize Mnew and M#i to Vnew and Vi , respectively,

Figure 3. Schematic diagram of data-knowledge-driven modeling and operational adjustment framework.

Figure 4. Schematic structure of the database.
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according to the mean vector μM and standard deviation vector
σM of M#i in the database:

=V
M

new
new M

M (8)

= #V
M

i
i M

M (9)

where i = 1,2, ···, n.
3.2.2. Step 2: Training Data Generation for BN of SFBG.

Access the database and calculate the similarity Js, i between
Vnew and Vi using the following similarity index to select the
similar cases regarding Mnew:

=d V V V V( , )new i new i (10)

=V V
V V

V V
cos ,new i

new
T

i

new i2 2 (11)

= +J e V V(1 )max(cos , , 0)s i
d

new i
V V

,
( , )new i

2

(12)

where ζ > 0 a is a weight factor.
All the selected case data pairs are stored in a temporary

local dataset D1
s . Now, the desired CQAs Qd ∈ [Qd − δ, Qd +

δ] are given, according to which each pair of case data C1
l in

D1
scontains two aspects of operation: one is the initial

operation Os, ini
l giving unqualified CQAs and another is the

satisfied operation Os, d
l generating qualified CQAs after

adjustment, that is,

= { }C M O O T, , ,l l
s ini
l

s d
l

q
l

1 , , (13)

where l = 1,2, ···, N, N is the number of case data pairs in
D1

sand Tq
l is the CQAs of SFBG.

The operational adjustment values Os, adj
l can be obtained as

follows:

=O O Os adj s d
l

s ini
l

, , , (14)

and then a training dataset comprising incremental data is
formulated as:

= { }D M O O T, , ,Trn s
l

s ini
l

s adj
l

q
l

, , , (15)

where Ml and Tq
l are the original data from D1

s .
Remark 1: Js, i is the similarity between two cases, which is

used to screen out a batch of data similar to the new case for
modeling. In general, the more variables involved in a BN, the
greater the number of similar samples required for accurate
model establishment. The larger the value of Js, i, the higher the

similarity of the selected cases, but the number of similar cases
will decrease, which is not enough to support BN modeling; in
the contrary, if Js, i is too small, although more similar data can
be retrieved, the similarity of the cases will decrease, resulting
in an inaccurate BN model. The two similarity judgment
methods based on angle and Euclidean distance are linked by
the weight factor ζ ∈ [0,1]. When ζ = 1, (12) is completely
transformed into a similarity calculation method based on
Euclidean distance; when ζ = 0, (12) becomes a similarity
calculation method based on angle. Generally, when ζ = 0.5,
(12) is suitable for most similarity calculation scenarios,
providing the advantages of both Euclidean distance-based and
angle-based methods.

3.2.3. Step 3: BN Modeling for SFBG. According to the
definition of BN, its modeling usually encompasses two
learning elements: structure learning and parameter learning.
In the field of industrial processes, the structure of BN can be
presupposed as a priori by process knowledge. In the case of
CMAs or process parameters changing, the operational
variables must be promptly adjusted to direct unqualified
CQAs caused by changing working conditions toward a
qualified level (for SFBG, the CQAs here are what we call the
transition variables). To this end, an essential BN structure
that incorporates these key variables is critical. This paper
presents a three-layer BN structure, as illustrated in Figure 5a.
The top layer represents CMAs and initial states of operational
variables, the middle layer represents adjustment values of
operational variables, and the bottom layer represents adjusted
CQAs of SFBG. The nodes in such BN structure correspond
to four variables in the training dataset in (15). To achieve
more precise control over the terminal output of entire
process, this work adopts a BN model where all nodes are
continuous variables. With the BN structure predetermined,
the BN parameters of SFBG are identified based on the
training dataset DTrn, s generated in Step 2 through MLE
algorithm.

3.2.4. Step 4: Construction of Transition Case. The SFBG-
based PTMP is naturally composed of two units, SFBG and
tableting, which are modeled separately. To connect their BN
models, it is crucial to pay attention to the coupling variables
between subunits and use them to construct a transition case
to link two units with an inheritance relationship. Here, we
have learned that the CQAs of SFBG are the transition
variables, which are transferred to the tableting process as the
CMAs. We define Tnew as the transition case when new CMAs
of SFBG is given by Mnew, and its estimated value T̂new is
obtained through BN reasoning, as illustrated in Figure 5b. To
be more specific, the given Mnew and a priori operation Os, ini

priori

Figure 5. Schematic diagram of BN modeling for SFBG-based PTMP.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c02199
ACS Omega 2023, 8, 24441−24453

24445

https://pubs.acs.org/doi/10.1021/acsomega.3c02199?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c02199?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c02199?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c02199?fig=fig5&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c02199?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


are first fed into BN of SFBG as evidences for reasoning to
obtain T̂new, where Os, ini

priori is the priori initial operations. Then,
T̂new is regarded as a new query case for BN modeling of
tableting, and the role of T̂new in BN modeling for tableting is
the same as that of Mnew in the BN modeling for SFBG.

3.2.5. Step 5: BN Modeling for Tableting. After estimating,
T̂new is used as a query case for BN modeling of tableting. By
emulating steps 1 and 2, the CBR-based methodology is
employed to selectively extract a specified quantity of similar
cases from the database to construct another temporary local
dataset D2

scontaining the following cases:

= { }C T O O Q, , ,l l
t ini
l

t d
l

q
l

2 , , (16)

based on which a BN training dataset is built as below:

= { }D T O O Q, , ,Trn t
l

t ini
l

t adj
l

q
l

, , , (17)

where Ot, adj
l = Ot, d

l − Ot, ini
l . Finally, the BN model of tableting

is also developed by repeating step 3 with DTrn, t, as is shown in
Figure 5c,d.

Remark 2: During the distributed BN modeling process,
SFBG is subjected to the same modeling approach as that of
tableting. However, there exists a precedence constraint in the
modeling order, which is implied in Figure 2. In the modeling
for SFBG, Tl is the CQAs of SFBG and also the CMAs needed
to be retrieved in tableting, so Tl is named as the transition
variable. If there are remaining units after the tableting, the
CQAs of the tableting, namely, Qq

l , are still taken as the CMAs
to be queried in the next unit. Figure 5 shows the cohesion of
BN with two units as an example, and if there are more units,
they can be connected in an orderly manner in that way.
3.3. Global Operational Adjustment Based on

Distributed Model Fusion. After developing the distributed
BN models for two units, they are further fused together for
global operational adjustment, as is shown in Figure 3. The
global BN incorporates two distributed models into its
framework through the transition variables. Following the
establishment of global BN, it is imperative to augment the
pertinent evidence of each subunit in order to culminate in a
comprehensive global reasoning of BN. In the SFBG layer,

Mnew and Os, ini
priori are fed into the corresponding nodes as

evidences, and Tnew is estimated as a data bridge between two
units. For tableting, the evidence nodes are Ot, ini and Q, which
are fed into Ot, ini

priori and Qd, respectively. After the reasoning
with a junction tree algorithm,29,40 the operational adjustment
values are given as Os, adj and Ot, adj, and the final desired
operational variables can be obtained as follows:

= +O O Os d s ini
priori

s adj, , , (18)

= +O O Ot d t ini
priori

t adj, , , (19)

Remark 3: The method of selecting similar case data based
on similarity criterions for local BN modeling can be referred
to as just in time (JIT) learning, also known as lazy learning,
employing global modeling techniques for localized domains.
The prediction process of JIT can be executed in three stages:
(1) selection of similar cases from a historical database to
construct a dataset of comparable instances, based on a
similarity criterion; (2) utilization of the constructed dataset to
develop a localized model for the process; and (3) application
of the localized model for prediction under new conditions,
subsequently discarding the current localized model.

Remark 4: The steps for distributed BN modeling and global
operational adjustment in Section 3.2 and Section 3.3 only
target the adjustment suggestions for a single Mnew. For SFBG-
based PTMP with ever-changing CMAs, whenever another
new CMA, i.e., Mnew′ , is encountered, the proposed framework
initiates a fresh round of distributed BN modeling and global
operational adjustment, dynamically generating the distinct
local (or global) BN models completely independent of Mnew.
Therefore, in addition to the distributed characteristics,
another of BN modeling is the dynamic characteristics with
the change of CMAs.

4. DATA EXPERIMENTAL STUDY: RESULTS AND
DISCUSSIONS

In this section, a data experimental study is performed to verify
the effectiveness of the proposed framework in the decision-
making of operational adjustment for SFBG-based PTMP. The

Figure 6. BN structures of SFBG-based PTMP.
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historical data used for verification are generated from previous
research on PQC problems through mechanistic models that
have been shown to effectively simulate real processes. These
models have already been summarized in our previous work in
ref 37, and they will not be covered here. The BN modeling
process is coded using the BN toolbox within Matlab 2016b,
which can be downloaded from https://github.com/bayesnet/
bnt.

The data experimental study is carried out from three levels:
(1) historical data are used to build a case base. Part of the data
is used as training samples to train BN model, while the other
part is used as test samples to verify the effectiveness of BN.
(2) The proposed method is compared with other methods to
showcase the superiority. (3) A PQC running test is
implemented to further illustrate the feasibility of BN modeling
and global operational adjustment.
4.1. Performance Evaluation of Proposed Method on

Test Samples. First, a total of 1200 adjusted operating
samples, namely, historical data, are collected from a previous
work as mentioned before, which contains the historical cases
where the terminal CQAs conformed to the requirements after
operational adjustments. Then, 1200 samples are divided into
six partitions randomly, with one partition serving as the test
set (200 samples) and the remaining five partitions serving as
the case base (1000 samples). It should be additionally noted
that the training set of the BN model is a set of cases that meet

a certain degree of similarity filtered online by CBR from the
aforementioned case base. To avoid the established BN model
performing exceptionally well on a particular test set when
comparing with other methods and to further verify the
proposed method is statistically superior to other methods and
not by chance, we conducted 10 repeated experiments where
each experiment involved randomly re-dividing 1200 samples
into the test set and the case base based on a certain
proportion. Due to the page limitation, only 2 of the 10
repeated experiments are selected for presentation. The test
samples in the two experiments are named test samples A and
test samples B, respectively. In this section, simulation
explanations will be made based on these two test samples.

Based on the process knowledge, the PTMP can naturally be
segregated into two main subunits of SFBG and tableting.
According to the BN structure in Section 3.2, 17 process
variables can be finally involved for modeling, where four
variables about the compensation value of operational variables
are included, and the other variables are shown in Figure 2 in
detail. Once subunits and variables are defined, the BN model
structure of each subunit can be derived in advance using
causality between variables. The BN model structures of SFBG
and tableting are shown in Figure 6a,b. Next, the samples from
test samples A or B are taken as query cases to test the
performance of the proposed method. By applying the
modeling approach in Section 3, the global BN model can
be obtained, and the parameters and structures of each subunit
are integrated into it through the transition variables. The
structure of the global BN model is displayed in Figure 6c. It is
worth noting that for each test sample, a global BN model with
the same structure and different parameters will be built, as the
CMAs are different for each test sample, that is, to simulate the
ever-changing CMAs.

Table 1. The Evidence Nodes Used for Reasoning and the
Nodes Being Reasoned About

evidence nodes reasoning nodes

M1, M2, M3, O1, ini, O2, ini, O3, ini, O4, ini, Q1, Q2, Q3,
Q4

O1, adj, O2, adj, O3, adj,
O4, adj

Figure 7. Adjustment results of test samples A; (a) operational variables; (b) terminal CQAs.
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Once distributed BN modeling is completed, then the
relevant prior information is fed into the evidence nodes of the
global BN network (as described in Section 3.3), operational
adjustment results can be obtained through global BN

reasoning. The evidence nodes used for reasoning and the
variables being reasoned about are given in Table 1. The
reasoning results Oadj = [Os, adj, Ot, adj] are added to the initial
operational variables to acquire the adjusted operational
variables (called the predicted values) based on eqs 18 and
19 and compared with the actual adjusted operational variables
(called the actual values). Note that the actual adjusted
operational variables in test samples A or B give rise to the
qualified CQAs.

The comparison results are shown in the parity plots for
Figures 7a and 8a, where the X-axis represents the actual values
and the Y-axis represents the predicted values. It can be seen
that they are very close to each other. Figures 7b and 8b show
the terminal CQAs after operational adjustment, with the
desired CQAs are shown in Table 2. To more clearly
demonstrate the feasibility of the adjusted results in Figures
7 and 8, three evaluation indexes denoted as MAPE, RMSE,
and MAE are introduced:

= ×
=

s s
s n

MAPE
100

i

n i i

i
1 (20)

= = s s

n
RMSE

( )i
n i i

1
2

(21)

= | |
=n

s sMAE
1

i

n
i i

1 (22)

where sî are the actual or desired values, sî is the predicted
values after adjustment, and n represents the number of test
samples. The evaluation results of operational variables and
terminal CQAs for test samples A and B are given in Tables 3
and 4, respectively. From a practical engineering perspective,
the precisions of the adjusted results meet the production

Figure 8. Adjustment results of test samples B; (a) operational variables; (b) terminal CQAs.

Table 2. Desired CQAs

Q1, d (MPa) Q2, d(N) Q3, d( min ) Q4, d( % )

1.5 51 6.0 0.87

Table 3. Evaluation Results of Operational Variables and
Terminal CQAs for Test Samples A

Oi/Qi MAPE ( % ) RMSE MAE

O1/Q1 9.8962/3.6288 0.4146/0.0820 0.2428/0.0544
O2/Q2 0.0107/3.2425 0.0002/2.6936 0.0001/1.6537
O3/Q3 8.5834/3.5639 0.1905/0.3446 0.1343/0.2138
O4/Q4 0.8134/0.3275 1.0757/0.0040 0.5180/0.0028

Table 4. Evaluation Results of Operational Variables and
Terminal CQAs for Test Samples B

Oi/Qi MAPE( % ) RMSE MAE

O1/Q1 9.8061/3.5952 0.3791/0.0773 0.2405/0.0539
O2/Q2 0.0126/3.1216 0.0002/2.5292 0.0001/1.5920
O3/Q3 9.7714/3.4327 0.2105/0.3241 0.1493/0.2060
O4/Q4 0.9145/0.3160 1.2693/0.0039 0.5524/0.0027

Table 5. Definition of each Method in Different Scenarios

scenarios SFBG tableting method name

1 CBR is used CBR is used the proposed method
2 CBR is used SMF-method I
3 CBR is used SMF-method II
4 SMF-method III
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requirements, which proves the feasibility and effectiveness of
the proposed method.
4.2. Comparative Study with Other Methods. The

compensation of operating variables aims to optimize terminal
CQAs, and the adjusted CQAs evidently have greater research
interest. Therefore, the forthcoming analysis will emphasize on
the adjusted CQAs.

To showcase the superior performance of the proposed
method, a comparative study with several semi-finished
methods is performed. In the modeling process of two
subunits, the term ″semi-finished methods″ refers to whether
CBR is used in constructing the BN model of each subunit.
The detailed definitions of each method are exhibited in Table
5. Consistency in BN modeling, including network structure
and parameter learning, is maintained across all methods,
regardless of the use of CBR. Next, the definition of the

absolute values of the errors between adjusted CQAs and
desired CQAs are given as:

= | | =E Q Q i, 1, 2, 3, 4i i d i adj, , (23)

where Qi, adj is the ith adjusted CQA. Figures 9 and 10 show
the box plots of the Ei of different methods for test samples A
and B, and one can observe from plots that the errors obtained
by the proposed method are generally smaller than those of
other methods.

To transform each index under CQAs into the same order of
magnitude for presentation, the following formula is given for
exponential transformation,

= +L log (2 MAPE)MAPE 1.001 (24)

= +L log (2 RMSE)RMSE 1.001 (25)

Figure 9. Absolute values of the errors of the CQAs for test samples A.

Figure 10. Absolute values of the errors of the CQAs for test samples B.
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= +L log (2 MAE)MAE 1.001 (26)

When x > 0, the function f(x) = log1.001(2 + x) shows
explosive monotonically increasing, which can effectively
increase the order of magnitude of smaller indexes, thus
showing more clearly the difference between different indexes
under different methods. In addition, the number 2 in
log1.001(2 + x) is to make sure that all the transformed indexes
are greater than 0. Eventually, one can see that the proposed
method yields smaller indexes, as is shown in Figures 11 and
12, whose results prove the better performance of proposed
method.

In addition, it can be derived from Figures 9−12 that SMF-
method III and SMF-method I have similar performance, and
SMF-method II performs better than SMF-method III. These
results are due to the fact that the tableting is the last unit of
PTMP, which directly affects the terminal CQAs. If CBR is
applied in tableting, a local BN model that is more consistent

with the characteristics of current transition variables can be
built, and a more accurate mapping relationship between the
PTMP and global BN model can be established as long as CBR
is applied in SFBG; otherwise, the BN model of tableting will
immediately become inaccurate, thus affecting the accuracy of
the global BN model and whether CBR is adopted in the
SFBG has minute effect on the adjustment results.

Moreover, a statistical hypothesis test is also performed to
allay the potential concern that the proposed method might
perform well on a particular dataset but poorly on other
unseen datasets. As described at the beginning of Section 4.1
for the 10-replicate experimental method, we compared the
different evaluation indexes of each CQA under each replicate
experiment for each method. Taking MAPE of tensile strength
of the proposed method and SMF-method III as an example to
show the hypothesis testing process. One can respectively
obtain the MAPE of the proposed method and the SMF-
method III after each experiment, namely, MAPEi

pro and

Figure 11. Comparison results of different indexes by the four methods for test samples A.

Figure 12. Comparison results of different indexes by the four methods for test samples B.
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MAPEi
III, where i = 1, ...,10. Here, Student’s test is used to

check whether there are significant differences between the two
methods. The difference in MAPE between the two methods is
first calculated as follows:

= MAPE MAPEi i i
pro III (27)

and then the mean and standard deviation of Λi is obtained
respectively according to the following formula,

=
=

/10
i

i
1

10

(28)

=
=

( ) /9
i

i
1

10
2

(29)

Next, the null hypothesis H0 : μΛ = 0 is given, which assume
no significant difference in performance between the two
methods. The alternative hypothesis isH1 : μΛ ≠ 0,
representing a significant performance difference between the
two methods. When the significance level is selected, if the t-
statistic tΛ is less than the critical value tα/2, n − 1, the null
hypothesis H0 cannot be rejected; conversely, if the t-statistic
tΛ is greater than the critical value tα/2, n − 1, it is reasonable to
believe the alternative hypothesis H1. Give the following
formula to calculate the t-statistic,

= | |t 10 / (30)

By calculating, the t-statistic tΛ = 32.205. The critical value
tα/2, n − 1 for the two-sides test with n = 10 and α = 0.05 is
t0.025,9 = 2.262. Therefore, the null hypothesis H0 is rejected
and the alternative hypothesis H1 is accepted because tΛ =

Figure 13. CQAs adjusted by different methods.

Figure 14. Comparison results of different indexes by the four methods.
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32.205 > t0.025,9 = 2.262. We have statistical evidence to
indicate that there is a significant difference between the two
methods. Based on the above results, one can conclude that
the proposed method outperforms the SMF-method III. The
comparisons with remaining methods can be evaluated using
the same approach.
4.3. Further Validations by the Running Experimen-

tal Test. In this section, a running experimental test is
performed to further verify the feasibility of the proposed
method. In this experimental setup, the CMAs continuously
change, and these new cases are completely unfamiliar to the
PQC process. The real-time CQAs adjustment results by
different operational adjustment methods are shown in Figure
13, and Figure 14 gives the comparative results of different
indexes. As evidenced by the figures, the proposed method has
a better performance than other methods.

In the actual pharmaceutical scenario, PQC is a challenging
task for researchers. Typically, trial-and-error experiments are
conducted to grope for operational conditions, and rough
adjustments are made to ensure that the terminal CQAs meet
requirements. Obviously, this approach is inefficient and
imprecise. The proposed method develops a data and
knowledge driven model for PTMP with the help of historical
data and has a better effect.

5. CONCLUSIONS
In this work, we have used a combination of BN and CBR for
operational adjustment to improve terminal CQAs in a SFBG-
based PTMP. A distributed BN modeling method to alleviate
the complexity of variable coupling in SFBG-based PTMP is
first explored, in which the process knowledge is utilized to
pre-establish the BN structures and the local similar data
screened out by CBR is used for BN parameter learning. The
developed BN models for all subunits are then integrated into
a global BN model for global operational adjustments, which
effectively responds to dynamically changing CMAs and
further assures the qualified CQAs. Finally, extensive data
experimental results in a SFBG-based PTMP demonstrate the
feasibility and effectiveness of the proposed method, high-
lighting its potential to deliver practical benefits in real-world
applications. The proposed method results are also compared
to the other methods and achieve much superior performances
than other methods.
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