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The equiprobability bias (EB) is a tendency to believe that every process in which randomness 
is involved corresponds to a fair distribution, with equal probabilities for any possible outcome. 
The EB is known to affect both children and adults, and to increase with probability education. 
Because it results in probability errors resistant to pedagogical interventions, it has been de-
scribed as a deep misconception about randomness: the erroneous belief that randomness 
implies uniformity. In the present paper, we show that the EB is actually not the result of a con-
ceptual error about the definition of randomness. On the contrary, the mathematical theory of 
randomness does imply uniformity. However, the EB is still a bias, because people tend to as-
sume uniformity even in the case of events that are not random. The pervasiveness of the EB 
reveals a paradox: The combination of random processes is not necessarily random. The link 
between the EB and this paradox is discussed, and suggestions are made regarding educa-
tional design to overcome difficulties encountered by students as a consequence of the EB.
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Background

Research on heuristics and biases (e.g., Gilovich, Griffin, & Kahneman, 

2002) has documented a broad range of systematic errors in how 

people make decisions about uncertain events. Nevertheless, this re-

search program has been criticized for being overly descriptive (e.g., 

Gigerenzer & Gaissmaier, 2011). For instance, although more than 

100 scientific papers have been published on the classical conjunc-

tion fallacy (Tversky & Kahneman, 1983) over the past 30 years, the 

psychological bases of this striking fallacy are still debated (see e.g., 

Tentori & Crupi, 2012; Wedell & Moro, 2008 for recent reviews). Other 

theorists have pointed out that some of the “mistaken intuitions” of 

people about uncertain events are closer to the probabilistic character-

istics of sequences of random events in real-life settings than we have 

ever thought (Hahn & Warren, 2009).

The purpose of the present paper is to provide an analysis of the 

equiprobability bias (see a definition and examples below), a persistent 

error in probability judgments. The equiprobability bias (henceforth 

EB)1 is a tendency to assume that every process related to random-

ness must be uniform (i.e., that each possible outcome has the same 

probability). The EB has been linked to the naïve idea that randomness 

implies uniformity (Lecoutre, 1992). Following on this suggestion, 

researchers (e.g., Anway & Bennett, 2004; Callaert, 2004; Morsanyi, 

Handley, & Serpell, 2013) have discussed the EB as an example of a 

mathematical “misconception” about randomness. Here we will argue 

that this is not the case. Although the EB might lead to reasoning er-

rors, it is based on a sound mathematical assumption about random-

ness. The EB arises when this sound assumption is used outside its 

scope, with non-random processes.

Indeed, there is a perplexing property of randomness which might 

lead to reasoning errors: that when random processes are combined, 

the outcome might be in part, or, indeed, fully deterministic. In our 

analysis below, we will support these statements by discussing the 

mathematical theories of randomness and probability. Finally, we will 

give an overview of the existing psychological research on the EB, and 

highlight some important gaps in our current knowledge. Ultimately, 

our aim is to present some classic tasks from a new perspective, and, 

through this, to inspire novel psychological and educational approach-

es to the study of randomness and probability.
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Introducing the equiprobability 
bias

When two fair dice are thrown, the probability of getting a sum of 

11 (one 5 and one 6) is twice as much as that of getting 12 (two 6s), 

because the first case may emerge from two different patterns (5-6 

or 6-5), whereas the second corresponds to a unique pattern (6-6). 

However, people show a strong tendency to believe that 11 and 12 are 

equally likely. This example is a classic task in which the EB shows up. 

It is a variant of the historical Galileo and the Duke of Tuscany Problem, 

which dates back to the early 17th century.

The EB was first described by Lecoutre (1992) as a tendency for 

individuals to believe that any random variable is “equiprobable” (i.e., 

uniform) by nature—that is, all random outcomes share the same 

probability. This intuition about randomness leads to pervasive er-

rors in solving probability problems involving non-uniform random 

variables, from childhood through adolescence and to adulthood (e.g., 

Batanero, Serrano, & Garfield, 1996; Chiesi & Primi, 2009; Falk & Lann, 

2008; Lecoutre, 1992; Morsanyi et al., 2013). Strangely, the EB seems to 

increase with probability education, and has recently been described 

as a “side-effect of education” (Morsanyi, Primi, Chiesi, & Handley, 

2009). Indeed, it has long been recognized that education can lead to 

strong intuitions (e.g., Fischbein, 1987; Fong, Krantz, & Nisbett, 1986; 

Stavy & Tirosh, 2000), which might be based on important insights. 

Nevertheless, these intuitions are sometimes misapplied by students, 

and can result in typical mistakes (see e.g., Morsanyi & Szucs, 2014 for 

a recent review).

Many authors have hypothesized about the psychological reasons 

for this permanent fallacy. However, to the best of our knowledge, they 

did not address the EB from a mathematical perspective. Consequently, 

there has also been no attempt to integrate the mathematical and psy-

chological perspectives into a common framework, which could help 

both researchers and educators. As we will see below, there are good 

mathematical reasons to believe that randomness is uniform by nature. 

Addressing the EB from a mathematical perspective gives a fresh view 

on this “bias”. We will argue that the EB is not an emanation of our 

imperfect mind, but the result of a mathematical paradox. Although it 

does lead to systematic errors in probabilistic reasoning, it is based on 

a fundamentally correct assumption. Specifically, the EB describes the 

tendency for people to allocate equal probabilities to uncertain events, 

unless they have strong reasons2 to believe that some of these events 

are more likely than others (see also Fox & Levav, 2004; Johnson-Laird, 

Legrenzi, Girotto, Legrenzi, & Caverni, 1999).

A broad variety of tasks unveil 
the EB

Participants exhibit the EB in the case of various tasks. In the following 

sections we present examples of some typical tasks, which have been 

found to elicit the intuition of uniformity. Note that most of these tasks 

were not specifically designed to elicit or demonstrate the EB, and ex-

isting studies have mostly discussed these tasks in isolation, without 

reference to other similar tasks (but see Falk & Lann, 2008; Morsanyi 

et al., 2013 for exceptions). Our aim in this section is to present a series 

of tasks which can be used to demonstrate a tendency in participants 

to erroneously assign equal probabilities to different outcomes. At the 

same time we also try to identify some typical characteristics of these 

tasks, and the factors that lead to the mistaken intuition of uniformity.

A simple case of assigning 
probabilities to outcomes 
generated through a random 
process: The raffle problem
In the simplest cases, a random variable is given which is, by defini-

tion, non-uniform. An example, the raffle problem, can be found in 

Morsanyi et al. (2009, 2013):

A class has nine boys and six girls in it. The teacher does a raffle. 

Each pupil’s name is written on a slip of paper. All the slips are 

put in a hat. The teacher picks out one slip without looking. 

Who do you think is going to win the prize?

a) A boy [correct answer]

b) A girl

c) Both are equally likely [equiprobability]

As we can see in this example, a uniform random process (selecting 

the winner from the set of pupils through a raffle) determines a non-

uniform random event (sex of the winner). Although there is a higher 

number of boys in the class, the reader might have the impression that 

this is irrelevant, given that there are only two possible outcomes, and 

the actual outcome is determined through a fair (i.e., random) pro-

cedure (see further discussion of these considerations by participants 

in, e.g., Falk & Lann, 2008; Morsanyi et al., 2009; Pratt, 2000). Indeed, 

Morsanyi et al. (2009, 2013) found that some university students an-

swered “equally likely” to this task (see also the data presented in Table 

1).

Fox and Rottenstreich (2003) asked participants to estimate the 

probability that “Sunday will be hotter than any other day next week” 

or that “The hottest day of the week will be Sunday”. With the first 

presentation, participants tend to answer “50%”, based on the parti-

tion between two possible events (Sunday is the hottest day/ Sunday 

is not the hottest day), whereas the second presentation prime a 1/7 

answer, based on a partition into seven possible events (Monday is the 

hottest day, Tuesday is the hottest day, etc.). Thus, different answers 

may arise from the same idea that at the root of any random process 

lies equiprobability.

More complex cases of assigning 
probabilities to randomly 
generated outcomes

Two children problem

A somewhat more complex situation is built on the confusion 

between ordered and unordered pairs of objects. One example is 

Gardner’s (1954) two children problem:
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“Mr. Smith has two children. At least one of them is a boy. What is 

the probability that both children are boys?”

Every ordered pair, namely (girl, boy), (boy, girl) and (boy, boy) 

are equally likely, with a probability of 1/3 (consequently, 1/3 is the 

probability of (boy, boy) and thus also the correct answer to the two 

children problem). However, unordered pairs {girl, boy} and {boy, 

boy} are not equally likely—the probabilities being respectively 2/3 and 

1/3. Because of the EB, participants often believe that unordered pairs 

share the same probability, and give the incorrect answer of “0.5” to the 

two children problem, based on the idea that {girl, boy} and {boy, boy} 

constitute fair alternatives. (See Table 1. for some data on the frequency 

of this error).

The three-cards problem

Falk and Lann (2008) interpreted the three cards problem in terms 

of equiprobability. This teaser is related to the notorious Monty Hall 

dilemma (see e.g., Baratgin & Politzer, 2010; Krauss & Wang, 2003; 

Petrocelli & Harris, 2011 for a psychological perspective): Three events 

(cards or doors) are presented, which have equal probabilities. Then a 

given information discards one of the three possible events. The result-

ing probabilities of the two remaining possibilities are not equal any-

more, although participants show a tendency to assume uniformity.

In the three cards problem, 3 cards are given. One is green on each 

side (GG), one is red on each side (RR), and the last one is green on 

one side and red on the other (RG). The three cards are shuffled; a card 

is randomly chosen and put on a table. The participant then sees the 

random side of a random card, which is red. The question is: what is 

the probability that this card is the RR one? Typically, subjects adhere 

to uniformity and answer “0.5”, that is, they claim that the two possible 

cards (RR and RG) are equally likely. The correct answer, however, is 

different. Since 3 sides of the two possible cards are red, and the RR 

card has two red sides, the actual probability is 2/3. Once again, there 

is some uniformity here: The sides of the cards all share the same prob-

ability. But when combining sides to build sets of cards, we lose this 

feature.

The problem of three prisoners 
Now consider the following (and mathematically equivalent) prob-

lem:

Three men, A, B and C, were in jail. C knew that one of them 

was to be set free and the other two were to be executed. But 

he did not know who was to be spared. To the jailer who did 

know, C said, “Since two out of the three will be executed, it is 

certain that either A or B will be, at least. You will give me no 

information about my own chances if you give me the name 

of one man, A or B, who is going to be executed.” Accepting 

this argument after some thinking, the jailer said “B will be 

executed.” Thereupon C felt happier because now either he or 

A would go free, so his chance had increased from 1/3 to 1/2. 

This prisoner’s happiness may or may not be reasonable. What 

do you think?

Similarly to the three cards problem, in the three prisoners problem 

(Lindley, 1971; Shimojo & Ichikawa, 1989) people have the impression 

that after discarding one event, the probability of the two remaining 

possibilities will be 1/2. Nevertheless, the elimination of one possibility 

does not provide additional information on the probability that C will 

be spared, which, thus, remains equal to 1/3. (At the same time, the 

probability that A will be spared now equals 2/3).

The problem of three prisoners as well as the three-cards problem 

are equivalent to the famous Monty Hall dilemma. This teaser involves 

three doors, say A, B and C. Behind one of the doors is a reward (a car) 

the participant will keep should s/he ultimately pick the right door. The 

participant first selects a door, for instance, C. Then the experimenter 

opens a not selected door (say B) which has no reward behind it. After 

this, the participant may either stick to his first choice (C) or switch to 

the other unopened door (A)3. The optimal strategy is to switch, for the 

same reason as in the problem of three prisoners.

A simple explanation may be given using a series of six situations 

with equal probability: In the first two situations, the reward lies be-

hind door A. In the two next, the reward lies behind door B, and in 

the two last behind door C. If the reward is behind door A, the experi-

menter has no other choice than designating door B, and vice versa. 

If the reward is behind door C on the other hand, he can either show 

door A or B, which he will do once each. Among the 6 situations, the 

experimenter will therefore show door B three times. Among these 

three times, two correspond to a situation in which the reward is be-

hind door A. Therefore, changing to door A grants a probability of 2/3 

to win the reward. Not doing so yields a probability of only 1/3 to win.

However, many people think that switching or staying are equiva-

lent, based on the false assumption that doors A and C are still equally 

likely to hide the reward. Baratgin and Politzer (2006, 2007, 2010) 

provide a theoretical explanation of the equiprobability answer in such 

contexts. According to their studies, contextual cues prompt different 

interpretations of the revision context (i.e., how the new probabilities 

should be computed once a new piece of information becomes avail-

able). In the context of the Monthy Hall dilemma, an “updating” proce-

dure is prompted, which leads to an equiprobability answer (Baratgin, 

2009).

Combining random processes: 
variants of the two dice problem
Similarly to the two-dice problem that we described above, some tasks 

involve the combination of two uniform variables. For instance, the 

statistical reasoning assessment (Garfield, 1998; 2003) uses three such 

tasks out of the four tasks that may be used to assess the EB. In the 

case of the two dice problem, each die is assumed to be fair, another 

term for uniform. Here again, the non-uniform variable (the sum of 

the two dice) is determined by uniform variables (i.e., the outcome of 

throwing the dice).
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Size of the sample space: The 
hospital problem
The classic hospital problem from Tversky and Kahneman (1974) may 

also be used to assess the EB. Here is a version of this problem used by 

Morsanyi et al. (2013):

One hospital has an average of 50, another 10 births per day. 

The average number of boys and girls being born on each day is 

equal. How often will each hospital expect more than 60% boys 

on a given day?

a) The small hospital can expect this to happen more often 

than the large one [correct answer]

b) This will happen more often in the large hospital

c) It is equally likely to happen in both hospitals [equiprob-

ability]

Here again, there is a uniform variable (sex of the babies), from 

which a more complex situation is built up. In this task participants 

might have the impression that the situation in the large hospital can 

be understood as a “multiplication” of the events taking place in the 

small hospital. Based on this argument, there would be no reason to 

suppose that the properties of the small and large samples should be 

any different.

To summarize the above sections, we have presented several typical 

problems which elicit the intuition of equiprobability/uniformity. Note 

that all of these problems include uniform variables or random proc-

esses. Crucially, in these problems, uniform processes are combined 

with other uniform processes, they go through some transformation, 

or participants fail to spell out all relevant possibilities, which then leads 

to the mistaken intuition of equiprobability of the potential outcomes.

Good reasons to believe in uni-
formity

Noticeably, the very tasks that are aimed at proving that people make 

wrong assumptions about randomness when they expect random proc-

esses to be uniform, use, as a rule, some kind of underlying uniform-

ity. This fact might give an indication of how inherent the intuition of 

uniformity to our conceptualisations of probability and randomness 

is. Moreover, this is not specific to psychological studies: Uniformity is 

also a constant implicit in the classroom, as well as a basic assumption 

in early theories of probability (see Hacking, 1975, chapter 14). Most 

exercises and examples in probability textbooks also use prototypical 

random processes or random “tools”, such as fair dice, raffles, determi-

nation of the sex of new-borns, or coin tosses. In all of these cases, we 

expect students to assume uniformity.

Uniformity: an implication of 
randomness
Studies about naïve participants’ concepts of randomness usually 

show a similarity to expert views. Randomness is linked to variability, 

uncertainty, unpredictability, and complexity. All of these properties 

mentioned by ordinary participants are in line with probability theory 

(e.g., Lahanier-Reuter, 1999). 

Another characteristic, often mentioned by participants, is uni-

formity (Nickerson, 2002). It may seem that uniformity is not at all a 

formal requirement of randomness. Indeed, probability theory defines 

a random variable as a variable corresponding to any probability dis-

tribution. In the same manner, a so-called random event may have any 

probability between 0 and 1. Nevertheless, we must here warn against a 

possible misunderstanding: Random variables and random events can-

not be taken as definitions of randomness. Actually, even fully deter-

ministic events (1=1, always true) or variables (X=1) are misleadingly 

called “random” in probability theory.

This issue has been noted and discussed by mathematicians for a 

long time. They have built theories of randomness at the boundary of 

probability theory and computer science (Downey & Hirschfeldt, 2010; 

Martin-Löf, 1966; Muchnik, Semenov, & Uspensky, 1998) to overcome 

this issue. We will discuss this point further.

Equiprobability as an implicit rule 
in the classroom 
The current theory of probability defines a probability P on a sample 

space U as a measure complying with the axiom of P(U) = 1. For a 

finite sample space U = {a1, …, an}, this amounts to set non-negative 

numbers P(ai) which sum up to 1. For instance, in the situation of a 

coin toss with two possible outcomes, H and T, we have U = {H, T}. To 

define a probability, we can choose any number p between 0 and 1, and 

set P(H) = p. P(T) is then bound to equate 1-p, because the sum P(H) 

+ P(T) must be 1. The usual case, in which P(H) = P(T) (i.e., p = 0.5) 

is only one of an infinity of possibilities. The other values for p may be 

interpreted as resulting from tossing a hypothetical unfair coin (note 

that Gelman & Nolan (2002) argued that in fact there is no such thing 

as an unfair coin).

However, the first definition of probability given in the class-

room is Laplace’s formula (Laplace, 1812), defined a century before 

Kolmogorov’s axioms were published (Kolmogorov, 1933). This classic 

definition states that the probability to observe a property X while raf-

fling an element from a sample space U is defined by P(X)=|X|/|U|; 

(|X| being the number of elements fulfilling X, and |U| the size of the 

sample space). This means that a probability is the ratio of the number 

of “favourable cases” and of “all cases”. This, in turn, implies uniformity 

of the sample space, as we shall illustrate with an example. 

If we choose a card from a shuffled 52-card set so that Laplace’s for-

mula applies, we may work out the probability of any characteristic po-

tentially associated with our card by dividing the number of cards that 

possess this particular characteristic by 52. For instance, the probability 

that the card is red is 0.5, because 26 cards are red and 26/52=0.5. But 

then we must have, for any particular card (e.g., an ace of diamond), 

a probability (P[ace of diamond]) of 1/52 given that there is only one 

such card. Any particular card thus has the same probability 1/52 to be 

chosen, a definition of the uniform probability on U.
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A random variable has, thus, historically been defined as necessar-

ily arising from uniformity, and uniformity is still an implicit assump-

tion in the classroom. Although not all random variables in classical 

probability theory are uniform, there are always uniform variables at 

their root. To build non-uniform variables in a classical framework, 

one usually combines uniform variables. For instance, the sum of two 

dice, although not uniform, is a combination of two uniform variables. 

The maximum of two dice (i.e., the larger outcome) is another exam-

ple. Now if you combine a random variable X with itself using subtrac-

tion, you get a deterministic variable, always equal to 0. This illustrates 

the fact that combining random processes may lead to a non-random 

process.

Additionally, since the work of Kolmogorov (1933), a more general 

view of random variables arose, which does not imply the requirement 

of uniformity as an essential property of every random phenomenon. 

This radical shift in the theory has led to an even stronger discrepancy 

between the notions of “random variable” and randomness itself. If any 

variable, even a constant, is called a “random variable”, how can we still 

relate such a “random” variable to randomness?

Entropy
To overcome the confusion arising from this discrepancy, formal defi-

nitions of randomness have been suggested outside basic probability 

theory. A first attempt came from Shannon’s entropy:

Let U be a finite sample space (e.g., {0,1}), and s a sequence of 

elements of U (e.g., 000101101). The entropy of s is defined by 

H(s) = –∑ P(x) log2 (P(x)), where P(x) stands for the relative 

frequency of x (an element of U) in s. Entropy has in some cases 

been used as a measure of randomness (Giasu & Shenitzer, 

1985), for instance, as a means to assess the quality of human 

pseudo-random production. We expect true randomness to 

exhibit maximal entropy.

Shannon’s entropy (Shannon & Weaver, 1949) is actually a measure 

of resemblance to uniformity (Giasu & Shenitzer, 1985), a feature that 

bears two consequences. First, entropy is maximal when the observed 

probability P on U (defined by P[x] being the relative frequency of x) is 

uniform. According to the maximal entropy definition of randomness, 

a truly random sequence must therefore conform to uniformity.

Second, entropy only captures a specific property of a sequence s, 

namely the overall frequency of each outcome, irrespective of the se-

quence’s structure. For instance, the entropy of “0000011111” is exactly 

the same as that of “0110100101” or “0101010101”—and is maximal 

too—because the three strings have exactly the same number of 0s and 

1s. This, of course, is not satisfactory if we seek a definition of random-

ness. The sequence “0101010101” should not be considered (very) ran-

dom, because it is built according to a simple rule, and shows an excess 

of alternations too. Figure 1 displays some examples of binary strings, 

arranged in a two-dimensional space according to their entropy and 

algorithmic complexity (see next section).

Some authors suggest using kth-order (see next paragraph for a 

definition) entropy measures to better capture the structure of a se-

quence. However, as Grimsley, Monaghan and Wenstrup (2011) note, 

these measures are usually coupled with first-order entropy, and not 

used alone. But even if they were used alone, defining randomness by 

the maximization of a kth-order entropy would still imply that ran-

domness is necessarily uniform:

To compute the entropy of a sequence like “001011” one considers 

the different symbols appearing in the sequence (i.e., 0, 0, 1, 0, 1, 1). 

Because the order of the symbols is not taken into account, entropy only 

depends on the frequency of 0s and 1s, irrespective of the structure. A 

solution to this problem is to turn our attention to bigrams (series of 

2 consecutive symbols) instead of symbols. There are four possible bi-

grams, namely (00), (01), (10) and (11). In the previous case, “001011” 

would then be considered as a sequence of 3 bigrams: (00)(10)(11)4. 

The resulting entropy, called the second-order entropy of the sequence, 

does capture the local structure of the sequence. However, any se-

quence that maximizes second-order entropy will be balanced, so that 

the bigrams (00), (01), (10) and (11) appear with the same frequency. 

This in turn implies that the initial sequence is balanced in terms of 0s 

and 1s. In the same fashion, one may define third-order entropy using 

trigrams, or more generally kth-order entropy with k-grams. In each 

case, kth-order entropy captures some local structure of the sequence 

under consideration, but only some balanced sequences will maximize 

entropy (for a more formal account of kth-order entropy, see Cover & 

Thomas, 2006, p. 645, or Gray, 2011, p. 64).

Thus, a definition of randomness based on the idea that random-

ness will maximize either Shannon’s entropy or any kth-order entropy 

leads to the same result: Only balanced sequences (or uniform vari-

ables) can be considered random (although not all balanced sequences 

are random).

Entropy

C
om
pl
ex
ity

Figure 1.

Examples of 12-item binary strings arranged according to their 
entropy and complexity. Each string is represented by an ar-
ray of squares (grey squares for 1s and white squares for 0s). 
Although entropy and complexity are linked, some strings ex-
hibit high entropy and low complexity, such as 010101010101 
(bottom right).
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Algorithmic complexity
Defining a random sequence as one that maximizes entropy leads 

to uniform sequences only—that is, it corroborates the intuition of 

equiprobability. However, the practice of using entropy as a measure 

of randomness has been criticized, and alternative measures have been 

suggested. The current theory of randomness is focused on the link 

between randomness and complexity. Algorithmic complexity (Li & 

Vitányi, 2008) is now the accepted foundation for a definition of a ran-

dom series of symbols. It is nowadays widely used in biostatistics as a 

means to assess genetic complexity, and has interested psychologists 

lately as a possible explanation of pseudo-random human behaviour 

(see e.g., Gauvrit, Soler-Toscano, Zenil, & Delahaye, 2014; Tenenbaum, 

Kemp, Griffiths, & Goodman, 2011).

The algorithmic complexity of a finite sequence of digits is the 

length of the shortest program or algorithm that produces it and then 

halts. This length is defined with reference to an abstract computer: a 

universal (prefix-free) Turing Machine (UTM).

An infinite sequence s1s2…sn… is said to be random if and only if 

the complexity of the finite sequences s1s2…sn remains large when n 

goes to infinity. More precisely, the complexity K(s1s2…sn) must satisfy 

the following property:

There exists a constant c > 0 such that K(s1s2…sn) ≥ n – c for all 

integers n.

The constant c depends on both the UTM and the sequence (si), 

but not on n. One can understand the need for such a constant when 

we consider the fact that any random sequence bears local regularities. 

For instance, an infinite sequence of 0s and 1s contains long series of 0s. 

Such regularities can be exploited by the UTM, leading to a program 

which is shorter than “Print(s1…sn)”. A detailed account of this defini-

tion and its rationale is given in Li and Vitányi (2008).

This definition conveys two consequences. First, if a sequence is 

random, then the best algorithm that produces its first n terms (for any 

large enough n) is almost as long as the program “Print(s1s2…sn)” (the 

length of which is about n). Second, it can be formally demonstrated 

that a random sequence is necessarily balanced (uniform), because 

compression algorithms exist which are capable of taking advantage of 

any discrepancy from uniformity (Huffman, 1952).

This is a definition of a random (infinite) sequence, but may also 

be used to define a random process: A random process is a method 

that produces symbols such that when the method is repeated infinitely 

many times, the output is almost certainly (i.e., with a probability of 1) 

a random sequence.

An interesting feature of algorithmic complexity is that it bridges 

different points of view about randomness: A random sequence is at the 

same time complex, unpredictable, and passes every computable statis-

tical test of randomness (Chaitin, 2004; Schnorr, 1973). As mentioned 

above, an intriguing feature of randomness as defined by algorithmic 

complexity is that uniformity is a precondition of randomness—that is, 

a sequence of heads or tails cannot be “random” if unbalanced (but not 

all balanced sequences are random). Once again, randomness implies 

uniformity.

The combination paradox
Algorithmic complexity gives a formal definition of a random sequence 

or process, now widely accepted and used. This definition is an all-or-

nothing rule: A sequence is either perfectly random, or not random. 

For this reason, in the following we will sometimes call a process “per-

fectly random” (rather than “random”) to indicate that it complies with 

the formal definition of a random process.

This definition yields an intriguing consequence: The combination 

of perfectly random processes is not necessarily perfectly random it-

self, an apparent contradiction. Throwing a fair die is a random process 

as defined by algorithmic complexity. When two dice are thrown and 

their results combined using a rule such as the sum, difference, product, 

or power, this results in non-uniform variables—that is, not perfectly 

random processes. To give another example, the maximum of two dice 

is not uniform. Indeed, the only situation giving a maximum of 1 is 

(1-1), whereas there are two situations (1-2 and 2-1) giving a 2, etc.

The product is not uniform either, since 1 can only be obtained 

from a 1-1 configuration, while 12 corresponds to 6-2, 2-6, 3-4, and 

4-3. In the same vein, the two-dice problem illustrates the fact that a 

combination (sum) of uniform variables is not always uniform—or, in 

other words, that a combination of perfectly random processes needs 

not be perfectly random.

The well-known law of large numbers states that asymptotically, 

the observed frequencies equal their corresponding probabilities. For 

instance, throwing a die again and again will eventually result in having 

each number, say 6, exactly one sixth of the time. We may interpret 

this law as an even more striking example of the combination paradox: 

Combining infinitely many perfectly random and independent proc-

esses may result in a deterministic process.

The psychological basis of the EB

In section 3 we described some tasks which have been found to elicit 

an incorrect “different outcomes are equally likely” response, and we 

have also given an overview of mathematical notions of randomness, 

and some controversies regarding mathematical approaches to this 

concept. Nevertheless, we have not discussed the following issues. First 

of all, how often do participants rely on the EB, and are these responses 

equally common in the case of different tasks? Do these responses have 

the same psychological/cognitive underpinnings?

With regard to the question of susceptibility to the EB, some of the 

tasks that we described above are notoriously difficult (for example, 

for the Monty Hall problem correct response rates of 3-21% have been 

reported, e.g., Burns & Wieth, 2004; De Neys & Verschueren, 2006; 

Friedman, 1998; Granberg & Brown, 1995; Krauss & Wang, 2003; 

Tubau & Alonso, 2003). Similarly, for the two children problem, Fox 

and Levav (2004) reported a correct response rate of 3.3% amongst 

MBA students with extensive training in statistics. Other tasks, such 

as the raffle problem turned out to be much less difficult. For example, 

Chiesi, Primi, and Morsanyi (2011) found correct response rates of 49-

69% in developmental samples.
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Making comparisons between the difficulty of various equiprob-

ability tasks is not easy, as studies often focus on (different versions 

of) a single task (e.g., De Neys & Verschueren, 2006; Krauss & Wang, 

2003), or different problems are administered to different groups of 

participants (e.g., Falk & Lann, 2008). Nevertheless, in a study where 

various tasks were included to measure the EB (Morsanyi et al., 2013), 

performance in the same group of participants varied widely across 

different tasks both in the case of “naïve” participants, and participants 

who completed a probability training (in Table 1 we present the rate of 

equiprobability and correct responses from the Morsanyi et al. (2013)

study for some tasks that we described earlier). Given these differences 

in difficulty, we can expect that people who give an “equally likely” re-

sponse to a certain task will not necessarily give this response to other 

tasks. Indeed, it seems that the “equally likely” response acts as a default 

(see Johnson-Laird et al., 1999) that educated adults tend to fall back 

on, if they encounter a task that involves probabilistic outcomes where 

a random generating process was involved, and they misrepresent the 

number and probability of potential outcomes (e.g., Falk & Lann, 2008; 

Fox & Levav, 2004). In the following sections we will describe two ap-

proaches which have been successfully applied to eliminate the EB in 

the case of various tasks.

Eliminating the EB by changing the 
presentation format of tasks
One approach which has been successfully applied to eliminate the EB 

has been to create different versions of the problems, and find altera-

tions which can make the problems easier to solve. This approach has 

been applied in the case of the Monty Hall problem (e.g., Fox & Levav, 

2004; Krauss & Wang, 2003), the three cards problem (e.g., Falk & Lann, 

2008), and the two children problem (e.g., Fox & Levav, 2004). These 

investigations (together with others, e.g., Falk, 1992; Johnson-Laird 

et al., 1999; Shimojo & Ichikawa, 1989) have revealed the following 

general steps of reasoning about probabilistic outcomes. Participants 

first identify the relevant cases given in the problem, and assign equal 

probabilities to these cases, unless otherwise stated in the description. 

Based on additional information, participants might add or eliminate 

cases. Finally, they assign equal probabilities to these updated cases 

(that is, the numerical value of equal probabilities is also updated, so 

that it corresponds to the updated number of cases).

This approach has also led to some suggestions regarding presenta-

tion formats and alterations to task content, which could help partici-

pants in avoiding the EB. Given the above analysis, these changes in 

presentation format were predominantly aimed at making it easier for 

participants to identify relevant cases (for example, in the case of the 

three cards problem), and to be able to correctly update the probabili-

ties allocated to these cases when additional information is provided 

(e.g., in the Monty Hall problem) or to discard irrelevant information 

(e.g., in the three prisoners problem). Such manipulations include pre-

senting the tasks in a frequency format (e.g., Krauss & Wang, 2003), 

using tree diagrams to compare probabilities (e.g., Johnson-Laird et al., 

1999; Krauss & Wang, 2003), making individual cases more distinct by 

using names of human characters instead of using abstract labels (Falk 

& Lann, 2008), or by asking for a ranking instead of asking a question 

about the most likely outcome (e.g., Fox & Levav, 2004).

Eliminating the EB through 
improving participants’ 
understanding of random 
processes
The other approach to address people’s difficulties has been to provide 

them with training. Fong and colleagues (Fong et al., 1986; Fong & 

Nisbett, 1991) successfully trained participants in the law of large num-

bers (which is required to solve the hospital problem, for example), 

both by providing examples, and by explaining participants about the 

law of large numbers. Fong and Nisbett (1991) found a training effect 

after a 2-week delay, and the training also generalized to problems 

that were related to a different domain (ability testing) as compared 

to the original training problems (sports content). These researchers 

also reported good memory for the law of large numbers (78.5% of 

their participants were able to recall this), which they contrasted with 

poor recall of the content of the problems that were used for training. 

Indeed, it seems that people find the idea that larger samples represent 

the parent population better than smaller ones intuitively compelling 

(Gravetter & Wallnau, 2009), and once the relevance of sample size is 

pointed out to them, they are able to apply the law of large numbers to 

solve probability problems. 

The idea that participants have an implicit grasp of the law of large 

numbers has also been supported by a recent study. Building on a 

training procedure developed by Anway and Bennett (2004), Morsanyi 

et al. (2013) trained participants in the law of large numbers through 

exercises where random generating processes (such as throwing dice 

and flipping coins) were used to demonstrate the differences between 

the properties of large and small random samples. The exercises also 

included examples of outcomes with non-equal probabilities (see 

Morsanyi et al., 2013 for a more detailed description of the training 

procedure, and Table 1 for some of the results). Interestingly, whereas 

all participants improved on variants of the hospital problem (where 

Table 1. 

The Rate of Equiprobability and Correct Responses 
from the Morsanyi et al., 2013 Study

Random 
generators 

training (n=55)

Control
(n=53)

Equally 
likely Correct Equally 

likely Correct

Raffle problem 4% 91% 9% 89%

Two children problem 89% 5% 96% 2%

Hospital problem 51% 42% 79% 8%

Overall 48% 46% 61% 33%

Note. The students either participated in a training with random generators or 
no training . Percentages do not always add up to 100 because of a third response 
option that a few participants chose.
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they needed to rely on the law of large numbers), only participants with 

higher fluid intelligence improved on the other EB problems (includ-

ing variants of the raffle problem and the two children problem). That 

is, participants with both high and low levels of fluid intelligence were 

able to grasp and apply the law of large numbers.

Another notable finding of this study is related to the idea of the 

law of small numbers. Tversky and Kahneman (1974) speculated that 

misconceptions regarding short sequences of random events arise 

because people generalize the properties of large samples to small sam-

ples. This is supposed to be based on the belief that errors in a random 

sequence cancel out each other. As we described above, Morsanyi et 

al. (2013) used training procedures where the properties of short and 

long sequences of probabilistic events were contrasted. Besides using 

variants of the hospital problem, they also used other test problems 

which assessed people’s ability to avoid misconceptions regarding short 

sequences. Interestingly, whereas the probability training improved 

participants’ performance on the hospital problem, these participants 

performed significantly worse on the other problems than controls. 

That is, although they were able to apply the law of large numbers 

when the task involved a direct comparison between short and long se-

quences of random events, their belief in the law of small numbers also 

increased. This clearly shows that being able to solve the law of large 

numbers problems does not require people to be able to correctly rea-

son about the properties of short random sequences. At a more general 

level, besides their problems arising from the combination paradox, 

this example shows that people generally struggle with understanding 

when probabilistic outcomes should display “random properties”, such 

as the equiprobability of different outcomes or complexity.

Two sources of the EB: Incorrect 
representations of potential 
outcomes and the combination 
paradox
Before we describe our account of the two main sources of people’s 

difficulties with some well-known EB tasks, we will briefly discuss the 

origin of the default assumption of equiprobability in the case of tasks 

including randomness. Most theorists assume that the equiprobability 

assumption stems from education in probability, as well as from more 

general concepts of equality and fairness (e.g., Falk & Lann, 2008). In 

our earlier discussion, we pointed out that simulations of probabilistic 

outcomes in the classroom typically involve equiprobable outcomes. 

As a result of being exposed to such examples, people develop the no-

tion that random events are equiprobable “by nature” (Lecoutre, 1992). 

Indeed, both the theory about “naïve probability” (Johnson-Laird et 

al., 1999), and the “partition-edit-count” model (Fox & Levav, 2004) 

assume that once people identify probable outcomes, they will assign 

equal probabilities to these (unless they have good reasons to do other-

wise). The claim that the equiprobability assumption arises from edu-

cational experiences is also supported by findings that the EB increases 

with age and probability education (e.g., Morsanyi et al., 2009).

In the previous sections we presented two approaches to eliminat-

ing the EB. One was to change the presentation format of tasks, so that 

people can more easily grasp the information regarding the number of 

cases and the individual probabilities of cases. This approach can help 

by eliminating the complexity and ambiguity inherent in some of the 

most difficult EB problems, such as the Monty Hall problem (e.g., Fox 

& Levav, 2004; Krauss & Wang, 2003), the three cards problem (Falk & 

Lann, 2008), and the two children problem (Fox & Levav, 2004). This 

approach typically works in the case of problems where there is a small 

number of cases/potential outcomes.

Although this approach has uncovered the sources of people’s 

difficulties with certain tasks, and could be useful in developing pres-

entation formats which make it easier for people to reason about and 

understand probabilities, they cannot be used for improving people’s 

general understanding of probabilities.

The other approach has been to provide training in probabilities 

and, in particular, in the law of large numbers. This approach has been 

successful in the case of problems which include direct comparisons 

between short and long sequences of random events (Fong et al., 1986; 

Fong & Nisbett, 1991). Although these results are very important from 

an educational point of view, they have a relatively narrow scope. In the 

next section we will argue that education in the law of large numbers 

should be just one aspect of educating students about the “combination 

paradox”—that is, the fact that when random processes are combined, 

the outcome might be “less random” (i.e. more predictable; see also 

section 4.5).

The combination paradox: 
Implications for probability 
education
In our discussion of mathematical approaches to randomness, we 

pointed out a particular property of random processes, which so far 

has not been addressed either by mathematicians or researchers of 

psychology. We have referred to this as the combination paradox. In 

our account, this phenomenon is a very important source of errors 

in probabilistic reasoning, and especially of the EB. Researchers have 

repeatedly claimed that the EB stems from a misunderstanding of ran-

domness (e.g., Lecoutre, 1992; Morsanyi et al., 2009), but they have 

failed to elaborate on the nature of this misunderstanding. Throughout 

this paper, we have argued that people actually have a good intuitive 

grasp of the concept of randomness, which indeed involves uniformity. 

Nevertheless, they fail to appreciate the implications of the combina-

tion paradox.

Although one of the consequences of the combination paradox, 

the law of large numbers, is well-known, other consequences have not 

been clearly formulated. As a general rule, the unpredictability of out-

comes decreases when we combine random processes, or, in general, 

when random processes go through transformations. As an example, 

consider a probabilistic sequence obtained by repeatedly throwing 

a drawing pin on a table. The drawing pin may land with pin up or 

down, but the probability of these outcomes is unequal. Basically, this 

is a biased heads-or-tails game. However, even if the result is skewed, 

an implicit assumption is that the drawing pin is thrown in a “fair way”. 

If a photograph of the pin was taken a few centimeters above the table 
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while it falls, the assumption is that any position of the drawing pin 

would be just as likely as any other. Nevertheless, eventually we obtain 

a non-uniform probabilistic outcome from a (continuous) uniform 

underlying random variable. At the same time, according to the math-

ematical definition of a random binary series, the resulting infinite 

sequence of ups and downs is not perfectly random. Once again, the 

transformation reduces randomness. Discussing the implications of 

the combination paradox as part of probability education could be an 

important step forward.

A further important issue is that we know very little about people’s 

beliefs about the consequences of combining random processes, and 

the operations which can be performed on random processes. With re-

gard to why people are misled by the combination paradox, a potential 

reason could be the application of the “same A same B” rule (Osman 

& Stavy, 2006) which is related to the acquisition and stabilization of 

the proportionality schema (see, e.g., Fischbein & Schnarch, 1997; Van 

Dooren, De Bock, Hessels, Janssens, & Verschaffel, 2005). For example, 

Mendel (1998) presented students with a problem in which two rec-

tangles were shown. Students were told that the second rectangle is a 

modified version of the first one where the length of the rectangle was 

decreased by 20% and the width was increased by 20%. Students were 

asked about the perimeters of the two rectangles (i.e., whether they 

were equal, or whether the perimeter was longer in the case of one of 

the rectangles). In this experiment participants had knowledge about 

the relevant rule (i.e., how to compute the perimeter of a rectangle), 

and the available perceptual information was also in line with the rule 

(i.e., that the perimeter of rectangle 1 was longer). Nevertheless, over 

70% of the students applied the “same A - same B” rule. That is, they 

claimed that the perimeters of the two rectangles were equal, because 

“adding 20% and removing 20% equals to no change.” Similarly, when 

combining random processes, students might have the impression that 

given that the generating processes are fair and unpredictable, the out-

come should be fair and unpredictable, too. 

Investigations into people’s beliefs about the consequences of com-

bining random processes could be a fruitful avenue for furthering our 

understanding of how and why people might make mistakes when they 

reason about probabilities. This research should also form the basis of 

novel educational and training approaches. 

Concluding comments

The EB leads to systematic errors in probability judgments. It is a 

consequence of an intuition which develops as a result of probability 

education (Morsanyi et al., 2009). It has long been considered as a con-

ceptual error about randomness—that participants wrongly attribute 

uniformity to perfectly random processes. Nevertheless, this claim is 

not coherent with current mathematical theory: Randomness does in-

deed imply uniformity. Thus, when participants commit the EB, their 

problem is not that their understanding of the concept of randomness 

is fundamentally mistaken. 

In the present paper we have provided an overview of both math-

ematical and psychological approaches to the EB. As a result of our 

analysis, we have identified a gap, which affects both literatures. This 

analysis suggests that one particular property of randomness might 

contribute greatly to the pervasiveness of the EB. Indeed, as opposed to 

what we would naturally think, the combination of random processes 

is not necessarily uniform (and therefore not necessarily perfectly ran-

dom), or, more generally, certain transformations change the essential 

properties of random sequences. Thus, when people erroneously apply 

the EB, they correctly assume that randomness includes equiprobabil-

ity. What they do not recognize is that the probabilistic outcomes that 

they are faced with are not perfectly random.

Whereas training in the law of large numbers might be effective in 

the case of certain EB tasks, and it has been used both by researchers 

and educators, to the best of our knowledge, no research has addressed 

so far people’s beliefs about the outcome of combining random proc-

esses. Thus, it is important that future studies assess these miscon-

ceptions and test different training approaches which could help in 

tackling them. 

In summary, this paper was aimed at both highlighting the per-

vasiveness of the EB in the domain of probabilistic reasoning, and 

identifying the cognitive processes underlying it. We have argued that 

the EB typically emerges in two situations. One is when people incor-

rectly assign equal probabilities to individual cases. The other one is 

when people erroneously assume that combining random processes 

will leave the “random properties” of those processes unaffected. The 

bulk of research so far has focused on cases where people experience 

difficulties with regard to correctly assigning probabilities to individual 

cases (e.g., Johnson-Laird et al., 1999; Falk & Lann, 2008; Fox & Levav, 

2004; Krauss & Wang, 2003). Although this research is important with 

regard to developing more effective ways of presenting probabilistic in-

formation, it has little to say about how people generally reason about 

probabilistic outcomes. The purpose of the present paper was to draw 

attention to another main source of difficulty regarding probabilistic 

reasoning. Our hope is that our discussion will inspire new research 

in this area, and will inform the development of novel training pro-

cedures.

Footnotes
1 Calling the EB a bias is certainly arguable and one may wish to 

use a more neutral expression such as “equiprobability answer”. In the 

following, we will consider EB and “equiprobability answer” as equiva-

lent.
2 These psychological reasons may rely on heuristics too, and may 

be incorrect from a mathematical perspective (see e.g., Teigen & Keren, 

2007).
3 The equivalence of the problem of three prisoners and the Monthy 

Hall dilemma becomes clear when one identifies each door (in the 

Monthy Hall dilemma) with a prisoner (in the problem of three pris-

oners), and the reward with the fact that the prisoner will be spared. 

The probability of winning for prisoner C (or by picking door C) is 

unchanged when the new information that B will not be set free (or 

that door B hides no reward) is given, but at the same time the prob-
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ability that prisoner A will be spared (or that door A hides the reward) 

increases to 2/3.
4 Another version uses overlapping bigrams, and would associate 

the following bigrams with the sequence “001011”: (00)(01)(10)(01)

(11). This does not alter the results discussed in the following.
5 Morsanyi et al. (2013) included 6 problems in their study, which 

were designed to measure the EB (performance on individual tasks was 

not reported).
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