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Abstract

Tumours of the anterior pituitary can manifest from all endocrine cell types but the 
mechanisms for determining their specification are not known. The Hippo kinase cascade 
is a crucial signalling pathway regulating growth and cell fate in numerous organs. There 
is mounting evidence implicating this in tumour formation, where it is emerging as an 
anti-cancer target. We previously demonstrated activity of the Hippo kinase cascade in 
the mouse pituitary and nuclear association of its effectors YAP/TAZ with SOX2-expressing 
pituitary stem cells. Here, we sought to investigate whether these components are 
expressed in the human pituitary and if they are deregulated in human pituitary tumours. 
Analysis of pathway components by immunofluorescence reveals pathway activity during 
normal human pituitary development and in the adult gland. Poorly differentiated 
pituitary tumours (null-cell adenomas, adamantinomatous craniopharyngiomas (ACPs) 
and papillary craniopharyngiomas (PCPs)), displayed enhanced expression of pathway 
effectors YAP/TAZ. In contrast, differentiated adenomas displayed lower or absent 
levels. Knockdown of the kinase-encoding Lats1 in GH3 rat mammosomatotropinoma 
cells suppressed Prl and Gh promoter activity following an increase in YAP/TAZ levels. 
In conclusion, we have demonstrated activity of the Hippo kinase cascade in the human 
pituitary and association of high YAP/TAZ with repression of the differentiated state both 
in vitro and in vivo. Characterisation of this pathway in pituitary tumours is of potential 
prognostic value, opening up putative avenues for treatments.
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Introduction

The Hippo kinase cascade is a crucial conserved signalling 
pathway regulating organ growth across diverse species, 
through the control of cell proliferation, apoptosis and 
differentiation during development (Zhao et  al. 2011). 
This phosphorylation cascade in mammals includes core 
kinases MST1/2 (a.k.a. STK3/4, orthologues of Drosophila 
Hippo) that activate large tumour suppressor homologs 
1 and 2 (LATS1/2), which in turn phosphorylate and 
inhibit the activation of transcriptional co-activators Yes-
associated protein (YAP), and WW domain-containing 
transcription factor (TAZ/WWTR1), the major effectors 
of the cascade. YAP/TAZ act as co-activators to TEAD 
transcription factors (TEA domain family members 1–4) 
(Zhao et  al. 2011). Nuclear YAP/TAZ are thus associated 
with low kinase activity and the promotion of growth, 
inhibition of apoptosis and the stem cell state, whilst 
cytoplasmic and phosphorylated YAP/TAZ are associated 
with active kinases and growth restriction. Deregulation 
of the mammalian Hippo signalling components has been 
implicated in the formation of tumours and cancers, with 
loss of MST1/2, LATS1/2, SAV or MOB1 resulting in the 
development of different tumour types in mouse models 
(Mo et al. 2014). Furthermore, elevated levels and nuclear 
localisation of YAP and/or TAZ have been reported in a 
wide array of human cancers including hepatocellular 
carcinoma, prostate cancer, colorectal carcinoma (CRC), 
non-small-cell lung cancer (NSCLC), ovarian cancer, clear 
cell renal cell carcinoma (ccRCC), pancreatic carcinoma, 
oesophageal squamous cell carcinoma, urothelial 
carcinoma of the bladder and skin basal cell carcinoma 
(Zanconato et al. 2016).

Pituitary tumours account for 10–15% of intracranial 
neoplasms (Molitch 2017). Although in general they are 
considered benign tumours, an aggressive or invasive 
behaviour is not uncommon (Di Ieva et al. 2014). Hormonal 
secreting (functioning) pituitary tumours are commonly 
detected due to the clinical syndromes caused by hormonal 
hypersecretion (Chanson et  al. 2015). Non-functioning 
subtypes are clinically challenging because they present at 
a later stage with local mass effects or hypopituitarism, as do 
craniopharyngiomas, both the adamantinomatous (ACP) 
and papillary (PCP) types. During the last years, progress 
has been made on the identification of mechanisms 
involved in anterior pituitary cell transformation and 
tumourigenesis; oncogene activation, tumour suppressor 
gene inactivation, epigenetic changes and microRNA 
deregulation have all been shown to contribute to the 
initiation of pituitary tumours (Marques & Korbonits 

2017). Recently, the isolation of cell subpopulations 
with stem-like characteristics was reported from human 
somatotropinomas and non-functioning pituitary 
adenomas, describing expression of stem cell markers 
(OCT4, SOX2, CD133, Nestin), sustained proliferation 
and a persistent undifferentiated compartment (Würth 
et  al. 2017). There is evidence for a role of the Hippo 
signalling cascade in pituitary gland pathophysiology. 
Mice deficient for Lats1 (Lats1−/−) present with hyperplasia 
of the anterior pituitary lobe, but reduced secretion of 
hormones such as LH, PRL and GH (St John et al. 1999). 
We recently mapped for the first time the activity of the 
Hippo-YAP/TAZ pathway in the murine pituitary during 
development and postnatal stages and revealed an 
association of active Hippo effectors (i.e. nuclear YAP/TAZ 
localisation) with the uncommitted pituitary stem cells 
expressing SOX2 (Lodge et al. 2016).

Considering the involvement of the Hippo kinase 
cascade in tumourigenesis, our observations in the 
murine gland prompted us to examine the expression 
patterns of YAP and TAZ in normal human pituitary  
and in pituitary tumours. Herein, we show for the first 
time that these proteins are expressed during human 
pituitary development as well as in the normal adult 
gland. YAP and TAZ were highly expressed in subsets of 
non-secreting pituitary tumours (null cell, ACP and PCP), 
but not in differentiated tumours. Activating this pathway 
in vitro by knocking down Lats1, decreased anterior 
pituitary hormone synthesis, further supporting a role 
for this cascade in repressing endocrine differentiation. 
Altogether, our data indicate a previously unappreciated 
involvement of the Hippo pathway in human pituitary 
differentiation, growth and tumour formation.

Materials and methods

Tissue specimens

All procedures performed were in accordance with the 
ethical standards of the institutional research committee 
(King’s College Research Ethics Committee, approval 
number LRS-15/16-2126) and with the 1964 Helsinki 
declaration and its later amendments or comparable 
ethical standards. Anonymised archival FFPE specimens 
of five ACP (Andoniadou et al. 2012) and six PCP (Haston 
et al. 2017) were identified in the local pathology archive, 
through the Childhood’s Cancer and Leukaemia Group 
Tissue Bank and BRAIN UK. The study also included 
ten null-cell pituitary tumours, 16 prolactinomas, one 
PRL-secreting carcinoma (Winkelmann et  al. 2002),  

https://doi.org/10.1530/ERC-18-0330
https://erc.bioscientifica.com © 2019 The authors

Printed in Great Britain
Published by Bioscientifica Ltd.

This work is licensed under a Creative Commons 
Attribution 4.0 International License.

https://doi.org/10.1530/ERC-18-0330
https://erc.bioscientifica.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


21726:1Endocrine-Related 
Cancer

P Xekouki et al. YAP/TAZ in pituitary tumours

18 corticotropinomas and 10 somatotropinomas. 
Examples of confirmatory testing for these cohorts 
are provided in Supplementary Fig.  2 (see section on 
supplementary data given at the end of this article). 
Foetal pituitary tissue (two samples at 17 weeks and one 
sample at 14 weeks corrected gestational age) was accessed 
through the Human Developmental Biology Resource. 
Normal human pituitary glands were obtained from 
the School of Medicine, Lille, France from people who 
donated their body to science (two male, two female, ages 
77–89  years old); permission to use human tissues was 
obtained from the French Agency for Biomedical Research 
(Agence de la Biomédecine, Saint-Denis la Plaine, France, 
protocol no. PFS16-002). Ischaemia time until fixation 
ranged between 8 and 39 h. Pituitaries were fixed in 4% 
paraformaldehyde at 4°C for a minimum of 48 h before 
processing for paraffin embedding.

Immunofluorescence

Samples were dewaxed in Histo-Clear (National 
Diagnostics) twice for 10 min, followed by rehydration 
through a descending ethanol series. Antigen retrieval 
was carried out in citrate-based Declere unmasking 
solution (Cell Marque) in a Decloaking chamber NXGEN 
(Menarini Diagnostics) using the 110°C antigen retrieval 
protocol. Following blocking for 1 h in TNB-blocking 
buffer (0.1 M Tris–HCl pH7.5, 0.15 M NaCl, 0.5% Blocking 
Reagent (FP1020, Perkin Elmer)), samples were incubated 
overnight in primary antibodies at 4°C in TNB at the 
following dilutions: YAP (Cell Signaling Technology 
Cat. No. 4912, 1:1000), pYAP (S127) (Cell Signaling 
Technology Cat. No. 4911 1:1000), TAZ (Atlas Antibodies 
HPA007415, 1:2000) and SOX2 (Abcam ab97959, 1:2000). 
The following day, slides were washed in Tris–NaCl–Tween 
(TNT) buffer (0.1 M Tris–HCl, pH7.5, 0.15 M NaCl, 0.05% 
Tween-20) and incubated in species-specific biotinylated 
secondary antibodies (1:500, Abcam) diluted in TNB for 
1 h at room temperature. Following washes in TNT, slides 
were incubated in ABC solution (Vector Laboratories 
PK-6100) for 30 min in the dark and in TSA-Cy3 diluted in 
TSA Stock Solution (Perkin Elmer NEL760001) for 10 min 
at room temperature. Subsequently, slides were washed 
and incubated in Hoechst labelling solution for 30 min at 
room temperature. After a final wash, they were mounted 
with soft-set mounting medium (Vector Laboratories, 
H1000). Immunofluorescence staining was assessed as 
follows: Type A: high levels of both YAP/TAZ, frequent 
nuclear staining; Type B: robust levels of TAZ with 
frequent nuclear staining and moderate levels of YAP with 

occasional nuclear staining; Type C: moderate levels of 
YAP/TAZ, predominantly cytoplasmic, in over 50% of the 
tumour; Type D: low levels of YAP/TAZ, predominantly 
cytoplasmic, between 20 and 50% of tumour; Type E: 
absent YAP/TAZ staining or low levels in under 20% of 
the tumour.

Cell culture, transfection and luciferase assays

GH3 cells (American Type Culture Collection) were 
cultured in 10% foetal calf serum Dulbecco’s modified 
Eagle medium (DMEM) supplemented with 2.2 g/L 
NaHCO3, 10 mM HEPES, 2 nM Glutamine and 105 U/L 
penicillin-streptomycin. Cell culture materials were from 
Life Technologies, Nunc (Wiesbaden, Germany) and 
Sigma-Aldrich. Cells were transfected with SuperFect 
(Qiagen) following the manufacturer’s instructions. 
siRNA were against rat Lats1 (OriGene and Santa Cruz 
Biotechnology); a mix of scrambled non-specific siRNA 
was used as control. The Gh and Prl promoter reporter 
vectors have the proximal (_593) rat Gh promoter and rat 
Prl promoter respectively upstream to the luciferase gene 
(both kind gifts of A. Gutierrez-Hartmann, University 
of Colorado, Denver, CO, USA). After transfection, 
cells were left for 48 h in low serum (2% FCS) DMEM, 
before being treated and/or assayed. The transfection 
efficacy was determined by cotransfection with the  
RSV-β-gal construct and results are presented as 
luciferase:β-galactosidase activity ratio. Each experiment 
was done in triplicate.

Cell proliferation was determined 48 h after 
transfection using the WST-1 colorimetric assay (Roche 
Molecular Biochemicals) following the manufacturer’s 
instructions.

Immunoblotting

GH3 cells were lysed in ice-cold RIPA lysis buffer 
supplemented with protease and phosphatase 
inhibitor cocktail (Roche). Proteins were separated by 
polyacrylamide gel electrophoresis and blotted using 
standard procedures (BioRad). Primary antibodies were 
against LATS1 (C66B5, #3477), YAP/TAZ (D24E4, #8418) 
and phosphorylated pYAP(S127) (D9W2I, #13008) (all 
rabbit mAb, Cell Signaling) and β-actin (mouse mAb, 
Chemicon). Anti-rabbit or anti-mouse horseradish 
peroxidase-conjugated secondary antibodies were used 
(Cell Signaling) and signal was developed with enhanced 
chemiluminescent solution (Roche). Each experiment 
was carried out in duplicate.
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Results

YAP and TAZ are expressed in human foetal and 
adult pituitaries

To investigate the Hippo pathway activity in the human 
pituitary during development and adulthood, we 
determined the expression of its downstream effectors 
YAP and TAZ. In the human foetal pituitary at 17 weeks, 
high expression of both was observed in the posterior and 
anterior lobe within the epithelial remnants of Rathke’s 
pouch (marginal zone epithelium, MZE) that highly 
express the stem cell marker SOX2; the main body of 

the anterior lobe presented with moderate YAP and TAZ 
immunoreactivity (Fig. 1B). Both proteins mainly localised 
in the nucleus as well as the cytoplasm (arrowheads). 
The nuclear localisation was more prominent in the 
case of TAZ (arrowheads) throughout the MZE, similar 
to SOX2 expression. Nuclear immunoreactivity in the 
MZE was also observed for YAP, albeit to a lesser extent. 
The core Hippo kinases LATS1/2 phosphorylate YAP on 
serines S61, S109, S127, S164 and S381, leading to its 
inactivation through cytoplasmic retention (S127) and 
degradation (Zhao et  al. 2007, 2010). To determine if 
the kinases are active, we performed immunostaining 

Figure 1
YAP and TAZ are expressed in the human pituitary. (A) Haematoxylin and Eosin staining of sequential frontal sections of human foetal and adult 
pituitaries. Asterisks denote cysts between the anterior and posterior pituitary. (B) Frontal sections of foetal pituitaries at 17 weeks were stained for SOX2 
(pituitary stem/progenitor marker), total TAZ, total YAP and pYAP(S127) marking inactive YAP. Arrowheads indicate examples of cells with nuclear protein. 
(C) Localisation of SOX2, TAZ, YAP and pYAP proteins in the adult anterior pituitary. Arrowheads indicate examples of cells with nuclear protein, and 
examples of cytoplasmic localisation for pYAP in (B). AL, anterior lobe; MZE, marginal zone epithelium; Par, parenchyma; PL, posterior lobe. 

https://doi.org/10.1530/ERC-18-0330
https://erc.bioscientifica.com © 2019 The authors

Printed in Great Britain
Published by Bioscientifica Ltd.

This work is licensed under a Creative Commons 
Attribution 4.0 International License.

https://doi.org/10.1530/ERC-18-0330
https://erc.bioscientifica.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


21926:1Endocrine-Related 
Cancer

P Xekouki et al. YAP/TAZ in pituitary tumours

against pYAP(S127) and observed strong cytoplasmic 
as well as nuclear localisation in both the epithelium 
and parenchyma (arrowheads), suggesting that LATS 
kinases are active during embryonic development. These 
observations were confirmed in further foetal pituitary 
samples at 17 and 14 weeks of gestation (Supplementary 
Fig. 1). To determine if expression of YAP and TAZ persists 
in the adult pituitary, we analysed immunoreactivities in 
adult pituitaries of advanced age (n = 4) (Fig. 1C). Strong 
nuclear TAZ staining persisted both in cells of the MZE and 
parenchyma, following the expression pattern of SOX2. 
YAP immunoreactivity was predominantly cytoplasmic 
in the MZE, whilst nuclear staining was occasionally 
observed in the parenchyma. Staining against pYAP(S127) 
persisted in the adult pituitary indicating the presence of 
an active Hippo cascade during adulthood. In summary, 
YAP and TAZ are expressed in the developing and adult 
human pituitary, where LATS kinases are active.

Expression of YAP and TAZ in pituitary tumours

We next sought to determine the expression patterns of 
YAP and TAZ in human pituitary tumours. In human 

craniopharyngiomas, which are composed mainly of 
non-endocrine cells, the expression of SOX2/SOX9 (both 
progenitor/stem cell markers) has been well documented 
in both the papillary type (PCP), harbouring MAPK 
pathway mutations as well as the adamantinomatous 
type (ACP) that harbour CTNNB1 mutations (encoding 
β-catenin) (Hölsken et al. 2014, Thimsen et al. 2017, Haston 
et al. 2017). Strong YAP and TAZ stainings were observed 
in all PCPs tested and were predominantly nuclear in 
the basal cells and suprabasal squamous epithelium 
(asterisks in Fig. 2A), described to robustly express SOX2 
(Haston et al. 2017) (Fig. 2A and Table 1). Strong nuclear 
staining for YAP and TAZ was observed in all five ACPs, 
both in whorl-like formations described to accumulate 
β-catenin (asterisks in Fig. 2B) as well as in the palisading 
epithelium (arrows in Fig. 2B). Null-cell pituitary tumours 
do not show immunoreactivity for any of the pituitary 
hormones, although there is evidence that in their 
majority, they express lineage-specific transcription 
factors (Mete & Lopes 2017, Nishioka & Inoshita 2018). 
YAP and TAZ expression was variable and was subdivided 
into three different groups based on a semiquantitative 
scoring system as described in the methods (Fig.  2C, 

Figure 2
Expression of YAP and TAZ in non-secreting pituitary tumours. (A) Representative immunostaining against TAZ, YAP and pYAP(S127) in samples of papillary 
craniopharyngioma (PCP). Arrowheads denote examples of nuclear staining; asterisks, the suprabasal squamous epithelium. (B) Representative 
immunostaining against TAZ, YAP and pYAP(S127) in samples of adamantinomatous craniopharyngioma (ACP). Arrowheads indicate nuclear staining; 
arrows, the palisading epithelium; asterisks, characteristic whorl-like cluster cells. (C) Immunostaining against TAZ, YAP and pYAP(127) on null cell pituitary 
adenomas, showing representative staining from tumours classified as Type A, B and C. Arrowheads indicate nuclear staining. Scale bars 100 µm.
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Table 1). Four out of ten null-cell tumours displayed high 
immunoreactivity consistent with Type A, three were 
identified as Type B and three as Type C. There was no 
obvious correlation of the immunohistochemical data 
to age at presentation, rate of recurrence, Ki-67 index or 
p53 levels, although the study cohort is low for this to be 
accurately determined (Table 2).

Altogether our data from normal pituitaries and 
pituitary tumours suggest that high levels of nuclear YAP 
/TAZ are associated with a more uncommitted state in the 
anterior pituitary, consistent with previous mouse data 
(Lodge et  al. 2016). To explore this hypothesis further, 
we extended our study to include 16 prolactinomas, the 
most common type of secreting pituitary tumours, 10 
somatotropinomas and 18 corticotropinomas. YAP and 
TAZ immunoreactivities were observed at much lower 
levels than in craniopharyngiomas and null-cell pituitary 
adenomas. Based on our semiquantitative scoring system, 
two types of staining were detected in prolactinomas: 
Type D, characterised by cytoplasmic YAP/TAZ in 20–50% 
of tumour cells, and Type E, characterised by the absence 

of staining or weak cytoplasmic in less than 20% of 
the tumour (Fig.  3A). In the majority of prolactinomas  
(11 out of 16), YAP/TAZ staining was classified as Type E, 
where most of the tissue was negative for YAP and TAZ. 
In corticotropinomas, staining ranged from Type B to  
Type D (Supplementary Fig. 3A) and in somatotropinomas 
from Type B to Type E (Supplementary Fig. 3B). Results are 
summarised in Table 1. To determine if YAP/TAZ become 
elevated in aggressive/invasive tumours, we analysed their 
expression in one PRL-secreting carcinoma. This tumour 
appeared entirely negative for both proteins (Fig.  3B, 
Region 1) and only one area included cells with nuclear, 
but not cytoplasmic TAZ staining and cytoplasmic YAP 
immunoreactivity, similar to adult normal anterior 
pituitary (Fig.  3B, Region 2). Therefore, YAP/TAZ levels 
are low in differentiated tumours, and in the single 
malignant prolactinoma sample analysed. In summary, 
robust expression levels and more abundant nuclear 
localisation of YAP/TAZ are seen in non-secreting tumour 
types, harbouring a less differentiated cellular component, 
compared to tumours composed of differentiated cells.

Table 1 Classification of YAP and TAZ staining in pituitary tumours.

Tumour type Classification Number TAZ YAP

Normal pituitary Type B 4 +++ n c ++ n c
PCP Type A 6 ++++ n c ++++ or +++ n c
ACP Type A 5 ++++ n c ++++ or +++ n c
Null-cell adenoma Type A 4 ++++ n c ++++ or +++ n c

Type B 4 +++ n c ++ n c
Type C 2 ++ or + c ++ or + c

Corticotropinoma Type B 5 +++ n c ++ n c
Type C 7 ++ or + c ++ or + c
Type D 6 + c + c

Somatotropinoma Type B 2 +++ n c ++ n c
Type C 2 ++ or + c ++ or + c
Type D 5 + c + c
Type E 1 − −

Prolactinoma Type D 11 + c + c
Type E 5 − −

−, negative staining; +, positive staining; ACP, adamantinomatous craniopharyngioma; c, cytoplasmic; n, nuclear; PCP, papillary craniopharyngioma.

Table 2 Related data for null-cell pituitary adenomas.

Sample Type Histology Ki-67 Notable characteristics p53 status Age at presentation Sex

Null1 A Null-cell adenoma 2–3% – 46 F
Null2 A Null-cell adenoma 3–5% 2–3% 27 F
Null3 A Null-cell adenoma 3–5% >1% 48 F
Null4 A Null-cell adenoma <3% – 36 F
Null5 B Null-cell adenoma 5–7% recurrence <1% 41 F
Null6 B Null-cell adenoma 2–3% – 73 F
Null7 B Null-cell adenoma 2–3% – 31 F
Null8 B Null-cell adenoma 1–2% – 49 F
Null9 C Null-cell adenoma <2% Necrotic areas – 48 M
Null10 C Null-cell adenoma 2.5% – 33 F
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Figure 3
Expression of YAP and TAZ in prolactin-secreting pituitary tumours. (A) Representative immunostaining against TAZ, YAP and pYAP(S127) in prolactinoma 
samples. Based on the staining patterns tumours were classified as Type D or Type E. (B) Expression of TAZ and YAP in two regions of a prolactin-secreting 
carcinoma. Scale bars 100 µm. 
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Lats1 knockdown reduces Gh and Prl promoter 
activity in GH3 cells in vitro

Our observations of a robust decrease or loss of YAP/TAZ 
in hormone-secreting pituitary tumours, compared to 
normal pituitary and non-secreting tumours, suggest a role 
for the Hippo kinases in promoting a hormone-secreting 
phenotype and/or repressing a progenitor/stem-like state. 
To this end, employing RNA interference, we inhibited 
LATS1, since it directly phosphorylates and marks YAP 
and TAZ for cytoplasmic retention and degradation. 
Knockdown of Lats1 in rat mammosomatotropinoma 
GH3 cells reduced YAP phosphorylation at S127 and 
increased YAP and TAZ protein levels (Fig. 4A). This was 
accompanied by significant suppression of basal Gh and Prl 
promoter activity (Fig. 4B). Lats1 inhibition also reduced 
activation of the Gh promoter following stimulation with 
forskolin compared to scrambled siRNA control (Fig. 4C). 
Lats1 inhibition did not affect GH3 cell proliferation 
(Fig. 4D). These in vitro findings indicate that deregulation 

of the Hippo pathway may repress pituitary hormone 
synthesis and compromise the pituitary cell response to 
physiological hormonal stimuli.

Discussion

Initially described in Drosophila, the Hippo pathway is 
now recognised as one of the most conserved molecular 
pathway in all metazoans, which is highly involved in fine-
tuning of organ size through inhibition of proliferation 
and promotion of differentiation and cell death (Yu 
et  al. 2015) with a contribution to tumourigenesis and 
cancer development (Mo et al. 2014). The present study 
demonstrates for the first time the expression patterns of 
two major downstream effectors of the Hippo pathway, 
YAP and TAZ, in the foetal and adult normal pituitary 
gland and provides evidence of Hippo pathway activity 
during embryonic development that persists into 
adulthood. Interestingly, the YAP/TAZ expression pattern 
is reminiscent of SOX2 in pituitary stem/progenitor 

Figure 4
LATS1 inhibition with RNA interference 
suppresses the promoter activities of anterior 
pituitary hormones. (A) GH3 cells were 
transfected with a scrambled siRNA (control) or 
four different siRNA against rat Lats1 for 48 h. 
Immunoblot shows the knockdown efficacy and 
the impact of decreased LATS1 protein on YAP 
phosphorylation at Ser127 and total YAP and TAZ 
protein levels. (B) Effect of Lats1 knockdown on 
basal Prl and Gh promoter activity. Data are 
luciferase to β-galactosidase ratio, 
means ± standard deviation of three experiments 
(each in triplicate) presented as percentage of 
scrambled control. RLA, relative luciferase 
activity. *P < 0.05 to scrambled vehicle control.  
(C) Effect of Lats1 knockdown on forskolin-induced 
(10 µM, 6 h treatment) Gh promoter activity. Data 
are means ± standard deviation of three 
triplicates and presented as percentage of 
scrambled vehicle control. *P < 0.05 and 
***P < 0.001 vs scrambled vehicle control, 
#P < 0.05 vs siLats1 vehicle control. Veh, vehicle – the 
carrier in which forskolin was diluted. (D) Lats1 
knockdown does not affect cell proliferation 
(WST-1 colorimetric assay). Data are absorbance 
at OD450nm presented as percentage of 
scrambled siRNA control.
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cells recapitulating our previous findings in mice and 
indicating a potential link of the Hippo pathway to the 
stem/progenitor cell state (Lodge et al. 2016).

We investigated the expression of YAP/TAZ in three 
types of non-secreting/non-differentiated pituitary 
tumours: null-cell adenomas, ACPs and PCPs. YAP and 
TAZ were highly expressed in all ACP and PCP tumours. 
The expression pattern was nuclear and occasionally 
cytoplasmic in craniopharyngiomas that harbour known 
genetic mutations in CTNNB1 or BRAF and was located 
to well-characterised tumour compartments known 
to express progenitor markers. ACP tumourigenesis is 
mainly driven by mutations in the CTNNB1 gene that 
encodes for β-catenin, the central regulator of the WNT 
pathway (Sekine et  al. 2002). Gain-of-function alleles 
of BRAF activate the RAS-RAF-MEK-ERK pathway and 
may drive tumourigenesis in PCPs, which appear almost 
exclusively in adults (Brastianos et al. 2014, Larkin et al 
2014). In support of this, a mouse model overexpressing 
BRAF V600E in mouse pituitary precursors leads to 
increased proliferation of SOX2 stem cells and a block 
in differentiation (Haston et al. 2017). Interestingly, both 
pathways were described to crosstalk with the Hippo 
signalling cascade. YAP forms a transcriptional complex 
with β-catenin that is required for tumour transformation 
and survival (Rosenbluh et al. 2012). When core Hippo 
kinases are active, YAP/TAZ are degraded or sequestered 
in the cytosol where they limit WNT-β-catenin signalling 
(Varelas et  al. 2010). In contrast, WNT activation 
induces YAP/TAZ translocation to the nucleus and 
target activation (Attisano & Wrana 2013, Azzolin et al. 
2014). Similarly, RAS signalling activates YAP, and there 
is evidence for involvement of YAP in tumour resistance 
to pharmacological RAF-MEK inhibition (Reddy & Irvine 
2013, Lin et al. 2015, You et al. 2015).

YAP and TAZ were also highly expressed in null-
cell pituitary tumours, but at variable levels. Similar to 
craniopharyngiomas, they also often displayed strong 
nuclear staining. There is mounting evidence that TAZ 
and YAP nuclear localisation correlates with metastatic 
potential, low response to treatment and worse patient 
outcome in several solid tumours (Zanconato et al. 2016). 
The relatively small number of cases did not allow us 
to correlate the pattern of staining with histological or 
clinical data but also, recurrence may happen even after 
years of remission. Based on the recent WHO classification 
for pituitary adenomas, clinical aggressiveness is assessed 
by several clinical parameters such as tumour invasion 
(by MRI studies and/or intraoperative impression), in 
addition to mitotic count and Ki-67 index (Lopes 2017). 

Whether YAP/TAZ may directly promote an oncogenic 
phenotype in the pituitary through activation of genes 
involved in proliferation/survival/invasion directly or 
secondary to other genetic defects like the ones found in 
ACP and PCP is an intriguing possibility that remains to 
be explored.

In contrast to the majority of the non-differentiated 
tumours that often displayed strong nuclear staining, YAP 
/TAZ expression in the hormone-secreting prolactinomas 
was very low or completely absent, suggesting that in the 
human pituitary YAP/TAZ expression may be associated 
with a shift from high to low secretory potential and 
therefore a less differentiated state. Indeed, our in vitro 
model showed that increasing YAP and TAZ expression 
in lactosomatotroph GH3 cells, by knocking down their 
upstream regulator Lats1, dramatically reduces PRL as well 
as GH production without affecting cell proliferation. 
Interestingly in the case of GH, the effect is prominent 
also after cAMP/PKA stimulation with forskolin. These 
data reflect the observations in the Lats1−/− mice, which 
presented with low PRL and GH levels despite their 
hyperplastic pituitaries (St John et  al. 1999). YAP/TAZ 
were shown to repress the differentiated state in other 
tissues (Lee et al. 2016, Yi et al. 2016, Cotton et al. 2017). 
Our data further support this notion and suggest that 
high levels of YAP/TAZ are associated with repression of 
hormone production and therefore a non-differentiated 
/progenitor state.

Treatment of pituitary tumours primarily relies 
on reducing hormone hypersecretion and its effects, 
decreasing the tumour mass and treating for any hormone 
deficiencies resulting from damage of normal pituitary 
tissue. Hippo signalling components and particularly 
YAP/TAZ have recently become attractive targets for 
new anti-cancer treatments (Johnson & Halder 2013, 
Nakatani et al. 2016). Our finding of increased expression 
of YAP/TAZ in non-secreting pituitary tumours reveals a 
previously unsuspected pathogenetic mechanism. Better 
understanding and targeting of the Hippo signalling 
cascade could introduce novel improved treatments for 
these intriguing and hard to manage tumours.

Supplementary data
This is linked to the online version of the paper at https://doi.org/10.1530/
ERC-18-0330.

Declaration of interest
The authors declare that there is no conflict of interest that could be 
perceived as prejudicing the impartiality of the research reported.

https://doi.org/10.1530/ERC-18-0330
https://erc.bioscientifica.com © 2019 The authors

Printed in Great Britain
Published by Bioscientifica Ltd.

This work is licensed under a Creative Commons 
Attribution 4.0 International License.

https://doi.org/10.1530/ERC-18-0330
https://doi.org/10.1530/ERC-18-0330
https://doi.org/10.1530/ERC-18-0330
https://erc.bioscientifica.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


22426:1Endocrine-Related 
Cancer

P Xekouki et al. YAP/TAZ in pituitary tumours

Funding
This work was supported by the Medical Research Council (MR/L016729/1) 
and a Lister Institute Research Prize to C L A. E J L, A S, S R B, M T and C L 
A were supported by the Deutsche Forschungsgemeinschaft (DFG) within 
the CRC/Transregio 205/1 (Project A06 to C L A and S R B and B17 to M T) 
and CRC/Transregio 127/2, as well as GRK 2251.

Author contribution statement
Concept and design of experiments: P X, M T, C L A. Provision of samples: 
J M, J R A, A S, T S J, V P, R L, J F. Acquisition of data: P X, E J L, M T, J M, A S. 
Analysis and interpretation of data: P X, E J L, J M, M T, C L A. Writing and 
review of the manuscript: P X, E J L, M T, C L A. Supervision of the work: S 
A, S R B, M T, C L A.

Acknowledgements
The authors thank the patients, their families and clinicians who have 
donated tissues to research. They thank the Childhood Cancer and 
Leukaemia Group (CCLG) Tissue Bank for access to samples, and 
contributing CCLG Centres, including members of the ECMC Paediatric 
network. The CCLG Tissue Bank is funded by Cancer Research UK and 
CCLG. The human embryonic and foetal material was provided by the 
Joint MRC/Wellcome Trust (099175/Z/12/Z) Human Developmental Biology 
Resource. Tissue samples were also obtained from Plymouth Hospitals 
NHS Trust as part of the UK Brain Archive Information Network (BRAIN 
UK), which is funded by the Medical Research Council and brainstrust. 
According to UK Research Councils’ Common Principles on Data Policy, all 
data supporting this study is openly available at https://doi.org/10.1530/
ERC-18-0330. Thank you to Prof. Juan Pedro Martinez-Barbera for critical 
reading of the manuscript.

References
Andoniadou CL, Gaston-Massuet C, Reddy R, Schneider RP, Blasco MA, 

Le Tissier P, Jacques TS, Pevny LH, Dattani MT & Martinez-Barbera JP 
2012 Identification of novel pathways involved in the pathogenesis 
of human adamantinomatous craniopharyngioma. Acta 
Neuropathologica 124 259–271. (https://doi.org/10.1007/s00401-012-
0957-9) 

Attisano L & Wrana JL 2013 Signal integration in TGF-β, WNT, and 
Hippo pathways. F1000Prime Reports 5 17. (https://doi.org/10.12703/
P5-17) 

Azzolin L, Panciera T, Soligo S, Enzo E, Bicciato S, Dupont S, Bresolin S, 
Frasson C, Basso G, Guzzardo V, et al. 2014 YAP/TAZ incorporation 
in the β-catenin destruction complex orchestrates the Wnt response. 
Cell 158  
157–170. (https://doi.org/10.1016/j.cell.2014.06.013) 

Brastianos PK, Taylor-Weiner A, Manley PE, Jones RT, Dias-Santagata D, 
Thorner AR, Lawrence MS, Rodriguez FJ, Bernardo LA, Schubert L, 
et al. 2014 Exome sequencing identifies BRAF mutations in papillary 
craniopharyngiomas. Nature Genetics 46 161–165. (https://doi.
org/10.1038/ng.2868) 

Chanson P, Raverot G, Castinetti F, Cortet-Rudelli C, Galland F, Salenave 
S, Cazabat L, Foubert L, Bonneville JF, Gaillard S, et al. 2015 
Management of clinically non-functioning pituitary adenoma. 
Annales d’Endocrinologie 76  
239–247. (https://doi.org/10.1016/j.ando.2015.04.002) 

Cotton JL, Li Q, Ma L, Park JS, Wang J, Ou J, Zhu LJ, Ip YT, Johnson RL 
& Mao J 2017 YAP/TAZ and hedgehog coordinate growth and 
patterning in gastrointestinal mesenchyme. Developmental Cell 43 
35–47.e4. (https://doi.org/10.1016/j.devcel.2017.08.019) 

Haston S, Pozzi S, Carreno G, Manshaei S, Panousopoulos L, Gonzalez-
Meljem JM, Apps JR, Virasami A, Thavaraj S, Gutteridge A, et al. 
2017 MAPK pathway control of stem cell proliferation and 
differentiation in the embryonic pituitary provides insights into the 
pathogenesis of papillary craniopharyngioma. Development 144 
2141–2152. (https://doi.org/10.1242/dev.150490) 

Hölsken A, Stache C, Schlaffer SM, Flitsch J, Fahlbusch R, Buchfelder 
M & Buslei R 2014 Adamantinomatous craniopharyngiomas 
express tumor stem cell markers in cells with activated Wnt 
signaling: further evidence for the existence of a tumor stem  
cell niche? Pituitary 17 546–556. (https://doi.org/10.1007/ 
s11102-013-0543-8) 

Di Ieva A, Rotondo F, Syro L V., Cusimano MD & Kovacs K 2014 
Aggressive pituitary adenomas—diagnosis and emerging treatments. 
Nature Reviews Endocrinology 10 423–435. (https://doi.org/10.1038/
nrendo.2014.64) 

Johnson R & Halder G 2013 The two faces of Hippo: targeting the 
Hippo pathway for regenerative medicine and cancer treatment. 
Nature Reviews Drug Discovery 13 63–79. (https://doi.org/10.1038/
nrd4161) 

Larkin SJ, Preda V, Karavitaki N, Grossman A, & Ansorge O 2014 BRAF 
V600E mutations are characteristic for papillary craniopharyngioma 
and may coexist with CTNNB1-mutated adamantinomatous 
craniopharyngioma. Acta Neuropathologica 127 927–929. (https://doi.
org/10/1007/s00401-014-1270-6) 

Lee DH, Park JO, Kim TS, Kim SK, Kim TH, Kim MC, Park GS, Kim JH, 
Kuninaka S, Olson EN, et al. 2016 LATS-YAP/TAZ controls lineage 
specification by regulating TGFβ signaling and Hnf4α expression 
during liver development. Nature Communications 7 11961. (https://
doi.org/10.1038/ncomms11961) 

Lin L, Sabnis AJ, Chan E, Olivas V, Cade L, Pazarentzos E, Asthana S, 
Neel D, Yan JJ, Lu X, et al. 2015 The Hippo effector YAP promotes 
resistance to RAF- and MEK-targeted cancer therapies. Nature Genetics 
47 250–256. (https://doi.org/10.1038/ng.3218) 

Lodge EJ, Russell JP, Patist AL, Francis-West P & Andoniadou CL 2016 
Expression analysis of the Hippo cascade indicates a role in pituitary 
stem cell development. Frontiers in Physiology 7 114. (https://doi.
org/10.3389/fphys.2016.00114) 

Lopes MBS 2017 The 2017 World Health Organization classification of 
tumors of the pituitary gland: a summary. Acta Neuropathologica 134 
521–535. (https://doi.org/10.1007/s00401-017-1769-8) 

Marques P & Korbonits M 2017 Genetic aspects of pituitary adenomas. 
Endocrinology and Metabolism Clinics of North America 46 335–374. 
(https://doi.org/10.1016/j.ecl.2017.01.004) 

Mete O & Lopes MB 2017 Overview of the 2017 WHO classification of 
pituitary tumors. Endocrine Pathology 28 228–243. (https://doi.
org/10.1007/s12022-017-9498-z) 

Mo J-S, Park HW & Guan K-L 2014 The Hippo signaling pathway in 
stem cell biology and cancer. EMBO Reports 15 642–656. (https://doi.
org/10.15252/embr.201438638) 

Molitch ME 2017 Diagnosis and treatment of pituitary adenomas. JAMA 
317 516. (https://doi.org/10.1001/jama.2016.19699) 

Nakatani K, Maehama T, Nishio M, Goto H, Kato W, Omori H, Miyachi 
Y, Togashi H, Shimono Y & Suzuki A 2016 Targeting the Hippo 
signalling pathway for cancer treatment. Journal of Biochemistry 161 
mvw074. (https://doi.org/10.1093/jb/mvw074) 

Nishioka H & Inoshita N 2018 New WHO classification of pituitary 
adenomas (4th edition): assessment of pituitary transcription factors 
and the prognostic histological factors. Brain Tumor Pathology 35  
57–61. (https://doi.org/10.1007/s10014-017-0307-7) 

Reddy BVVG & Irvine KD 2013 Regulation of Hippo Signaling by  
EGFR-MAPK Signaling through Ajuba Family Proteins. Developmental 
Cell 24 451–471. (https://doi.org/10.1016/j.devcel.2013.01.020) 

Rosenbluh J, Nijhawan D, Cox AG, Li X, Neal JT, Schafer EJ, Zack TI, 
Wang X, Tsherniak A, Schinzel AC, et al. 2012 β-Catenin-driven 
cancers require a YAP1 transcriptional complex for survival and 

https://doi.org/10.1530/ERC-18-0330
https://erc.bioscientifica.com © 2019 The authors

Printed in Great Britain
Published by Bioscientifica Ltd.

This work is licensed under a Creative Commons 
Attribution 4.0 International License.

https://doi.org/10.1530/ERC-18-0330
https://doi.org/10.1530/ERC-18-0330
https://doi.org/10.1007/s00401-012-0957-9
https://doi.org/10.1007/s00401-012-0957-9
https://doi.org/10.12703/P5-17
https://doi.org/10.12703/P5-17
https://doi.org/10.1016/j.cell.2014.06.013
https://doi.org/10.1038/ng.2868
https://doi.org/10.1038/ng.2868
https://doi.org/10.1016/j.ando.2015.04.002
https://doi.org/10.1016/j.devcel.2017.08.019
https://doi.org/10.1242/dev.150490
https://doi.org/10.1007/s11102-013-0543-8
https://doi.org/10.1007/s11102-013-0543-8
https://doi.org/10.1038/nrendo.2014.64
https://doi.org/10.1038/nrendo.2014.64
https://doi.org/10.1038/nrd4161
https://doi.org/10.1038/nrd4161
https://doi.org/10/1007/s00401-014-1270-6
https://doi.org/10/1007/s00401-014-1270-6
https://doi.org/10.1038/ncomms11961
https://doi.org/10.1038/ncomms11961
https://doi.org/10.1038/ng.3218
https://doi.org/10.3389/fphys.2016.00114
https://doi.org/10.3389/fphys.2016.00114
https://doi.org/10.1007/s00401-017-1769-8
https://doi.org/10.1016/j.ecl.2017.01.004
https://doi.org/10.1007/s12022-017-9498-z
https://doi.org/10.1007/s12022-017-9498-z
https://doi.org/10.15252/embr.201438638
https://doi.org/10.15252/embr.201438638
https://doi.org/10.1001/jama.2016.19699
https://doi.org/10.1093/jb/mvw074
https://doi.org/10.1007/s10014-017-0307-7
https://doi.org/10.1016/j.devcel.2013.01.020
https://doi.org/10.1530/ERC-18-0330
https://erc.bioscientifica.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


22526:1Endocrine-Related 
Cancer

P Xekouki et al. YAP/TAZ in pituitary tumours

tumorigenesis. Cell 151 1457–1473. (https://doi.org/10.1016/j.
cell.2012.11.026) 

Sekine S, Shibata T, Kokubu A, Morishita Y, Noguchi M, Nakanishi Y, 
Sakamoto M & Hirohashi S 2002 Craniopharyngiomas of 
adamantinomatous type harbor beta-catenin gene mutations. 
American Journal of Pathology 161  
1997–2001. (https://doi.org/10.1016/S0002-9440(10)64477-X) 

St John MA, Tao W, Fei X, Fukumoto R, Carcangiu ML, Brownstein DG, 
Parlow AF, McGrath J & Xu T 1999 Mice deficient of Lats1 develop 
soft-tissue sarcomas, ovarian tumours and pituitary dysfunction. 
Nature Genetics 21 182–186. (https://doi.org/10.1038/5965) 

Thimsen V, John N, Buchfelder M, Flitsch J, Fahlbusch R, Stefanits H, 
Knosp E, Losa M, Buslei R & Hölsken A 2017 Expression of SRY-
related HMG box transcription factors (Sox2) 2 and 9 in 
craniopharyngioma subtypes and surrounding brain tissue. Scientific 
Reports 7 15856. (https://doi.org/10.1038/s41598-017-15977-3) 

Varelas X, Miller BW, Sopko R, Song S, Gregorieff A, Fellouse FA, Sakuma 
R, Pawson T, Hunziker W, McNeill H, et al. 2010 The Hippo pathway 
regulates Wnt/beta-catenin signaling. Developmental Cell 18 579–591. 
(https://doi.org/10.1016/j.devcel.2010.03.007) 

Winkelmann J, Pagotto U, Theodoropoulou M, Tatsch K, Saeger W, 
Müller A, Arzberger T, Schaaf L, Schumann EM, Trenkwalder C, et al. 
2002 Retention of dopamine 2 receptor mRNA and absence of the 
protein in craniospinal and extracranial metastasis of a malignant 
prolactinoma: a case report. European Journal of Endocrinology 146 
81–88. (https://doi.org/10.1530/eje.0.1460081) 

Würth R, Barbieri F, Pattarozzi A, Gaudenzi G, Gatto F, Fiaschi P, Ravetti 
J-L, Zona G, Daga A, Persani L, et al. 2017 Phenotypical and 
pharmacological characterization of stem-like cells in human 

pituitary adenomas. Molecular Neurobiology 54 4879–4895. (https://
doi.org/10.1007/s12035-016-0025-x) 

Yi J, Lu L, Yanger K, Wang W, Sohn BH, Stanger BZ, Zhang M, Martin JF, 
Ajani JA, Chen J, et al. 2016 Large tumor suppressor homologs 1 and 
2 regulate mouse liver progenitor cell proliferation and maturation 
through antagonism of the coactivators YAP and TAZ. Hepatology 64  
1757–1772. (https://doi.org/10.1002/hep.28768) 

You B, Yang Y-L, Xu Z, Dai Y, Liu S, Mao J-H, Tetsu O, Li H, Jablons DM 
& You L 2015 Inhibition of ERK1/2 down-regulates the Hippo/YAP 
signaling pathway in human NSCLC cells. Oncotarget 6 4357–4368. 
(https://doi.org/10.18632/oncotarget.2974) 

Yu FX, Zhao B & Guan KL 2015 Hippo pathway in organ size control, 
tissue homeostasis, and cancer. Cell 163 811–828. (https://doi.
org/10.1016/j.cell.2015.10.044) 

Zanconato F, Cordenonsi M & Piccolo S 2016 YAP/TAZ at the roots of 
cancer. Cancer Cell 29 783–803. (https://doi.org/10.1016/j.
ccell.2016.05.005) 

Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu J, Li 
L, et al. 2007 Inactivation of YAP oncoprotein by the Hippo pathway 
is involved in cell contact inhibition and tissue growth control. 
Genes and Development 21 2747–2761. (https://doi.org/10.1101/
gad.1602907) 

Zhao B, Li L, Lei Q & Guan KL 2010 The Hippo-YAP pathway  
in organ size control and tumorigenesis: an updated version.  
Genes and Development 24 862–874. (https://doi.org/10.1101/
gad.1909210) 

Zhao B, Tumaneng K & Guan K-L 2011 The Hippo pathway in organ 
size control, tissue regeneration and stem cell self-renewal. Nature 
Cell Biology 13 877–883. (https://doi.org/10.1038/ncb2303) 

Received in final form 19 July 2018
Accepted 21 August 2018
Accepted Preprint published online 21 August 2018

https://doi.org/10.1530/ERC-18-0330
https://erc.bioscientifica.com © 2019 The authors

Printed in Great Britain
Published by Bioscientifica Ltd.

This work is licensed under a Creative Commons 
Attribution 4.0 International License.

https://doi.org/10.1016/j.cell.2012.11.026
https://doi.org/10.1016/j.cell.2012.11.026
https://doi.org/10.1016/S0002-9440(10)64477-X
https://doi.org/10.1038/5965
https://doi.org/10.1038/s41598-017-15977-3
https://doi.org/10.1016/j.devcel.2010.03.007
https://doi.org/10.1530/eje.0.1460081
https://doi.org/10.1007/s12035-016-0025-x
https://doi.org/10.1007/s12035-016-0025-x
https://doi.org/10.1002/hep.28768
https://doi.org/10.18632/oncotarget.2974
https://doi.org/10.1016/j.cell.2015.10.044
https://doi.org/10.1016/j.cell.2015.10.044
https://doi.org/10.1016/j.ccell.2016.05.005
https://doi.org/10.1016/j.ccell.2016.05.005
https://doi.org/10.1101/gad.1602907
https://doi.org/10.1101/gad.1602907
https://doi.org/10.1101/gad.1909210
https://doi.org/10.1101/gad.1909210
https://doi.org/10.1038/ncb2303
https://doi.org/10.1530/ERC-18-0330
https://erc.bioscientifica.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Abstract
	Materials and methods
	Tissue specimens
	Immunofluorescence
	Cell culture, transfection and luciferase assays
	Immunoblotting

	Results
	YAP and TAZ are expressed in human foetal and adult pituitaries
	Expression of YAP and TAZ in pituitary tumours
	Lats1 knockdown reduces Gh and Prl promoter activity in GH3 cells in vitro

	Discussion
	Supplementary data
	Declaration of interest
	Funding
	Author contribution statement
	Acknowledgements
	References

