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Industrial robots and cobots are widely deployed in most industrial sectors.

However, robotic programming still needs a lot of time and effort in small batch

sizes, and it demands specific expertise and special training, especially when

various robotic platforms are required. Actual low-code or no-code robotic

programming solutions are exorbitant and meager. This work proposes a novel

approach for no-code robotic programming for end-users with adequate or no

expertise in industrial robotic. The proposed method ensures intuitive and fast

robotic programming by utilizing a finite state machine with three layers of

natural interactions based on hand gesture, finger gesture, and voice

recognition. The implemented system combines intelligent computer vision

and voice control capabilities. Using a vision system, the human could transfer

spatial information of a 3D point, lines, and trajectories using hand and finger

gestures. The voice recognition system will assist the user in parametrizing

robot parameters and interacting with the robot’s state machine. Furthermore,

the proposed method will be validated and compared with state-of-the-art

“Hand-Guiding” cobot devices within real-world experiments. The results

obtained are auspicious, and indicate the capability of this novel approach

for real-world deployment in an industrial context.
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1 Introduction

Human-Robot Collaboration (HRC) has been a prevalent

concept in the industry. Compared to the fully automated

solution in serial production, HRC offers flexibility to meet

the market’s demand for high product variability, diversity,

and even batch size 1 as dictated in the current trend of agile

production concept (Chryssolouris et al. (2012)). However,

reconfiguring and reprogramming the production plan with

industrial robots are technical bottlenecks for end-users

without or with adequate expertise in robotic programming.

Variety and specific domains in robotic programming

languages are currently serious impediments to robotic system

(re-)deployment in industrial context. Even if an offline

programming method is used, refinement in the robot

program is required and will cost time until the program is

ready to be deployed. An actual survey from state-of-the-art

indicated that the lack of HRC know-how, experiences and

deployment skills are inhibitors in the deployment of HRC

systems. Even though the participants of this survey are de

facto robotic experts with years experience in the deployment

of HRC systems, the results reveal that (re-)configuration of

robotic with conventional programming methods is tedious,

complex, abstruse and time-consuming (Hornung and Wurll

(2022)). Consequently, it triggers a deficiency on productivity

and cost efficiency.

Traditionally, robotic programming is categorized in online

programming methods, such as traditional lead-trough and

walk-trough and offline robotic programming methods, using

software tools as the replacement of the real robot system

[(Hägele et al. (2016)]. In order to achieve simplification in

robotic programming, low- or no-code robotic programming

systems are developed. Different novel approaches based on

various sensor technologies e.g. 3D tracking system,

Augmented Reality (AR), Virtual Reality (VR), Mixed Reality

(XR) and motion capture systems, have emerged over the years.

Hence, human natural communication modalities substitute

prior knowledge of syntaxes and semantics in robotic

programming. This concept is known as Programming by

Demonstration (PbD) (Billard et al. (2008)) and is also known

as Learning fromDemonstration (Argall et al. (2009); Lee (2017);

Ravichandar et al. (2020)). This approach aims to enable non-

robotic experts to teach their robots by demonstrating the desired

robots’ behavior or movement in the context of the production

process.

Since no expertise to understand a specific robotic

programming language is required from the end-user side,

robot learning algorithms or strategies are developed to enable

the robotic system to understand natural human communication

modalities. Thus, it is essential to consider the technological

aspects and human-centric issues such as usability and

intuitiveness of the interaction between the human and the

system. In order to capture, interpret, and understand human

instructions accurately and robustly in the context of industrial

processes, a novel approach for no-code programming by

combining voice and hand gestures is proposed in this work.

This combination enables a natural way for humans to interact

with the robotic system. As a result, the robotic program can be

deployed fast and agile in different industrial scenarios with

different robotic systems by applying the proposed architecture

in this work. The following section will present an overview of the

state-of-the-art. Section 3 will introduce the proposed approach

in detail, while section 4 will discuss the implementation of the

proposed system. Section 5 will focus on the analysis of the

implemented system. Finally, the last section will focus on the

conclusion and a short outlook on potential future work.

2 Related works

The programming process entails providing a robot with a

new ability to understand the state of the environment and

perform actions that advance the system towards a process

context. Conventionally, the online programming methods use

a teach pendant to move a robot through the desired motion

profile by jogging. The robot movement is stored in the robot

controller and can be retrieved later. Even though the method

seems to be simple and demands less expertise, online

programming is suitable for simple repetitive tasks, e.g.

industrial processes with simple movement profiles and

geometric workpieces. When changes occur, adaptation to the

robotic program is required. Hence, this approach is only suitable

for production with large lot sizes. The frequent reconfiguration

is tedious, unaffordable and time-consuming for small and

medium enterprises with smaller batch sizes (Dietz et al. (2012)).

Offline robotic programming methods are deployed to

replace the online robotic programming methods (Neto and

Mendes (2013)). In offline programming methods, a virtual

environment representing the robot work cell is created to

program the robot’s behaviour and motion. The robot

programmer can generate a robot program off-site via offline

programming methods. Hence production downtime can be

avoided during the programming phase. Extendable functions

for robotic programming, e.g. path planning and control system

for complex production processes, are embedded in most offline

programming tools (Beck et al. (2021); Funes-Lora et al. (2021)).

A virtual robot controller (VRC) simulates the exact robot

behaviour for a specific robot platform in the virtual

environment. In many cases, the virtual environment

mismatches the environment. For high-precision applications,

adjustments in the robotic program must be performed to

eliminate the deviations in transferring the robot program to

the actual robot controller (Angelidis and Vosniakos (2014)).

With the rise of collaborative robots, the perspective of

robotic programming shifted in the last decade. Safety and

ease of use are crucial factors in developing collaborative
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robot systems. In many collaborative robot systems, hand-

guiding control methods are deployed to accelerate robotic

teaching compared to traditional methods (Massa et al.

(2015)). In the PbD context, teaching via hand-guiding

control is used to demonstrate the robot behaviour using a

kinesthetic teaching process. Hand-guiding control is specified

in actual standards of industrial robotic systems (DIN ISO/TS

15066 (2017); DIN EN ISO 10218-1 (2021); DIN EN ISO 10218-

2 (2012)). In recent years, hand-guiding controls have been

implemented in many industrial applications, e.g. robotic

gluing (Iturrate et al. (2021)), assembly (Liu et al. (2021)),

polishing (Kana et al. (2021)), welding (Zhang et al. (2019)),

surface cleaning (Elliott et al. (2017)), Pick-and-Place or

manipulation (Peng et al. (2018)). Despite the ease of hand-

guiding teaching methods, these hand-guiding demands medium

to high physical workload to move the robot joints. To improve

users’ ergonomics, algorithms, e.g. gravity compensation and

variable stiffness, are developed to reduce the workload in

kinesthetic teaching (Infante and Kyrki (2011); Wrede et al.

(2013); Tykal et al. (2016)). The compensation algorithms

mentioned above utilize dynamic parameters of the robotic

system. In the implementation, this information is inaccessible

to the robot manufacturers. The accuracy of the taught robotic

path via kinesthetic teaching depends on the dexterity of the end-

user. Hand tremor and lack of force in programming affect the

quality and the precision of the robot path (Massa et al. (2015)).

In order to compromise the physical workload in the kinesthetic

teaching process, the teleoperation concepts are introduced

where the users can manipulate the robot in real-time by

using their gestures or body movements. In general, the

teleoperation approaches are performed by utilizing different

type of haptic sensors such as mid-air haptic devices (Du and

Zhang (2014)), electroencephalograms (EEGs) (Yang et al.

(2018a)) and joysticks (Sanchez-Diaz et al. (2019)).

Strategies such as teleoperation, observation and imitation

are used to transfer human knowledge into robotic platforms.

Vision-based systems, speech recognition systems, AR, VR and

XR technologies are developed to accelerate low-code or no-code

robotic programming methods (El Zaatari et al. (2019); Villani

et al. (2018)). In low-code programming methods, adequate

know-how in a robot programming language is still required.

As a result, the reconfiguration of the robot program is time

consuming. Compared to low-code programming, no-code

robotic programming eliminates the barriers by allowing the

user to interact with or move the robot using natural interactions,

e.g., voice, gesture or haptic. In recent works from state-of-the-

art, vision-based systems are exploited in many intuitive

programming methods due to the capabilities of vision

systems in environment recognition, object recognition and

gesture recognition. In (Zhang et al. (2020c)), a novel

approach for robot path teaching is developed using a

marker-based vision system with a single RGB-D camera. The

movement of the marker is tracked with the RGB-D camera and

transferred into a motion planner. In the recent works (van

Delden et al. (2012); Akkaladevi et al. (2019, 2020); Ajaykumar

et al. (2021)), several works address intuitive programming

approaches via vision systems for specific processes such as

Pick-and-Place and assembly. In (van Delden et al. (2012)), a

multimodal teaching approach via gesture and voice is developed

for the Pick-and-Place application. This approach allows the user

to select the objects and target position for the manipulation

process by using a deictic finger gesture. Hence, a voice command

is given to the robot to pick or place the object. An intuitive

programming approach by demonstration is developed in

(Akkaladevi et al. (2020)). This approach uses a multi-camera

setup to track the assembly tasks performed by the user. The

human actions and assembly objects will be tracked and used to

build a knowledge representation of the assembly tasks, which

will be sent to the robot system. In (Ajaykumar et al. (2021)), a

marker-based programming strategy is developed by using

objects with markers for the Pick-and-Place scenario. The

robot path is created by manipulating the objects. The object

movement will be tracked and converted as a robot program.

The emergence of AR/XR/VR technologies has influenced

the programming strategies in HRC. In Akkaladevi et al. (2019),

lighthouse sensors are used to demonstrate the user movement in

a complex assembly process with screwing actions. A

programming device is created by combining the lighthouse

sensors for spatial tracking and force and torque sensors to

measure the required torques for the screwing process. A

combination of a vision-based system with augmented reality

technology is introduced in (Lambrecht et al. (2013)). The

augmented reality system allowed the teaching of robot paths

by manipulating spatial objects with hand gestures. Other

approaches with augmented reality technology are developed

in (Soares et al. (2021); Blankemeyer et al. (2018); Bolano et al.

(2020)). In (Soares et al. (2021)), a Microsoft HoloLens 2 1 is to

develop an augmented reality environment. This environment

enables the users to interact with the robot by drawing the robot

path with their fingers. Afterwards the teaching process, the robot

path is transferred into the robot system. In (Blankemeyer et al.

(2018)), an intuitive programming approach for the assembly

process is performed in an augmented reality environment. A

representation of the assembled object is built in the virtual

environment and the assembly process with the virtual object is

demonstrated. Hence, this information will be transferred to the

robot to execute the assembly task. In (Bolano et al. (2020)), an

offline programming method in a virtual reality environment is

developed. The robot trajectory can be generated by

manipulating the virtual robot. Hence, the trajectory will be

sent to a graphic interface to be executed in a real robot. Via the

graphic interface, the movement sequence can be configured.

Besides using one modality to perform intuitive robot

programming, more interactions can be used to increase the

acceptance and comprehensibility of the teaching process. In (Liu

et al. (2020)), a programming approach with the combination of
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sensorless haptic interaction, voice instructions, and hand

gesture commands is used in an assembly scenario. The voice

system helps the user to move the robot TCP. The hand gesture

can perform the fine adjustment of the robot’s position. Hence,

the defined function blocks for the assembly and manipulation

system can be triggered via voice instructions. In (Tirmizi et al.

(2019)), a multimodal programming approach with a voice and

vision system is developed for the Pick-and-Place scenario. The

voice recognition system is utilized to control the system state. A

vision-based object recognition system tracks the objects and

delivers their coordinates that can be used for the manipulation

process. In (Strazdas et al. (2022)), a multimodal system with a

gesture, speech and gaze recognition system is developed for the

Pick-and-Place scenario. The face and gaze recognition system

monitors the interaction context with the system. The voice

recognition system is used to control the robot’s state. Via deictic

gestures, the interaction objects can be chosen. In the recent

multimodal programming approaches, a voice recognition

system is integrated to navigate and control the system state.

A recent study proved that a voice input system could accelerate

robot programming up to two times in comparison to using

traditional input devices (e.g., keyboards, teach pendants)

(Ionescu and Schlund (2021)).

3 Methods

3.1 Proposed architecture

3.1.1 System architecture
The proposed system architecture consists of five modules

which are depicted in Figure 1. The modular system design

allows each functionality to be encapsulated as a subsystem. As a

result, the highest degree of flexibility can be achieved in the

system. The modular system architecture allows a better

comprehensibility of the source codes, the simplification of

the problem solving and the fast integration of new

functionalities (Zirkelbach et al. (2019)).

A combination of hand- and finger-gestures with speech is

proposed in the system architecture to allow a natural interaction

in the teaching process of the robotic system. In comparison to

low-code programming, no-code robotic programming method

via multimodal interaction allows the user to create a robot

program without particular expertise in robotic programming

language. The robot program can be (re-)configured just by using

interaction modalities that human does to communicate with

each other. In this work, the proposed no-code programming is

implemented by recognizing the hand- and finger-gestures via

teaching vision system and recognizing user input via voice in the

speech recognition system.

A camera-based vision system is developed to track and

recognize the user’s hand- and finger gestures in the teaching

phase. The coordinates of the hand- and finger gestures are

tracked and processed with computer vision algorithms to

estimate the spatial pose in defined coordinate system. The

coordinates of the hand or finger will be recorded based on

the given commands and will be used to generate a robot path

after the teaching process. This information will be converted

into a specific robotic programming language before being

transfer into the robotic system. The robotic system is

equipped with a camera system as a perception module for

executing the given robot path. Camera systems are

considered in the proposed approach due to their benefits in

comparison to other motion capture technologies such as (e.g:

IMU- and VR systems). In general camera systems are

markerless, easy to use, easy to set up, and affordable. In

recent years, many reliable algorithms have been developed

and shown potential to improve the camera system’s

performance, even compensating for their drawbacks (El

Zaatari et al. (2019)).

The voice recognition system works as a complement to the

teaching vision system to configure the system states and

FIGURE 1
Proposed system architecture for multimodal no-code robotic programming.
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parameters. In this work, the speech recognition system will

process the user voice into text via Text-To Speech (TTS). Hence,

the articulation of the voice command will trigger a deterministic

action in the finite state machine. When a user says “take point,”

the actual coordinate of the finger will be extracted in the robot

path. Via voice recognition system, efficiency in robotics

programming is achieved by eliminating unnecessary user

interactions via traditional human-machine interfaces (HMIs),

e.g. buttons, keyboards, and mouse clicks. A recent study showed

the potential of a speech recognition system to improve time

efficiency in human-computer interface up to three times (Ruan

et al. (2016)). A graphical HMI is developed to give the user visual

feedback of the system. The HMI can be used as a redundant

input system when the speech recognition system fails due to

transient environmental noises.

3.1.2 System requirement
The system requirements for the proposed approach are

depicted in Tables 5, 6. These system requirements must be

fulfilled to enable fluent, stable and satisfactory interactions in the

proposed robotic teaching process.

3.2 Teaching vision system

A vision-based teaching system is proposed for the main

interaction modality of the novel teaching method. In Figure 2,

the transformation chain for the programming process and

robotic perception system are shown. For the proposed

programming method, the world or target coordinate system

is implemented by using an ArUco marker (Garrido-Jurado et al.

(2014)). In comparison to other fiducial markers, e.g. ARTag,

STag. ArUco marker guarantees high-precision position

detection even in the noisy environments and utilizes low-

computational power (Zakiev et al. (2020); Kalaitzakis et al.

(2020)).

Figure 2A shows the transformation chain of the actual index

finger’s coordinates in the teaching process. The finger

coordinates are captured from the camera system in the pixel

coordinates. Hence, the finger coordinates are transformed in

Cartesian coordinate with respect to the target coordinate system

by using direct linear transformation. As a result, the target

coordinate pTargeti can be expressed with Eq. 1.

pTarget
i � TCamera

Target( )−1pCamera
i (1)

Figure 2B shows the transformation chain for the

homogenous transformation from base to target coordinate

system TTarget
Base for the robot path. This transformation chain

can be mathematically formulated using the equation in (2) and

will be discussed in 3.2.1.3.

TTarget
Base � TEE

BaseT
TCP
EE TCamera

TCP TTarget
Camera (2)

3.2.1 Hand- and finger-gesture recognition
system
3.2.1.1 Hand- and finger-tracking

From the state-of-the-art, machine learning based hand- and

finger-tracking SDKs are MediaPipe (Zhang et al. (2020b)),

OpenPose (Simon et al. (2017)), AWR for hand 3d pose

(Huang et al. (2020)) and MMPose (MMPose-Contributors

(2020)). The mentioned SDKs allow hand- and finger-tracking

by using RGB-image as input. Compared to the traditional

computer vision-based algorithms, machine learning-based

hand- and finger-tracking algorithms deliver better

performance tracking under different lighting conditions,

FIGURE 2
(A) transformation chain for the ith point of the robot path from programming process related to the target coordinate, (B) transformation chain
for robotic perception system from robot base to target coordinate system.
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reflections, skin colours, and transitions over background objects

with colour as human skin. The traditional computer vision

tracking algorithm generally converts the input RGB image into

another colour space. Classification is performed by defining the

tracking colour constraints concerning the tracked object

characteristics. As a result, unexpected objects will not be

recognized. For example, a hand-gesture recognition system

based on HSV colour space was implemented for an

automatic handing-over system between heavy-duty and

human co-workers (Bdiwi et al. (2013b)). This computer

vision-based algorithm showed limits when tracking hand

over reflective objects or objects with colour as human skin.

The main essential aspects for choosing the hand- and finger

tracking SDK are the tracking performance based on the frame

rate (FPS) and robustness under different light conditions.

Besides, the specific hand model and its key points

(landmarks) are considered for this proposed method. In

experiments, MediaPipe constantly delivered 30 FPS with

CPU computing. On the other hand, OpenPose delivered only

5 FPS with CPU computing. Even though the 2× up to 3× frame

rate can be reached using GPU, it was not sufficient to provide

fluent interaction for the proposed method. MediaPipe utilizes a

hand model with 21 key points as shown in Figure 13. The index

finger’s tip (landmark 8) is tracked and used as a reference for the

position in the teaching process. The finger’s orientation is

derived by calculating a Rodrigues vector between two

landmarks in the index finger (landmarks 8 and 7). As a

result, a robot path can be created by drawing splines or

depicting singular points in the teaching process. It should be

taken into account that the inaccuracies of the finger orientation

calculation can occur due to the camera’s limited field of view and

perspective.

3.2.1.2 Pose estimation of the finger landmark

Assuming that the camera is a pinhole model, a direct linear

transformation is used to obtain a projection of a point of interest

in the target coordinate system (3D) into the pixel coordinate

system (2D) or vice versa. Eq. 4 describes the transformation for

rectified image. In this equation, s is the scaling factor, u and v are

the coordinates of a point of interest in pixel coordinate. The

intrinsic parameters of the camera are characterized by fx, fy, cx,

and cy. fx and fy are the x- and y-axis focal length of the camera in

a pixel unit. cx, and cy are the x- and y-axis optical center of the

camera in a pixel unit. Xc, Yc and Zc are the coordinates of the

point of interest in the camera coordinate system. By using a

homogenous transformation matrix between the camera and

target TCamera
Target(4x4), the coordinates of the point of interest in the

camera coordinate system are decomposed into coordinate

points in the target coordinate system (Xw, Yw and Zw). The

transformation matrix between camera and target is

mathematically formulated with Eq. 3.

TCamera
Target 4x4( ) � RCamera

Target 3x3( )‖tCamera
Target 3x3( )[ ] (3)

with RCamera
Target(3x3) the rotation matrix and tCamera

Target(3x1) the

translation vector. The rotation matrix and translation vector

represent the extrensic parameters of the camera.

The target coordinate system in this teaching process is

represented by ArUco marker. All the points taken in the

robot path will be transformed into the target coordinate

system. In general, the 3D-coordinate points of the landmark

(finger) relative to the ArUco marker is calculated by solving (4)

in target coordinate points. Assuming that the finger is moving in

different planes in 3D, the scaling factor s in (4) is varied

according to the current plane parallel to the camera sensor.

Hence, s is equal to the depth information of the finger in the

camera coordinate system zfinger. This information can be derived

directly from the depth image of the camera. The spatial

information of the finger on x- and y-axis of the camera

coordinate are calculated by using the intrinsic parameters fx,

fy, cx and cy as shown in (5). Since diagonal elements of the

transformation matrix between camera and target RCamera−1
Target(3x3) is

always not equal to zero the inverse of this matrix can be

performed normally.

s
u
v
1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � fx 0 cx
0 fy cy
0 0 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ Xc

Yc

Zc

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦

�
fx 0 cx
0 fy cy
0 0 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ RCamera
Target 3x3( )‖tCamera

Target 3x1( )[ ]
Xw

Yw

Zw

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4)

Xw

Yw

Zw

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � RCamera−1
Target 3x3( )

ufinger − cx
fx

zfinger

vfinger − cy
fy

zfinger

zfinger

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− tCamera

Target 3x1( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5)

In this work, the camera image is already rectified and the

intrinsic parameters are accessible from the SDK of the camera.

Otherwise intrinsic calibration can be performed by using

function in OpenCV (Qiao et al. (2013)) or another tool like

MATLAB. The rotation matrix and translation vector with

respect to the marker is calculated via extrinsic calibration.

The calculation of the rotation matrix and translation vector

can be performed by using Perspective-n-Point (PnP) pose

computation using approach (Marchand et al. (2016)) or

OpenCV function for estimating pose of the single ArUco

marker.

3.2.1.3 Image processing of spatial information of the

finger landmark

With the advent of the computer vision algorithm, significant

improvements in the accuracy of the teaching system can be

achieved by implementing proposed algorithms, which are

shown in Figure 3. Since the resolution of the RGB and depth

image are not the same, it is necessary to synchronize the depth
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image with the RGB image. Hence, the RGB image is rectified to

correct the distortion in the image. The depth image processing is

executed in parallel to the RGB-image processing. The spatial

edge filter is used to enhance the smoothness of the depth

reconstructed data by performing a series of 1D horizontal

and vertical passes or iterations (Gastal and Oliveira (2011)).

A temporal filter is implemented to add the missing depth

information when the pixel unit is missing or invalid. The data is

processed in a single pass to adjust the depth values based on

previous frames in this procedure. Hence, a hole-filling filter can

fill the missing depth values using iteration based on the nearest

pixel neighbours (Cho et al. (2020)). In the following step, the

hand tracking method described in 3.2.1.1 is performed to obtain

pixel coordinate u, v of the finger landmark. Simultaneously the

transformation of the pixel coordinate into camera coordinateXc,

Yc, and depth information Zc extraction for the respected pixel

unit of the finger landmark are performed. Then the landmark

coordinate based on camera is fused and transformed into target

coordinate Xw, Yw and Zw by using (5). Since the frame rate of the

tracking system is limited to 30 FPS, stable hand trackingmay not

be available due to the fast movement of the hand. Therefore a

Kalman filter is used to estimate the landmark position when

tracking is missing or invalid in a short period. The kalman filter

function from the OpenCV is utilized in this work. Finally, a

moving average filter is implemented to smoothen the landmark

position. The window size should be parameterized so that the

filter does not cause any frame rate loss.

3.3 Voice recognition system

As alreadymentioned in 3.1.1, the voice recognition system is

used to assist the end-user in changing the system state and

parameter. The end user’s speech commands are extracted as text

via Text-To Speech (TTS). After the feature extraction, the text is

matched and proved with Natural Language Understanding

(NLU) algorithm. In comparison to the traditional voice

recognition system, NLU-based voice recognition system can

deliver better performance and eliminate outliers with different

voice characteristics (e.g., accents and voice profiles). In

traditional voice recognition systems, the recognizer is built

based on three models: 1) acoustic models represent the

acoustic signals of the voice, 2) language models represent the

grammars and semantics of the languages, 3) lexicon models

represent the phonemes and phonetics of word (Karpagavalli and

Chandra (2016)). These models must be developed manually and

FIGURE 3
Proposed image processing method for extraction 3D coordinate of landmark for programming process.
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it is impossible to create a general model that can cover

heterogeneous voice profiles of the speakers. NLU-based voice

recognition systems use deep learning models based on trained

data sets. With this approach, a better performance and more

generic solution for voice recognition can be achieved.

3.4 Robot state controller

The robot state controller controls the behavior of the robot

after receiving the generated robot path from the teaching

process. The robot path from the teaching process is

transformed to target coordinate system. The robot controller

takes Cartesian coordinates at the robot base as reference for the

robot movement. Therefore a coordinate transformation

between the robot base and the target is performed With the

assistance of a vision-based perception system.

It is sufficient to use the perception system to detect the target

and apply the transformation with the target as the reference

coordinate system for the robot. In other words, the robot

movement is executed relative to the marker after the coordinate

system transformation is performed. The transformation problem of

the robot trajectory between robot base coordinate system and target

coordinate system is accomplished by solving the equation of the

transformation chain in (6).

TTarget
Base � TEE

BaseT
TCP
EE TCamera

TCP TTarget
Camera (6)

The homogeneous transformation matrix from Base to EE

TEE
Base and transformation matrix from EE to TCP TEE

Base is

determined known by converting the TCP position from the

robot interface into a 4 × 4 matrix. In order to obtain the

transformation between the camera and TCP TCamera
TCP the

hand-eye calibration problem has to be solved by moving the

robot into several positions. The resulting movements of the eye

(camera) are observed as shown in Figure 4.

At this moment, the transformation matrix between the

base and target TTarget
Base should be equal in each relative

movement of the robot as mathematically formulated

in (7).

TTCP
iBaseT

Camera
TCP TTarget

iCamera � TTCP
jBaseT

Camera
TCP TTarget

jCamera (7)

By converting the (7) into (8), the transformation matrix of

the target to the camera TTarget
Camera can be obtained using the pose

estimating method (PnP) as described in 3.2.1.2.

TTCP
jBase( )−1TTCP

jBaseT
Camera
TCP � TCamera

TCP TTarget
jCamera TTarget

iCamera( )−1 (8)

In this work, numerical approach provided in OpenCV function

is used to solve the hand-eye calibration problem. OpenCV provides

five different calibration methods that differ in the order in which

orientation and translation are estimated. In the following they will

named after their authors and in line with the OpenCV

documentation : Tsai (Tsai and Lenz (1989)), Park (Park and

Martin (1994)), Horaud (Horaud and Dornaika (1995)), Andreff

(Andreff et al. (1999)) and Daniilidis (Daniilidis (1999)). The results

of our hand-eye calibration by applying the five mentioned

algorithms above were converged. It means that the algorithms

delivered the same results with minor offsets from each other.

3.5 Finite state machine

The finite state machine works as the main controller of the

system. The speech commands are used as transition signals for

the state machine. As a result, a deterministic action will be

executed depending on the defined states in the state machine.

FIGURE 4
Hand-eye calibration problem: solving TTCP

Camera using relative TCP and camera movements.
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Explicitly, the implementation of the finite state machine will be

discussed more in detail in 4.3.

3.6 Human machine interface

To provide the user with feedback, a graphical user interface

(GUI) was implemented. Information such as videos from the

teaching and robot perception vision system, given speech

commands, system parameters and statuses is represented in

the GUI. The user interface serves not only as feedback, but also

as a redundant input system. This is intended, for example, when

the speech recognition system is not usable due to too intense

ambient noise. Actual research showed that the relevance of user

interfaces in hybrid human-robot systems can improve user

acceptance and reduce mental workload (Bdiwi et al. (2021)).

4 Implementations

4.1 Setup

Figure 5 shows the experimental setup for the proposed

multimodal programming approach in this work.

The hardware used in this setup has been fulfilled the system

requirements suggested in Appendix I - system requirements. An

Universal Robot UR10 CB-Series is used as the robotic platform

(Robots (2015)). UR RTDE 2 is used as communication interface

between an industrial PC and the UR10. Three Intel RealSense

D400 Series cameras are used for the interaction process (Intel

(2015)). One Intel RealSense D415 camera is placed parallel to the

surface of the working table is used to capture the spatial information

of the gesture during the teaching process, asmentioned in 3.2.1. The

camera is located 64 cm above the table surface, delivering a 48 cm ×

32 cm field of view. Since the field of view has linear correlations with

camera height, putting the camera at a higher height would increase

the field of view. All of the camera positioning is flexible and can be

adapted depending on the required field of view. The second Intel

RealSense D415 camera is mounted and calibrated with hand-eye

calibration. This camera is used for robotic perception, as mentioned

in 3.2.1.3. Finally, an Intel Realsense D435 camera is mounted facing

the user frontally and used for teleoperation of the robot TCP via

hand movements (gesture control). An ArUco marker is used as a

reference for the finger-based teaching approach mentioned in 3.2.1.

A NLU-based speech recognition module from voice INTER

connect GmbH is used (voice INTER connect GmbH (2022)).

This speech recognition module supports voice recognition with

different languages, voice profiles (e.g: masculine or feminine),

accents. It should be taken into account that all of the mentioned

hardware devices are only tentative. The setup is flexible and may be

changed depending on certain use case requirements. Different

robotic platforms, cameras, and speech recognition systems

should be compatible with the proposed approach, as the system

is modular and uses standard interfaces.

4.2 Operation modes

Three operation modes have been implemented based on the

proposed architecture mentioned in 3.1. These operation

modes are:

1. Teaching mode

2. Teleoperation mode

3. Playback mode

In the teaching mode, the robotic program can be created by

using index finger’s gesture and voice recognition system.

Teleoperation mode supports remote control of the robot by

utilizing hand gesture and voice recognition system. The

playback mode is used to replay the programmed robot path

in the teaching mode. A graphical user interface is utilized to give

FIGURE 5
(A) setup of the proposed system. From 1 to 8: working table, workpiece, ArUco marker, Microphone array, Intel RealSense D415 - parallel to
working table, Intel RealSense D435 - frontal to the user, Intel RealSense D415 - robot vision, Universal Robot UR10 CB3-Series, (B) setup in the real
world.
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feedback and instructions to the user, manually check system

status and set system parameters.

4.2.1 Teaching mode
In teaching mode, index finger’s gesture is utilized to create a

robot path. By using the proposed algorithm in 3.2.1.3, the pose of

the pointing finger in the teaching process can be estimated and

recorded after the command is given. The voice recognition system

is linked to the finite statemachine andwill trigger a defined action,

if the commandmatches with the database in the context manager.

As an example, command “take” triggers the state machine to

extract the current pose of the finger as single robot path point. In

Figure 6A, the teaching pipeline for the teaching mode and the

implemented user interface are illustrated. After the teaching

process is finished, the captured points are ready to be

converted into robot paths in playback mode.

The implemented user interface provides real-time camera

view for the teaching process and information regarding the

created robot path. Additionally, information such as number of

taken points, actual state of state machine, tracking status,

calibration status and actual position of pointing finger are also

provided via graphical user interface. Before the user interface of

the selected operation mode is initialized, a tutorial video is played

to explain to the user how the system works. If the user requires

further assistance to use the system, a command list is accessible by

giving a voice command “help.” The implemented actions and

voice commands for the teaching mode are:

• Calibrate: triggers the calibration process of the individual

finger profile. It should be taken into account that finger

profile of each user is varied. To compensate the ground

truth effect, a calibration is performed in a defined time

interval. Hence, the finger profile is registered as the offset

in the pose estimation mentioned in 3.2.1.2.

• Get: triggers the extraction of the actual position of the

index finger as a single point into the currently recorded

robot path.

• Begin: initializes the extraction of a spline. The spline is

created by demonstrating the path via the index finger’s

movement. Finger coordinates in each cycle time are

extracted into the robot path until the stop command

(End) is given. The recording process will be

interrupted when the finger tracking is lost, and the

taken points will not be registered in the robot path.

• End: ends the recording process of the spline.

• Delete: triggers the system to delete the latest taken object

from the robot path. In this context, the object can be a

single point or a spline.

• Help: triggers the system to show a command list for all

available commands and their definitions.

• Home: stops the teaching mode and initialize the main

menu (idle).

4.2.2 Teleoperation mode
In the teleoperation mode, the user can teleoperate the robot

using hand gestures. A voice command is used to start the

interaction. After initialization the initial position of the hand

is registered and a bounding box is displayed on the feedback

interface, representing the initial position of the user’s hand. The

relative position of the hand to the initial position (bounding

box) is calculated and used to manipulate the robot TCP in 3D.

Additionally, manipulation of the robot arm’s single or multiple

axes is possible. Figure 7 shows the interaction workflow, and

graphical user interface for teleoperation mode.

The registered commands for teleoperation mode are:

• Lock: triggers the system to register the initial position of

the user’s hand for the TCP manipulation.

FIGURE 6
(A) illustration of the teaching process in teaching mode, (B) user interface of teaching mode.
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FIGURE 7
(A) illustration of the interaction process in teleoperation mode, (B) user interface of teaching mode.

FIGURE 8
Implemented system diagram.
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• Help: trigger the system to change the manipulation mode

of the system from translation into rotation or vice versa.

• Help: triggers the system to show a command list for all

available commands and their definitions.

• Home: stops the teaching mode and initialize the main

menu (idle).

4.2.3 Playback mode
In the playback mode, the robot path created via teaching

mode can be converted into robot specific language and

further parameterized. After the “play” command, the

robot path is automatically converted into a specific

robotic programming language and deployed to the robot

controller. Parameters such as robot speed, interpolation

parameters and blending parameters are configurable via

voice command.

4.3 System diagram and finite state
machine (FSM)

The implemented system diagram is shown in Figure 8. To

achieve system modularity, the operation modes and other

functionalities are encapsulated as system modules. For

intercommunication between each module Message Queuing

Telemetry Transport (MQTT) protocol was used to guarantee

robust information exchange (Standard (2014)).

A finite state machine allows complexity reduction in the

deployment of the robotic system (Balogh and Obdržálek

(2018)). Therefore, a finite state machine is used to integrate

and control all modules. Figure 9 shows the finite state machine

of the whole system and its sub-finite state machines. Each

operation mode mentioned in 4.2 is encapsulated as system

module containing a subordinate finite state machine. Each

FIGURE 9
Finite state machine of the proposed system and its sub-finite state machines for each operation mode.
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module contains sub-modules that support the functionality of

the system module for each operation mode, e.g. for the vision

system and robot control. The teaching state server, teleoperation

state server and playback state server receive a bypass

information from the finite state machine when the respected

operation mode is triggered. The bypass information is used as

transition signal for each sub-finite state machine in each

operation mode. In teleoperation mode and playback mode, a

control system signal is sent to the robot immediately after it is

triggered by interactions. The finite state machine shown in

Figure 9 represents the implementation of the proposed

system in this work. In the implementation, three operation

modes are implemented by utilizing hand gestures, finger

gestures and speeches as interaction modalities. Since the

system is modular, each extension or customization in the

system architecture will affect the finite state machine. In case

of extension with additional systems and functionalities, the

states and signals must be extended.

FIGURE 10
(A) defined coordinates (T1, . . ., T9), (B) pointing experiment at defined target points.

FIGURE 11
(A) Scaled position deviation at defined coordinates (T1, ..., T9), (B) 2D-View of scaled position deviation at defined coordinates.
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5 Results

5.1 Accuracy and precision assessment

In order to assess the accuracy of the proposed hand- and

finger tracking algorithm in 3.2.1.3, a pointing task was defined as

in Figure 10. In this task, nine target coodinates (T1, . . ., T9) were

predefined and should be pointed as accurately as possible

10 times at each point. Afterwards, the average position

deviation in cm Pi was calculated by using euclidean norm

for position deviations for each axis (Δx, Δy, Δz) as shown in

Eq. 9.

Pi �
��������������
Δx2 + Δy2 + Δz2

√
(9)

The measurement was performed with camera height at 65 cm.

The light intensity measured in the environment was 580 Lux at

1,5 m above the floor and the temperature was at 21°C. In

Figure 11, the measured coordinates are compared with the

defined coordinates in 3D and 2D. As a result, the spatial

information of the pointed coordinates at the z-axis is more

inaccurate in comparison to the information at the x- and y-axis.

The inaccuracy is caused due to the noise from the depth

information obtained from the camera. From the technical

specification of Intel RealSense D415, the depth accuracy from

the camera is 2% < 2m (Intel (2015)).

A recent study for the performance of Intel RealSense

D415 showed that for the short distance 500–1000mm, the

camera delivers up to 30mm deviation in depth estimation (Servi

et al. (2021)). From the obtained results, it can be concluded that the

accuracy of the proposed method achieves 3.71 ± 2.07mm. The

statistical analysis of each target point is shown in Table 1.

The resulting deviations in the system can be caused by

several factors. A human can not point a target point accurately

with its finger, caused by the anatomy of the human finger. This

uncertainty can be varied in the range of mm and cm depending

on the human hand-eye coordination skill or the dexterity of the

user. A further observation was performed to assess the

systematical deviations (precision) from the proposed

algorithm in 3.2.1.3. A new assessment task was formulated.

In this task, nine target coordinates T1. . .T9 were used. A finger

was pointing to these points, and the finger was maintained to be

static while the finger’s position was being recorded. In Figure 14,

standard deviations of the measured points at the x- and y-axis

are shown with 95% confidence ellipsoid to give an overview of

the system precision (See 95% confidence ellipsoid in 6 for

reference). Standard deviation in the z-axis is also shown in

Figure 15. Standard deviation in x-,y- and z-axis (σx, σy, σz) and

standard deviation of Euclidean distance in 2D (σr) are

represented in Table 2.The result showed that the tracking

deviation at the x- and y-axis are smaller than the deviation

at the z-axis. In each target point, the planar deviation is less than

1mm. The deviation of the depth information is less than 2mm.

The deviations existed due to the inaccuracy in the intrinsic and

extrinsic calibration of the camera system. The higher deviation

in depth information indicated that the camera delivers

inconsistent depth information. Despite the higher deviation

in depth information, the result showed that the proposed

TABLE 1 Measurement uncertainty for accuracy measurement at each
target point.

Point Euclidean
deviation Pi [mm]

Standard
deviation σPi [mm]

T1 6.43 0.96

T2 1.99 2.25

T3 3.63 1.77

T4 2.52 1.45

T5 2.44 1.72

T6 1.89 0.61

T7 3.49 1.57

T8 4.44 1.41

T9 3.88 2.15

Σ 3.71 2.07

TABLE 2 Standard deviation of the tracking system precision.

Point Number of
Points

σx [mm] σy [mm] σr [mm] σz [mm]

T1 99 0.48 0.44 0.65 1.09

T2 99 0.28 0.39 0.49 1.27

T3 99 0.41 0.45 0.61 1.71

T4 99 0.54 0.30 0.62 1.01

T5 99 0.54 0.31 0.62 1.17

T6 99 0.46 0.59 0.75 0.89

T7 98 0.36 0.42 0.55 1.25

T8 98 0.45 0.44 0.63 1.83

T9 99 0.42 0.20 0.46 1.68
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image processing algorithms mentioned in 3.2.1.3 can reduce the

depth inaccuracy of the camera system. In conclusion, the

assessment method shows promising results of the proposed

method to be deployed for robotic programming applications

with relative accuracy up to 6mm and the tracking system can

deliver up to 2 mm precision with the defined setup in 4.1.

5.2 Benchmarking with state-of-the-art

In order to show the practicability of the proposed method, a

benchmarking is done by comparing the proposed system with

the implemented methods from the state-of-the-art such as

hand-guiding and programming by teach pendant in

Universal Robots UR10 which are specified in the actual

standards for industrial robot system [DIN EN ISO 10218-1

(2021); DIN EN ISO 10218-2 (2012); DIN ISO/TS 15066 (2017)].

This assessment is performed in a real-world teaching scenario

for painting or gluing application in the real production. A

workpiece as shown in Figure 12 was manufactured with

specific features that would be used for the tasks in this

assessment.

The features are 15 points (P1,. . .,P15), four lines with their

directions (L1,. . .,L4) and a curve with its direction (C1). The

tasks in this assessment consist of movement sequence based on

these features. In total, four movement sequences with different

complexity were executed by using the multimodal

programming approach in this work. Each task will be

repeated by using hand-guiding and online programming

approach via teach pendant from Universal Robots

FIGURE 12
3D printed part for benchmarking assessment.

TABLE 3 Overview for effort reduction from the proposed method (rel. Reduction (PM)) in the benchmarking assessment, TP, teach pendant; HG,
hand-guiding; PM, proposed method.

Parameter Task 1 Task 2 Task 3 Task 4

Method TP HG PM TP HG PM TP HG PM TP HG PM

Mean time [s] 92.73 71.08 28.69 118.35 101.63 50.28 71.19 70.38 24.34 65.47 56.28 17.71

Time ratio 3.23x 2,47x — 2.35x 2.02x — 2.92x 2.89x — 3.69x 3.18x —

Mean NoP 6 6 6 11 11 11 6 6 88 7 7 70.33

NoP ratio 1x 1x — 1x 1x — 0.06x 0.06x — 0.09x 0.09x —

Rel. Reduction (PM) 3.23x 2.47x — 2.35x 2.02x — 48.67x 48.17x — 41.00x 35.33x —

FIGURE 13
Hand model and key points of MediaPipe.
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FIGURE 14
(Top left to bottom right): 95% gaussian ellipsoid for measurement of standard deviation of static points from T1. . .T9.
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UR10 controller. The number of points and execution time for

each task are measured for the assessment. The tasks are

described in following:

• Task 1: PTP linear movement (P6 → P5 → P4 → P3 →
P2 → P1)

• Task 2: PTP zigzag movement (P6→ P15→ P5→ P13→
P4 → P11 → P3 → P9 → P2 → P7 → P1)

• Task 3: Movement along defined features (L1 → L2 →
L3 → L4)

• Task 4: Movement along defined contour (C1)

The overview of the assessment result is depicted in Table 3

(detailed result in Table 7). For the assessment, the time ratio

and number of point (NoP) ratio between teach pendant and

hand-guiding teaching to the proposed method were

calculated. The time ratio is calculated as the quotient of the

mean time of the hand-guiding or teach pendant and the

proposed method. For the number of point, the same

normalization is performed by building quotient of number

of recorded points for the programming methods from the

state-of-the art and the proposed method. In the programming

methods with teach pendant or hand-guiding, the user must

determine how many points must be taken to extract the

features of the work piece. In the proposed method, this

issue does not exist because the finger’s movement along the

features is extracted in the teaching process. As a result, the

selected features can be extracted as coordinate points in the

proposed method. Therefore, the number of points as

assessment criterion is necessary to give an objective

benchmark in this assessment.

These ratios were used to calculate the relative reduction for

the benchmarking using following equation:

Relative reduction � Time Ratio

NoP Ratio
(10)

For simple PTP motions in tasks 1 and 2, the proposed method

showed effort reduction with 2–3× factor. In the experiments,

speech commands had to be repeated several times in some cases,

due to environmental noise (> 60dB). This led to longer teaching

times. A backup solution to improve performance issues caused

by environmental noise is considered by utilizing alternative

FIGURE 15
(A) depth information of the static point measurement at each target point, (B) standard deviation each static point in box plots.
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input interfaces such as a keyboard or other peripheries. The

results from tasks 3 and 4 showed drastic improvements in the

generation of complex movement profiles, such as movement

along specific features. By performing the task using the

programming methods from state-of-the-art, the first

hindrance was to consider how many points should be

extracted to build a detailed movement profile along the

desired feature. The programming effort was significantly

improved when more points should be extracted. In contrast,

even though less programming time can be achieved by reducing

the number of points, the desired movement profile will be

compensated due to adequate detailed information from the

taken points. This drawback effect was shown in tasks 3 and

4 using hand-guiding and teach pendant. Hereby, less than ten

points were taken to generate the movement profile. Eventually,

the desired movement profile could not be fulfilled due to

sufficient information on the desired feature. In comparison

to the methods from state-of-the-art, the proposed method

showed incisive results with 40–50× effort reduction for

complex tasks such as tasks 3 and 4. In the proposed method,

the desired feature can be extracted as a robot movement profile

by tracking the finger movement on the corresponding feature

directly. The proposed multimodal no-code programming

approach showed the potential to drastically reduce the

teaching time and effort for robotic programs compared to

the state-of-the-art.

TABLE 4 Potential industrial applications for the proposed method with the estimated process tolerances and possible control strategies for
development of skill based technology modules.

Applications Tolerance Skill based control strategy

Handing-over ⊘, ⊗ Bdiwi et al. (2013a,c)

Manipulation ⊙, ⊘, ⊗ Jokesch et al. (2014)

Painting ⊘, ⊗ Zhang et al. (2020a); Tadic et al. (2021)

Peg-in-hole ⊘ Bdiwi et al. (2015); Haugaard et al. (2020)

Polishing ⊘, ⊗ Tian et al. (2016); Kakinuma et al. (2022); Zhou et al. (2021)

Welding ⊙, ⊘ Yang et al. (2018b); Lei et al. (2021)

⊙ - fine (x < 10 μm), ⊘ - medium (10 μm ≤ x ≤ 10 mm), ⊗ - coarse (x > 10 mm).

TABLE 5 System requirement for the vision system.

Requirement of vision system

Parameter Min. value Description

Camera RGB Resolution 1280 × 720 (HD) Since the hand-tracking system algorithm works with RGB images as input the higher
resolution offers better performance in tracking

Camera depth resolution 640 × 480 The higher depth resolution delivers higher details of in-depth information, otherwise, it costs a
longer computation time to obtain this information

Camera RGB field of view 60° × 40° The field of view (FoV) describes the possible detection area that the camera image could
deliver. The higher FoV offers a wider detection area for the system

Camera depth field of view 50° × 30° Since RGB and depth FoV are not exactly the same, a synchronization function to map both
information should be performed to get more detail mapping of both information

Camera RGB/deph frame rate 30 FPS A higher frame rate would cause less latency. In other words, a higher frame rate would
improve the system response in image processing

Camera min depth information x > 0.2 m The actual stereo camera system has minimum depth information that can be obtained. The
nearer the minimum available depth information the more accurate the calculation for the
spatial information of the hand and finger tracking

Hand tracking model All phalanx on handshould be
available

The hand tracking system should deliver as many landmarks (phalanxes). Since the proposed
approach with the deictic gesture of a pointing finger, the landmarks in the pointing finger
should be able to be identified

Hand tracking stability Stabile in all light conditions The hand tracking system should work with RGB images in different lighting conditions

Hand tracking distance 0–1.5 m The tracking system should work at a farther distance to compensate for the deficiency due to
the minimum distance from the depth information of the stereo camera

Hand tracking frame rate 30 FPS The higher the frame rate the hand tracking system could deliver, the more fluent the
interaction between end-user and system could occur
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TABLE 6 System requirement for the voice recognition system.

Requirement of the voice recognition system

Parameter Value Description

Recognition type Offline Since the recognition sytem is used in an industrial context, an offline voice recognition system is demandable to
maintain data security

Dialogue design Conformed based on ISO/IEC
30122

The dialogue should be designed as easily as possible as mentioned in ISO/IEC 30122

Dialogue
extraction

Text-to-speech for every uttered
words

The system should be able to extract single word in a sentece uttered by the end-user

TABLE 7 Benchmarking result with comparison at programming time and number of taken points (NoP), TP, Teach Pendant; HG, hand-guiding; PM,
Proposed Method.

Task Method Time 1 [s] Time 2 [s] Time 3 [s] Mean time [s] NoP 1 NoP 2 NoP 3 Mean NoP

Task 1 TP 90.05 97.06 89.12 92.73 6 6 6 6

HG 75.46 70.30 77.49 71.08 6 6 6 6

PM 28.28 28.68 29.12 28.69 6 6 6 6

Task 2 TP 122.61 110.18 102.25 101.63 11 11 11 11

HG 101.32 101.33 102.25 118.35 11 11 11 11

PM 48.56 55.82 46.46 50.28 11 11 11 11

Task 3 TP 78.73 77.58 75.25 77.19 6 6 6 6

HG 69.56 74.84 66.74 70.38 6 6 6 6

PM 24,95 26,34 21.73 24.34 85 97 82 88

Task 4 TP 67.85 58.30 70.25 65.47 7 7 7 7

HG 58.49 55.81 54.53 56.28 7 7 7 7

PM 21.19 15.93 16.02 17.71 87 59 65 70.33
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6 Discussions and conclusions

In many cases, the intuitive teaching methods from state-of-

the-art are not ready to be implemented directly in an industrial

environment. The proposed programming approaches from the

state-of-the-art are mostly task-oriented and can be performed

only to create a robot routine for a specific process. The system

setups are fixed with strictly defined sensors, and there is no room

for customization. Even though the proposed systems prioritize

ease of use and consider intuitive interactions in the teaching

process, many works are not implementable in industrial

environments due to non-practicable methodologies and

complex system configurations. These hurdles are antitheses to

the concepts of HRC, which enables robotic systems to be agile,

reconfigurable and adaptable when changes in production occur.

This work proposes a novel approach to intuitive programming by

utilizing multimodal interactions such as speech and gestures. The

proposed programming approach introduces a generic teaching

solution for HRC applications in agile production by utilizing low-

cost sensors. The novel approach allows the user to (re-)configure

the robot program in the scenario where major or minor changes

occur in production.

Compared to state-of-the-art robotic programs, such as teach

pendant and hand-guiding, the novel method proposes in this

work showed that the programming effort for complex tasks can

be reduced by 40–50 times. It also enables non-robotic experts to

reconfigure and create robotic programs in a short time using

multimodal interaction. With the approach robot paths can be

taught by demonstration of finger gestures with 6mm accuracy.

The proposed computer vision algorithm for hand- and finger-

gesture estimation has thus shown its capability to achieve a

precision up to 2mm in the observed environment. In

comparison to alternative no-code robotic programming

approaches in the state of the art, the results with the low-

cost hardware in the current setup (see 4.1) show great potential

for no-code robotic programming. The analysis of the extracted

orientation in the hand- and finger-gesture estimation will be

addressed in the future work by comparing a single camera setup

and multi-camera setup. This comparison will give a clear

overview for the singularity issues in the extraction of finger

orientation. The proposed system provides a modular and

expandable system setup, utilizing low-cost hardware, in

contrast to many state-of-the-art reference papers. Hence, the

algorithms can be applied, extended and modified to fit different

applications and scenarios by using different sensor technologies,

robot systems and tools for example: the speech recognition

system can be substituted by other low-cost input modalities (e.g:

keyboard, button), the current low-cost cameras can be upgraded

with high-end industrial cameras, the current robot system can

be replaced by different cobots or traditional industrial robots,

and linear axes can be integrated in the system.

In a robotic-applied industrial process, process parameters

and requirements should be controlled to guarantee the quality of

the end product. The robotic experts should not only be

proficient in creating robotic programs, but they should also

integrate the process parameter in the manufacturing process to

meet the aimed quality of the end product. Even though robotic

programming methods from state-of-the-art have simplified

robotic programming for experts, The harmonization of the

process parameter is still a big topic to research in the robotic

research community. Most of the introduced approaches from

the state-of-the-art are focusing only in developing a task

oriented solutions for a specific application (e.g., Pick-and-

Place and assembly). In contrast to them, the proposed

method in this work offers a new perspective for a generic

solution in intuitive robot programming by addressing

modularity, agility and flexibility in the system setup. As a

result, integration or replacement with different systems (e.g.,

sensors, robots) are possible. The modularity allows the

programming approach to be combined with another

algorithm (skill sets) to resolve an issue for robot program

with specific applications. In Table 4, robotics-based industrial

applications from different works in recent years are shown with

their tolerance ranges. By comparing the result from the accuracy

assessment of the novel approach with the given tolerances, it can

be concluded that the proposed method has enormous potential

to be implemented in various applications where medium

tolerances in 10 μm ≤ x ≤ 10mm and coarse tolerances in x >
10mm are required. On the other side, the 6mm accuracy of the

proposedmethod would not satisfy the requirement for processes

with fine tolerance in x < 10 μm. Even though the current work

was focused on the proposed method of teaching the robotic path

based on hand-finger-gesture and voice. The vision and speech

modality used in this work allows further development of

intuitive robotic skill sets for the applied industrial processes

in future works. These skill sets will allow the user to

parameterize their process parameters and execute the process

by applying process-specific control strategies as shown in

Table 4. An example of a welding application will be

explained in the following to depict the potential

improvement of the system’s inaccuracy by developing a

welding skill set. The user would draw a welding path on the

welding joint using his/her finger. The user triggers the skill set by

saying “welding mode on.” The finite state machine may trigger

the activation of the vision-based control system to follow the

weld, e.g. by using the methods mentioned in Table 4. This weld

tracking algorithm will be used as a reference to control and

compensate for the inaccuracy from the teaching phase. Another

example represents an intuitive skill set for polishing that would

allow automatic generation of process paths for basic geometries

based on single user-defined points or features on the work piece

via finger tracking. Trajectories with higher complexity may be

taught to the robotic system by combining finger gestures and

online impedance control of the robot manipulator. Specific

parameters, e.g. amount of applied force for impedance

control, may be figured by the user via voice commands. The
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combination of the multimodal programming method in this

paper with intuitive skill sets will accelerate the deployment and

reconfiguration of robotic systems in industrial context. In the

future work, the implementation of intuitive skill sets for the

proposed method will be addressed and assessed in an industrial

use-case.

The camera-based vision system showed great potential for

implementing the LfD strategy for robotic applications compared

to other technology such as VR-, AR- or XR-based motion

capture, used in state-of-the-art. However, the camera system

still has its characteristic limitations in certain aspects. Various

vision-based algorithms have pushed the vision system’s limits

and can compensate for many drawbacks of camera systems. In

future works, an improvement in the methodology of the vision

system can be addressed by applying recent algorithms from the

state-of-the-art, such as:

• Positional and rotational accuracy improvement of the

system → implementation of multi-camera system

(Lippiello et al. (2005); Hoang (2020)), usage of camera

with different technology (Langmann et al. (2012);

Lourenço and Araujo (2021))

• Translation and rotation of the component after teaching

→ implementation of 6D object pose algorithm (Xiang

et al. (2017); Sun et al. (2022))

• Component is bigger than field of view of the camera→ usage

of additional axes on a workpiece fixture or camera (translating

the object with respect to the camera or vice versa) and

implementation of image stitching or photogrammetry

algorithm (Li et al. (2017); Ding et al. (2019))

In conclusion, this work contributes a novel approach to

multimodal robotic programming by utilizing hand-finger-

gesture recognition and speech recognition which can be

implemented in different industrial applications and

robotic systems. The proposed method is suitable for use

without or with adequate experts in robotic programming.

The bona fide evaluation results showed the system’s potential

to replace actual state-of-the-art methods. The opportunities

for future developments of the system depict that the system

can be a game changer in industrial robotic programming.

This proposed programming method will accelerate the

deployment of robotic systems in industrial use-case and

affect how robotic systems are programmed in the industry

for serial production or even batch size 1.
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