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A B S T R A C T   

Whole genome doublings (WGD), a hallmark of human cancer, is pervasive in breast cancer 
patients. However, the molecular mechanism of the complete impact of WGD on survival and 
treatment response in breast cancer remains unclear. To address this, we performed a compre
hensive and systematic analysis of WGD, aiming to identify distinct genetic alterations linked to 
WGD and highlight its improvement on clinical outcomes and treatment response for breast 
cancer. A linear regression model along with weighted gene co-expression network analysis 
(WGCNA) was applied on The Cancer Genome Atlas (TCGA) dataset to identify critical genes 
related to WGD. Further Cox regression models with random selection were used to optimize the 
most useful prognostic markers in the TCGA dataset. The clinical implication of the risk model 
was further assessed through prognostic impact evaluation, tumor stratification, functional 
analysis, genomic feature difference analysis, drug response analysis, and multiple independent 
datasets for validation. Our findings revealed a high aneuploidy burden, chromosomal instability 
(CIN), copy number variation (CNV), and mutation burden in breast tumors exhibiting WGD 
events. Moreover, 247 key genes associated with WGD were identified from the distinct genomic 
patterns in the TCGA dataset. A risk model consisting of 22 genes was optimized from the key 
genes. High-risk breast cancer patients were more prone to WGD and exhibited greater genomic 
diversity compared to low-risk patients. Some oncogenic signaling pathways were enriched in the 
high-risk group, while primary immune deficiency pathways were enriched in the low-risk group. 
We also identified a risk gene, ANLN (anillin), which displayed a strong positive correlation with 
two crucial WGD genes, KIF18A and CCNE2. Tumors with high expression of ANLN were more 
prone to WGD events and displayed worse clinical survival outcomes. Furthermore, the expres
sion levels of these risk genes were significantly associated with the sensitivities of BRCA cell lines 
to multiple drugs, providing valuable insights for targeted therapies. These findings will be 
helpful for further improvement on clinical outcomes and contribution to drug development in 
breast cancer.  
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1. Introduction 

Whole-genome doubling (WGD), also known as tetraploidization, refers to the duplication of an entire genome through doubling 
DNA contents in a cell. It is a regulated program in plants and fungi, and can occur in specific tissues as part of terminal differentiation 
in human beings [1]. Majority of human diploid cells undergo cell division using the normal cell cycle mechanism. However, an error 
in the normal process can lead diploid cell transitions to a tetraploid state [2], and contribute to a multitude of malignant phenotypes 
[3]. The known mechanisms of WGD generation include mitotic slippage, cytokinesis failure, cell-cell fusion, and endoreplication [1, 
4]. Persistent telomere dysfunction, a common event in human tumorigenesis [5], was also shown to induce tetraploidization [6]. 

WGD has been a common genomic event in cancer, leading to genome instability [7]and promoting resistance to a broad spectrum 
of chemotherapeutic drugs [8]. This event occurs in approximately 40% of solid tumors, with varying frequencies across different 
cancer types [9]. WGD has long been recognized as closely associated with tumorigenesis [3,10–12] and has been identified as a key 
contributor to genome instability [13,14], making it a potential therapeutic target. WGD has shown the ability to identify primary 
tumors with poor-prognosis, offering valuable insights for the design of adjuvant trials targeting specific high-risk patient populations 
[9]. 

The TCGA project revealed that approximately 40% of breast cancer (BRCA) patients have undergone WGD and patients with a 
high frequency of WGD experience poor prognoses with high mortality rates [9]. These mechanics along with intratumoral hetero
geneity adds to the complexity of breast cancer pathogenesis [15,16]. The treatment of breast cancer is a long-term process, and 
patients can develop drug resistance over time, making it challenging to improve long-term survival rates [17]. Previous studies on 
molecular research in breast cancer have made significant contributions to clinical diagnosis and prognosis [18]. The heterogeneity of 
breast cancer subtypes has also been explained through various genomic events including large-scale somatic calls [19]. Moreover, 
anti-cancer peptides (ACPs), a new type of anti-cancer predictors, demonstrate the ability to inhibit the proliferation or migration of 
tumor cells while exhibiting a reduced propensity for inducing drug resistance [20]. All peptides were analyzed for ACPs utilizing the 
web-based prediction servers such as AntiCP [21], ACPP [22],iACP [23], iACP-GAEnsC [24], ACPred [25], cACP-DeepGram [26], etc. 
In the treatment of breast cancer, two ACPs were found: NRC-03 and NRC-07, which can be used alone or in combination with 
conventional chemotherapy drugs to treat breast cancer [27]. These findings bring new hope for the treatment of breast cancer. 
Recently, Taylor et al. applied a pan-cancer analysis and found a correlation between WGD and poor survival in cancer patients with 
advanced-stage disease, even with the presence of metastasis [9]. Ganem et al. identified that WGD tumors overexpress genes 
important for cellular proliferation, mitotic spindle formation, and DNA repair [28]. McGranahan et al. explored the evolutionary 
importance of WGD in cancer, and showed how this can be exploited to identify novel cancer genes [14]. Chia-Hsin Wu et al. 
discovered the distribution patterns of WGD in triple-negative BRCA patients in the Taiwanese population (BCTW) and provided 
insights into the impact of WGD on the timing of tumor initiation and tumor maintenance events in BRCA subtypes [19]. However, 
Taylor’s analysis exclusively anticipated the worse overall survival across various cancer types due to genomic doubling. Ganem et al. 
identified only a substantial pool of overexpressed genes that were affected by WGD in both pan-cancer and 21 specific cancer types. 
McGranahan et al. applied the fundamental principles of Darwinian evolution to study tumor development. While Ganem et al.’s 
research outlined the subtype specificity of WGD and CIN in BCTW. Collectively, there is still limited understanding regarding the 
exploration and elucidation of the role of WGD and its effects on other relevant molecular alterations in breast cancer prognosis and 
treatment response. The molecular characteristics of breast cancer driven by large-scale chromosomal abnormalities have not been 
thoroughly analyzed in terms of their impact on the development, prognosis, and treatment of breast cancer [19]. The understanding 
of how WGD contributes to shaping the patterns of genome characteristics for improving the prognosis of human breast cancers re
mains scarce. 

This study presents a comprehensive bioinformatics analysis that integrates genomic data of breast cancer patients with WGD status 
to investigate the differential features following the WGD event and explore the fundamental mechanisms underlying clinical prog
nostic differences. We performed comprehensive screening to identify crucial genes associated with WGD status in breast cancer. By 
combining univariate/multivariate Cox regression models with random model approaches, we successfully identified a panel of breast 
cancer risk genes linked to WGD in both training and validation datasets. Furthermore, we conducted an exploratory analysis to 
investigate the functional mechanisms, distributions of clinical-pathological features, and variations in genomic features among the 
different breast cancer risk groups affected by WGD. Our findings contribute to a deeper understanding of the genomic characteristics 
associated with WGD in BRCA and provide potential diagnostic tools for the benefit of BRCA patients. More importantly, our study 
highlights the value of evaluating WGD status in accelerating the prognostic evaluation of cancer patients. This will also provide a basis 
for promoting WGD as a diagnostic factor to guide clinical physicians. The workflow is depicted in Supplementary Fig. 1. 

2. Materials and methods 

2.1. Cohort datasets and preprocessing 

The gene expression and clinical information data of human primary breast cancer (BRCA) were obtained from TCGA (https:// 
portal.gdc.cance r.gov). The RNA-seqV2 data was used for expression analysis, while the copy number ratios for each gene were 
derived from the BRCA segmentation file after processing it through GISTIC2.0 (http://api.gdc.cancer.gov/data/00a32f7a-c85f-4f86- 
850d-be53973cbc4d). Tumor purity, ploidy, and WGD calls for BRCA samples were downloaded from TCGA Pan-Cancer Atlas 
(https://gdc.cancer.gov/about-data/publications/pancanatlas).To ensure sample integrity, repeat sequencing samples were filtered 
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based on maximum ploidy, and when the ploidy was the same, the sample with the maximum purity was selected. For expression, 
genes with zero expression values in more than 80% of samples were removed, and the remaining expression values were log2- 
transformed after adding a pseudo-count of 0.01. This led to 987 BRCA samples containing 16292 genes for subsequent analysis. 
Additionally, eight BRCA cohorts from gene expression omnibus (GEO) datasets (GSE20711, GSE20713, GSE22249, GSE24450, 
GSE37751, GSE39004, GSE45255, and GSE16228), which included overall survival times, as well as the Molecular Taxonomy of 
Breast Cancer International Consortium (METABRIC) dataset, were collected. Each BRCA cohort was processed and analyzed indi
vidually as discussed above using the R package limma (version 3.56.1). 

2.2. Genome features and special pattern analysis associated with WGD status 

2.2.1. Mutational burden 
We first divided the tumors into two groups based WGD status as WGD+ (4N) and WGD- (2N). We obtained the tumor mutation 

burden (TMB) data from the published work of Vé steinn Thorsson et al. [29]. In their study, TMB was defined as the number of 
non-synonymous mutations per megabase (log10-transformed). We divided the TMB of each sample by its ploidy and marked it as 
ploidy-corrected TMB. Further we analyzed differential patterns among WGD+ and WGD-tumor based on the TMB and 
ploidy-corrected TMB by using Wilcoxon rank-sum test. 

2.2.2. Aneuploidy score profiling 
To examine the differences in aneuploidy between the WGD+ and WGD- BRCA samples, we compared the aneuploidy scores both 

at the arm-level and chromosome-level. Aneuploidy scores were calculated using the established methods [30,31] based on copy 
number segmentation data which was retrieved from TCGA (http://api.gdc.cancer.gov/data/00a32f7a-c85f-4f86-850d- 
be53973cbc4d). Furthermore, we depicted the distribution patterns of the aneuploidy scores for each chromosome arm and chro
mosome separately (see Supplementary method). 

2.2.3. Chromosome instability score 
The absolute copy number data for BRCA was obtained from the TCGA PanCan Atlas, which was generated using ABSOLUTE based 

on tumor purity and ploidy estimates [32]. To assess chromosomal instability (CIN), we quantified the ratio of genomic events 
involving gain and loss for each chromosome in two WGD status groups. The sum of CIN scores for all chromosomes was defined as the 
CIN of each tumor sample. We compared the CIN scores between WGD+ and WGD-samples for each chromosome and for each sample 
in BRCA from the TCGA data (see Supplementary method). 

2.2.4. Copy number variation score 
Copy number variation (CNV) data from the PanCan Atlas was utilized to investigate CNVs in both WGD+ and WGD-samples of 

BRCA. The CNV for each chromosome was quantified by counting the occurrences of gain, loss, and both events separately. The CNV 
score for each tumor sample was defined as the sum of CNVs across all chromosomes. We log10-transformed the CNV scores and 
compared the three-level CNVs (gain, loss, and both events) for each chromosome and for each sample in both WGD+ and WGD- 
samples of TCGA-BRCA tumors (see Supplementary method). 

2.3. Identification of WGD-related crucial genes 

We used linear model and weighted gene co-expression network analysis (WGCNA) to identify genes associated with WGD in BRCA 
using gene-expression profiles. First a linear model was applied to each gene in BRCA with expression as a function of WGD status, 
tumor purity, and CN_Local. The ABSOLUTE estimated tumor purity, and ‘CN_Local’ is the log2-transformed copy number ratio for that 
gene in each tumor estimated by GISTIC2.0. A total of 8808 genes were selected. Further, we conducted WGCNA analysis on the top 
25% of all genes with the highest expression variation. In the WGCNA procedure, an appropriate soft threshold β was calculated to 
meet the criteria for a scale-free network. The weighted adjacency matrix was then transformed into a topological overlap matrix 
(TOM), from which the corresponding dissimilarity (1-TOM) was generated. The dynamic tree cutting approach was employed to 
identify gene modules. To recognize gene modules significantly correlated with WGD status, the module with the highest significant 
positive and negative correlations was selected for further analysis. Genes within the significant modules that exhibited both high gene 
significance (GS) and module membership (MM) were defined as candidate WGD-related genes as reported in a previous study [33]. 
Finally, the overlapping genes derived from the linear model and the candidate WGD-related gene set obtained from WGCNA were 
identified as WGD-related crucial genes (Supplementary Fig. 1). 

2.4. Determination of risk genes linked to WGD status 

In the TCGA-BRCA sample set, we performed a random split of WGD+ and WGD-samples, allocating 70% of each group to the 
training set and 30% to the internal validation set. We repeated the random split process 100 times to ensure the accuracy and 
robustness of the prognostic model training. 

For each random split of the training set, univariable Cox proportional hazards regression analysis was used to select gene sets 
associated with patient survival from the WGD-related crucial gene set. FDR correction was applied to the P values to control for 
multiple hypothesis testing. Additionally, we utilized the least absolute shrinkage and selection operator (LASSO)-Cox regression 
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model, implemented using the "glmnet" R package (version 4.1–7), to select useful prognostic genes based on the molecular profile of 
the aforementioned gene set. Genes with nonzero coefficients were selected using the LASSO Cox regression model with the optimal 
lambda (minimized lambda) value determined by 10-fold cross-validation. Subsequently, we constructed a prognostic risk score for 
each patient using the LASSO Cox regression model, using the following formula: 

Risk Score=
∑n

i=1
Beta(i)GeneExp(i)

Here, Beta(i) represents the i-th regression coefficient derived from the LASSO Cox regression model, and GeneExp(i) denotes the 
expression level of the i-th prognostic gene. We utilized the risk scores to predict the prognostic outcomes of the patients in the training 
set and evaluated the model’s performance using the concordance index (C-index). This process was repeated 100 times, generating 
100 C-index values. The model with the highest C-index was selected to predict the risk score in the corresponding internal validation 
set. Additionally, we calculated the time-dependent area under the curve (AUC) of the receiver operating characteristic (ROC) to assess 
the model’s predictive performance. Finally, the genes optimized through this modeling approach were considered as the risk genes 
associated with WGD status in BRCA. 

2.5. Risk groups of prognostic genes and survival analysis 

The optimized model was used to assign patients into high and low-risk groups according to the median value of the risk scores 
determined by the “survminer” package (version 0.4.9). Associations between the risk scores and clinicopathological features (age, 
clinical stage, and subtype) were examined using Kruskal-Wallis analysis and visualized using Sankey diagrams, which effectively 
illustrated the correlations between the risk score and different survival outcomes. 

The prognostic genes related with WGD in BRCA were subsequently evaluated in the internal validation set and the entire TCGA- 
BRCA tumors. Kaplan-Meier analysis curves (KM) were generated using the R package "survival" (version 3.5–5) to compare the trends 
in overall survival (OS) or progression-free survival (PFI) between the high and low-risk groups. The results of univariate and 
multivariate Cox analyses were visualized as a forest plot, while the distribution of risk scores and patient survival status were depicted 
through ranked dot and scatter plots. Additionally, ROC curve analysis was conducted to assess the specificity and sensitivity of the risk 
genes for three, five, seven, and ten-year survival, utilizing R package “survivalROC” (version 1.0.3.1). The AUC values were calculated 
to designate the ROC performance. KM curves and ROC curves were also generated for eight independent GEO validation cohorts and 
METABRIC to evaluate the clinical impact of the risk genes. 

2.6. Construction and validation of the nomogram model 

The prognostic criteria was established through univariate and multivariate COX proportional hazard regression analysis, incor
porating clinical features (age, stage, subtype), risk scores, and WGD status. To facilitate clinical diagnosis of BRCA patients, a pre
dicted nomogram was constructed using the significant clinical features for patients in training, internal validation, and entire TCGA 
cohort by the "rms" (version 6.7-0) program. The hazard ratio (HR), 95% confidence interval (CI), and P-values obtained by log-rank 
test of the risk genes were presented. 

Each variable in the nomogram scoring system was assigned a score, and the total score was calculated by summing the scores from 
all factors in each sample. Calibration curves were utilized to evaluate the consistency between the nomogram predictions and clinical 
observations for three, five, seven, and ten-year OS and PFI. The nomogram’s predictive performance for three, five, seven, and ten- 
year OS survival was evaluated using ROC curves. Further it was compared with the ROC curves of other clinical variables in the 
training, internal validation, and entire TCGA cohort. The C-index was calculated to determine the nomogram’s predictive potential. 
Furthermore, decision curve analysis (DCA) was employed to compare the clinical benefits of different models by R package "DCA" 
(version 2.0). 

2.7. Functional enrichment analysis 

We performed functional enrichment analysis for 247 genes associated with WGD status and differentially expressed genes (DEGs) 
related with risk groups in BRCA patients. The R package "DESeq2″ was used to filter DEGs between high and low-risk patient groups, 
with genes having an adjusted P value < 0.05 and |logFC| ≥ 0.5 considered statistically significant and shown in a Volcano plot. 
Functional categories and pathways enriched in the high and low-risk groups were identified and visualized using Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses performed with the R package "clusterProfiler" (version 
4.8.1). The P-value was adjusted by the Benjamini and Hochberg method. Additionally, Gene Set Enrichment Analysis (GSEA) was 
conducted using the R package "GSVA" (version 1.48.0) and “h.all.v7.2.symbols.gmt” was set as the reference database. Pathways with 
a normalized P < 0.05 and a false-discovery rate (FDR) q < 0.25 were considered statistically significant, and the top ten enriched 
pathways were selected by ranking of normalized enrichment scores (NESs). Pathway enrichment using GO and KEGG was also 
performed to visualize the function of 247 genes. 
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2.8. Analysis of drug sensitivity 

Cancer Cell Line Encyclopedia (CCLE) encompasses omics data in ~1000 cancer cell lines, while the Cancer Therapeutics Response 
Portal (CTRP, https://portals.broadinstitute.org/) provides information regarding 481 small-molecule probes and drugs across 860 
extensively characterized cancer cell lines. We integrated both resources to compile 40 BRCA cell lines, including the expression levels 
of 21 out of 22 risk genes as well as the sensitivity of these cell lines to 500 drugs (Area Under Curve [34]). 

The BRCA cell lines were split into high and low-risk groups according to the median risk score of 40 cell lines using the LASSO Cox 
regression model constructed for BRCA TCGA samples. Subsequently, we calculated Pearson correlations between the expression levels 
of the 21 risk genes and the sensitivity of the 500 drugs in these cell lines. Correlations with a P-value <0.05 were considered sig
nificant connections between the high and low-risk groups. To assess the risk genes’ usefulness in clinical therapy, the differences in 
AUC values of compounds were compared between the two groups by the Wilcoxon rank-sum test. 

2.9. Statistical analysis 

Data analysis and visualization were conducted using R software (version 4.3.0) with the necessary packages. The Wilcoxon rank- 
sum test or Kruskal-Wallis test was applied to analyze continuous variables, while the chi-square test was utilized to analyze the 
proportions of patients with WGD in the high and low-risk groups, and the proportions of patients with mutations in the two risk 
groups. Pearson correlation analysis was used to assess the relationships between risk scores and expression levels of differentially 
expressed genes, as well as to correlate genomic characteristics with risk scores. All P-values were two-sided, and statistical signifi
cance was determined at a threshold of P < 0.05. 

Fig. 1. Comparision analysis of genomic features in WGD+ and WGD-tumors from TCGA breast cancers. (A) The variation of aneuploidy burden on 
arm/chromosome level were shown in violin plots; The average variation of aneuploidy burden across tumors on arm/chromosome level were 
showed in scatter plots. (B) The variation of CIN (left); The average variation of CIN on chromosome level across tumors (right), the lines connect 
the same chromosomes in two groups. (C) The variation of CNV log 10 transformed (the first plot); Variation of Log 10 transformed CNV from 
chromosome gain/loss events (the third and the fourth plots); The average variation in log 10 transformed CNV on chromosome across tumors (the 
second plot). (D) Total mutation burden (left) and corrected mutation burden by ploidy (right). The gray lines in all scatter plots represent the equal 
values between the two groups. Statistic test: Two-sided Wilcoxon rank-sum test. 
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3. Results 

3.1. Genomic features associated with WGD in breast cancer 

Chromosomal instability (CIN), copy number variation (CNV), and aneuploidy are commonly inherent features of unstable genome 
that are linked to tumorigenesis. The higher rates of somatic CNVs, CIN, and aneuploidy [9,35–37] are associated with whole genome 
doubling (WGD) events. To investigate the genomic differences between WGD+ and WGD-breast cancer (BRCA) samples, we obtained 
WGD status from TCGA for roughly 1000 primary tumors. Consistent with the previous estimates [9], the frequency of WGD in these 
tumors was found to be 44%. The tumors were divided into two groups based on their WGD status where 401 were positive (WGD+) 
and 586 were negative (WGD-) cases. We quantified CIN, CNV, and aneuploidy levels for each BRCA sample and explored the distinct 
patterns of genomic changes between WGD+ and WGD-tumors. 

We observed that WGD + tumors exhibited a significantly higher aneuploidy burden than WGD-tumors (P < 2e-16), regardless of 
whether the ploidy abnormality resulted from a chromosome arm or entire chromosome (Fig. 1A). Furthermore, WGD + tumors 
displayed markedly a higher CIN compared to WGD-tumors (P < 2e-16). To delve deeper into the CIN patterns within each tumor 
sample and individual chromosomes, we compared the CIN between WGD+ and WGD-tumors. CIN at the chromosome level reflects 
copy number amplification, deletion, or both events. Notably, we found that each chromosome in WGD + tumors demonstrated 
elevated rates of CIN compared to near-diploid breast tumors (Fig. 1B). Additionally, we compared the CNV events based on chro
mosome gain, loss and both events in the two groups (Fig. 1C, Supplementary Fig. 2). The CNV (log10-transformed) was significantly 
higher in WGD + tumors (P < 2e-16) both at tumor and chromosome levels. Our findings suggest a strong association of WGD events 
with a higher frequency of genomic variations. 

Fig. 2. Identification of WGD-related crucial genes via WGCNA procedure. (A and B) Analysis of network topology for various soft-threshold 
powers. (A) The impact of soft-threshold power on the scale-free topology fit index; (B) The impact of soft-threshold power on the mean con
nectivity. (C) Eigengene dendrogram and eigengene adjacency plot. (D) Correlation analysis between module eigengenes and WGD-related traits in 
TCGA breast cancer cohort. (E and F) The high correlation between GS and MM in the (E) blue module and the (F) red module. Dots within the two 
rectangle were defined as WGD-related crucial genes, with both high GS and MM. Statistic test: Pearson’s correlation coefficient, two-sided unpaired 
t-test. 
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Along with somatic copy number variation events, we also investigated the association of mutations with WGD cases. The Wilcoxon 
rank-sum test revealed that WGD + tumors had a significantly higher tumor mutation burden (TMB) than WGD-tumors (P < 2e-16), 
irrespective of ploidy corrected or non-corrected TMB (Fig. 1D). These findings implied that WGD + breast tumors exhibited extensive 
genome abnormalities and may have implications for clinical diagnosis and prognosis of these patients. Given the poor survival 
outcome of the patients with WGD + tumors [9], we aimed to systematically explore and validate whether genes affected by WGD 
could function as potential biomarkers for the clinical diagnosis of BRCA patients. 

3.2. Identification of crucial genes derived from WGD status 

We conducted WGCNA analysis on the top 25% genes with the highest expression variation, utilizing a soft threshold (β) of 0.9 for 
co-expression network construction (Fig. 2A and B). Along with, we applied linear models to the gene expression data and identified 
8808 genes associated with WGD + tumors. Further we identified 11 modules represented by distinct colors, each containing no less 
than 30 genes. The eigengene, which is the first principal component of gene expression within a module, was considered as the 
representative of the module. The heatmap displayed the eigengene adjacency of the modules (Fig. 2C). We also identified the as
sociation between modules and the tumor genome traits, such as ploidy, purity, WGD status, and CIN. The red module exhibited the 
highest significant positive correlation (Corr = 0.57, P = 1e-85), while the blue module displayed the highest significant negative 
correlation (Corr = − 0.69, P = 8e-141) in the module-trait relationship (Fig. 2D). In addition, the red module containing 323 genes had 
a high correlation coefficient between gene significance (GS) and module membership (MM) of 0.78 (P < 2.6e-67), and the blue 
module with 777 genes had a correlation coefficient of 0.9 (P < 1e-200), indicating the quality of gene module construction (Fig. 2E 

Fig. 3. Correlation analysis of 22 risk genes with WGD crucial genes. (A) Correlation heatmap between risk genes and KIF18A and CCNE2. The 
pearson correlation coefficient is shown in each little box. The cross indicates a non-significant correlation coefficient (P ≥ 0.05). (B) Correlations 
between ANLN with KIF18A and CCNE2 grouped by WGD status and risk score. The density represents the distribution of the expression of cor
responding genes among tumors with different groups. Dot lines point to the peak of the density. 
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and F). To identify the hub genes associated with WGD patterns in the two significant modules, we considered 76/323 genes with GS >
0.2 and MM > 0.6 in the red module and 233/777 genes with GS > 0.5 and MM > 0.5 in the blue module as candidate WGD genes. 
These 309 candidate genes were mainly selected based on the significant association marked in the upper right quarter of the two 
modules (Fig. 2E and F). We combined 8808 genes derived from linear models with the 309 genes, 247 overlapping genes were 
identified and marked as WGD-related crucial genes. 

3.3. Identification of prognostic genes associated with WGD status for BRCA patients 

We generated a prognostic model in order to identify the impact of 247 WGD-related crucial genes on the survival of BRCA patients 
(for TCGA data, details in methods section). The data was divided into training and test cohorts using random sampling with 100 
iterations. This resulted in 100 prognostic univariate Cox regression models along with LASSO regression models for the TCGA BRCA 
training cohort. For each model, a 100 C-index was along generated. The model with the highest C-index (C-index = 0.73) from 100 
iterations was selected as the optimal prognostic model for the training cohort. Univariable Cox regression analysis identified a set of 
122 genes out of 247 WGD-related crucial genes that were significantly correlated with OS (P-value <0.001) after being adjusted for 
multiple testing by the BH procedure. While LASSO Cox regression model identified 22 genes out of 247 as the most useful risk markers 
associated with WGD status in terms of prognosis in BRCA patients. For the LASSO model, we depicted the resultant change trajectory 
of each independent variable and the confidence intervals under each lambda (Supplementary Fig. 3). The 22 risk genes were related to 
WGD status with minimized lambda (0.008959). Among them, 21 genes have been recorded in the DisGeNET [38] database (v7.0), 
excluding C9orf68, and 8 risk genes (ANLN [39], BIRC3 [40], CD200R1 [41], CD226 [42], CLEC10A [43], PPP2R2B [44], PTPRC [45], 
SPN [46]) are already reported for BRCA. We also identified 8 other genes (CD79A [47], EOMES [48], CAMK4 [49], FGL2 [50], KLRB1 
[51], LGALS2 [52], SLA2 [53], STAP1 [54] that have been reported in previous BRCA studies. In addition, three cancer genes (BIRC3, 
CD79A, and PTPRC) overlapped with the Cancer Gene Census in COSMIC (v97) [55], further supporting their relevance in the context 
of cancer, majorly BRCA. Supplementary Table 1 summarized the relevance of risk genes and diseases in particular with BRCA. 

3.4. Potential correlation of risk genes with KIF18A and CCNE2 in BRCA 

Previous studies have shown that the depletion of KIF18A(Kinesin Family Member 18A) leads to significantly prolonged mitoses in 
tetraploid cells, potentially contributing to tumor development and progression [28]. Likewise, CCNE2 (Cyclin E2) has been associated 
with high genome ploidy in breast cancers, and its overexpression promotes aberrant mitosis, suggesting its role as a driver of genome 
doubling in cancer [56]. Notably, both KIF18A and CCNE2 have been found to be overexpressed in human BRCA and are associated 
with worse prognosis for cancer patients [56,57]. Therefore, we tried to investigate the association of 22 risk genes in WGD with 
KIF18A and CCNE2 in the TCGA BRCA data set. Our analysis revealed that a total of 15 risk genes (ANLN, BIRC3, C9orf68, CAMK4, 
CD226, CLEC10A, EOMES, FCER2, FGL2, LAT, PPP2R2B, PSTPIP1, PTPRC, SLA2, STAP1) exhibited a significant correlation with 
KIF18A expression, while 13 genes (ANLN, BIRC3, C9orf68, CD226, CLEC10A, FCER2, FGL2, KLBR1, LAT, LGALS2, PPP2R2B, 
PSTPIP1, SPN) showed the significant association with CCNE2 expression (Fig. 3A). Remarkably, ANLN displayed a highly positive 
correlation with both KIF18A (Cor = 0.82, P < 2.2e-16) and CCNE2 (Cor = 0.69, P < 2.2e-16) expression. Meanwhile, tumors 
exhibiting high expression of ANLN or CCNE2 were found to be more prone to WGD events and displayed a higher clinical risk score 
(Fig. 3B). In contrast, the remaining genes did not exhibit the same trend. ANLN has been reported to play a crucial role in cell cycle 
progression in primary BRCA [58]. It exhibits high nuclear expression in breast tumor cells and is significantly associated with high 
histological grade, elevated proliferation rate, and poor prognosis [59]. Experimental knockdown of ANLN remarkably inhibited cell 
proliferation and migration as well as cell invasion, arrested the cells in G2/M phase, and induced apoptosis in BRCA cells [39]. These 
findings led us to speculate that ANLN may contribute to the occurrence of WGD; however, further validation is required. 

Additionally, we conducted an exhaustive literature review to elucidate the predicted correlations. The PI3K-AKT signaling 
pathway is frequently dysregulated in cancer, with hyperactivation observed in approximately 50% of breast cancers [60,61]. Studies 
indicate that the overexpression of KIF18A can promote the activation of the PI3K-AKT signaling pathway [62], subsequently influ
encing the nuclear localization and stability of ANLN, a protein positively regulated by the PI3K-AKT pathway [63–66]. This is in 
concordance with a positive correlation between the expression of KIF18A and ANLN. Furthermore, numerous studies have reported 
the overexpression of ANLN as a potential biomarker of lung cancer progression [67,68]. The elevated expression of CCNE2 is also 
significantly correlated with advanced tumors and worse OS in lung cancer [69,70]. Berberine (BBR) treatment have inhibited the 
activity of PI3K/AKT pathway by suppressing CCNE2 expression, demonstrating the inhibitory impact on the progression of NSCLC 
[71]. This leads to a positive correlation between the expression of CCNE2 and ANLN, which is positively regulated by the PI3K/Akt 
pathway. However, the biological regulatory mechanism underlying the positive correlation between them in BRCA needs further 
validation. We also found that reduced PTEN and PPP2R2B expression was associated with activated AKT/mTOR and PDK1/MYC 
pathways [72], which provided a potential foundation for validating the inverse correlation between PPP2R2B and CCNE2, given that 
CCNE2 is highly expressed in the activated PI3K/AKT pathway. 

3.5. The predictive power of the risk genes 

To assess the forecasting performance of the 22 risk genes, we conducted a clinical stratified analysis using TCGA BRCA training 
cohort, focusing on three clinicopathological features: stage, age, subtype, and WGD status (Supplementary Fig. 4). We identified no 
significant differences between high and low-risk groups in terms of OS for the patients with the normal and basal subtype. On the 
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contrary remaining 9 clinical groups revealed that a high-risk score was associated with a poor prognosis compared to a low-risk score. 
In addition, we investigated the relationship between these clinicopathological features and the risk genes across the training, test, 

and entire TCGA cohort. Using the same risk score formula as implied in the training set, the patients were stratified into high and low- 
risk groups in both the test and entire cohort. Kruskal-Wallis test revealed a distinct distribution of risk scores among BRCA patients 
with varying stages, age groups, and cancer subtypes. Patients with older age, and the luminal B subtype exhibited significantly higher 
risk scores (Fig. 4A). Further, in all three cohorts, we observed striking disparities between the high and low-risk groups in terms of 
patient distribution related to age and subtypes. The Sankey association diagram illustrated the flow from the two risk subgroups to 
different clinical outcomes, age, and clinical subtypes (Fig. 4B). 

3.6. The protective power of the optimal model 

A prognostic model was generated based on the linear combination of 22 risk-associated genes. In the TCGA training set, patients 
were categorized as high or low risk based on the median risk score. The heatmap visually depicted the expression patterns of the 22 
risk-associated genes in the high and low-risk groups (Fig. 5A). The expression levels of 21 genes decreased with the increasing risk 
scores, with ANLN being an exception. The expression of ANLN significantly increased with the increase in risk scores (Fig. 5B) (R =
0.16, P = 9.859e-07). Further we identified the hazard ratios (HR), 95% CI, and the respective P-values by log-rank tests for the 22 
genes as shown in a forest plot (Fig. 5C). Of the 22 genes, 21 were identified as protective factors with HR < 1, whereas ANLN emerged 
as a risk factor with HR > 1. To assess the clinical implications of the risk score, we performed a Kaplan-Meier survival analysis 
comparing the two risk groups within the training cohort. More death events were observed in the high-risk group, indicating that low- 
risk patients experienced better clinical outcomes than high-risk patients (Fig. 5D). 

To evaluate the reliability of the optimized trained model, comprehensive tests were conducted using both internal TCGA test set 

Fig. 4. Associations between clinicopathological features and the risk genes in the training, testing, and entire cohorts. (A) Variation pattern of risk 
score in different clinicopathological groups (stage, age and subtype). (B) Sanky plots of risk score and significant clinicopathological features (age 
and subtype). 
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(validation) and entire TCGA cohort. In the test cohort, we identified 20 risk genes that exhibited a significant differential expression 
distribution between the two risk groups. Similarly, in the training and entire datasets, 22 risk genes displayed the differential patterns 
(Supplementary Fig. 5). Consistent with the findings in the training cohort, patients stratified into the high-risk group exhibited 
significantly worse OS than those in the low-risk group, as confirmed by the log-rank test in both the test cohort (P = 0.052) and the 
entire cohort (P < 0.0001) (Fig. 5E and F). 

The ROC analysis indicated that the risk genes are powerful in predicting patient OS in the training cohort, with AUC values of 0.69, 
0.66, 0.71, and 0.72 for three, five, seven, and ten-year OS, respectively (Fig. 5D). Similar trends were observed in the test and entire 
cohort, reaffirming the accuracy of the prediction model (Fig. 5E and F). Furthermore, the model’s predictive ability was also assessed 
using PFI in the three cohorts which led to consistent results (Supplementary Fig. 6). To confirm the robustness of our findings, we 
validated the model’s performance on eight independent GEO validation data sets and METABRIC datasets. Remarkably, the high-risk 
group consistently demonstrated significantly poor OS and the AUC values obtained were consistent with those observed in the TCGA 
dataset for all independent validation data sets (Fig. 6A and B and Supplementary Fig.7). 

3.7. Nomogram establishment and validation with clinical features 

To enhance the clinical applicability of the identified WGD-related risk genes and to provide visualized risk prediction, we 
developed a quantitative analysis algorithm. The method aimed at predicting the expected survival of individuals with BRCA using 
patients from the training, test, and entire cohort. By univariate and multivariate Cox regression analyses, we selected three significant 
clinical factors (age, stage, and risk score) in the training cohort. The HR and P-value of these factors were illustrated in Fig. 7A and B. 
The three factors were further incorporated to calculate the individual sample’s summary score and the total score across the three 
cohorts, based on three, five, seven and ten-year survival probabilities in each cohort (Fig. 7C and Supplementary Fig. 8). Notably, the 
risk score contributed the most to risk points compared to age and stage information in the training and entire cohort. 

The calibration curves of three, five, seven, and ten-year OS in both the training and entire cohorts demonstrated near-optimal 
performance. Moreover, the calibration curves of three and five-year OS in the test cohort also exhibited a good fit, indicating 

Fig. 5. Determination of risk gene signatures associated with WGD status in TCGA breast cancer patients. (A) The expression pattern of 22 genes 
constructing the risk score. (B) Correlations between 22 genes and the risk score. (C) Forest plot of the prognostic ability of the 22 WGD-related risk 
genes. (D–F) The Kaplan–Meier curves of OS according to the risk score in (D) training cohort (log-rank test: P < 0.0001), (E) testing cohort (log- 
rank test: P = 0.052) and the (F) entire cohort (log-rank test: P < 0.0001). The risk score distribution and patient survival status are depicted in 
ranked dot and scatter plots in the middle from D to F. Time-dependent ROC analysis for predicting OS at 3-, 5-,7- and 10 year are on the right from 
D to F. 
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consistency between the actual measured prognostic value and the value projected by the nomogram (Fig. 7D and Supplementary 
Fig. 8). The decision curves further demonstrated that the nomogram had a higher net benefit in predicting OS probability compared to 
either the treat-all-patients scheme or the treat-none scheme, except for the results of seven and ten-year in the test cohort (Fig. 7E and 
Supplementary Fig. 8). The prognostic performance of the nomogram for PFI in the training, test and entire cohorts were also assessed. 
Supplementary Fig. 9 illustrated a similar trend of PFI with OS in the three cohorts, with the risk score emerging as the most important 
factor affecting patient survival, followed by tumor stage and age. The calibration curves of three, five, seven, and ten-year PFI in the 
three cohorts performed similarly to those of OS, indicating the reliability of the nomogram’s predictions. 

The ROC analysis was further used to evaluate the accuracy of the nomogram. The predicted AUC values of the three, five, and ten- 
year OS nomograms in the three cohorts were comparable to or higher than those of the risk score or the clinical features (age and 
stage) individually (Fig. 7F). This indicated that the nomogram outperformed the other predictors for predicting BRCA patient sur
vival. Additionally, the C-indices of these models were 0.8, 0.77, and 0.79 in the three cohorts respectively, demonstrating the robust 
predictive power of the nomogram for TCGA-BRCA. Overall, the nomogram based on WGD-related risk gene-based risk scores pro
vided valuable guidance for clinical diagnosis and survival prediction in BRCA patients. 

Fig. 6. The risk model’s ability for prediction of OS for breast cancer patients in external cohorts. (A) Kaplan-Meier curves of OS and (B) the time- 
dependent ROC analysis for predicting OS at 3-, 5-, 7- and 10-year were showed for each cohort. 
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Fig. 7. Establishment and verification of Nomogram for 3-, 5-,7- and 10-year OS in TCGA training, test and entire cohorts. (A and B) Univariate and 
multivariate Cox regression analysis for determination of significant clinical factors. (C) The nomogram was constructed with the significant clinical 
factors and risk score incorporated. (D) Calibration plot of the nomogram in terms of agreement between the predicted and observed 3-, 5-,7- and 
10-year outcomes. The 95% confidence intervals were represented by the close-ended vertical lines, the nomogram predicted and actual OS were 
illustrated on the x-axis and the y-axis. The dashed line along the 45-degree line represents the ideal performance of a nomogram. (E) Decision curve 
analysis of the nomogram for 3-, 5-,7- and 10-year risk. The black line represents the assumption that no patients died at 3-, 5-,7- or 10-year. (F) ROC 
curves of the nomograms compared with those of other clinical variables with regard to 3-,5-,7- and 10-year OS. 
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3.8. Genomic feature alteration among risk groups in patients with BRCA 

Investigating the differences in genome features between high- and low-risk patients, we conducted a Wilcoxon test to assess 
aneuploidy burden and CIN in the training, test, and entire cohort. In both the training and entire cohorts, the high-risk group exhibited 
significantly higher levels of both features. However, only aneuploidy burden showed a similar distribution between the high- and low- 
risk groups in the test cohort (P = 0.00022) (Fig. 8A). 

Furthermore, we analyzed the association (Pearson correlation) between aneuploidy burden and CIN with risk scores in the three 
cohorts and found consistently significant associations across all three cohorts. Moreover, we observed a higher concentration of 
patients with WGD events in the high-risk tumors (Fig. 8B). To validate this observation, we performed a chi-square test comparing the 
two groups of risk patients with different WGD status, revealing a higher number of WGD + tumors in the high-risk group compared to 
the low-risk group (Supplementary Fig. 10A). However, we only observed a significant P-value in the training (P = 0.003) and entire 
cohorts (P = 0.003), which may be attributed to the limited sample size of the test set. Additionally, we noted a higher concentration of 

Fig. 8. Genome features analysis between high- and low-risk patients in the training, test and entire cohort. (A) Variation of aneuploidy burden and 
CIN grouped by risk score. (B) Correlation of aneuploidy burden and CIN with risk score. Dot lines point to the peak of the density. 

Y. Lv et al.                                                                                                                                                                                                              



Heliyon 10 (2024) e28586

14

patients with mutations in the low-risk group (Supplementary Fig. 10B). These findings revealed substantial variations in genomic 
features between the low- and high-risk groups. 

3.9. Functional enrichment analysis of the WGD-related genes 

To explore the functional implications of 247 WGD-related crucial genes, we conducted comprehensive GO and KEGG pathway 
analyses. The GO enrichment analysis revealed that 247 WGD-related genes were predominantly enriched in cellular components 
closely associated with cell replication, such as chromatin, centromeres, and kinetochores. Furthermore, these candidate genes were 
also enriched in biological processes related to immune responses, including T cell activity, lymphocyte differentiation, T cell dif
ferentiation, and immune response regulation (Supplementary Fig.11). KEGG pathway analysis unveiled the involvement of candidate 
genes in crucial biological pathways, such as cytokine receptor interactions, T cell receptor signaling pathway, Th17/Th1/Th2 cell 
differentiation, primary immune deficiency, and cell cycle. We further explored the underlying mechanisms that contributed to the 
different outcomes stratified by the 22 risk genes by performing KEGG pathway, GSEA, and GO analyses. 

Moreover, the differential expression analysis of the TCGA training cohort identified 2128 down-regulated genes (DEGs) and 33 up- 
regulated genes (DEGs) between the high- and low-risk groups (Fig. 9A). The KEGG pathway analysis of the DEGs highlighted sig
nificant alterations in pathways associated with cytokine-cytokine receptor interactions, the chemokine signaling pathway, and the 

Fig. 9. Functional analysis of DEGs based on risk genes related with WGD status between high- and low-risk breast cancer patients in TCGA training 
cohort. (A) Volcano map of DEGs between the high- and low-risk groups. (B) GSEA enrichment plots of the high- and low-risk groups. (C) KEGG 
pathways enriched in the high- and low-risk groups. (D) The 15 most significantly enriched GO terms in high-risk group and three groups of top 10 
significantly enriched GO terms in low-risk group. 
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PI3K-Akt signaling pathway within the low-risk subgroup (Fig. 9C). However, patients with high-risk scores demonstrated conver
gence towards tumor-related pathways, including the Apelin signaling pathway, Hippo signaling pathway, and ECM-receptor inter
action, which have potential associations with BRCA [73] (Fig. 9C). The GO analysis further demonstrated that many biological 
functions in low-risk patients were primarily associated with immune-related biological processes and molecular functions (Fig. 9D), 
highlighting the potential involvement of immune mechanisms in determining the divergent outcomes. Additionally, the independent 
GSEA analysis revealed distinct clustering patterns in gene sets related to aminoacyl-tRNA biosynthesis, DNA replication, GPI-anchor 
biosynthesis, homologous recombination, mismatch repair, and RNA polymerase among high-risk patients. In contrast, signaling 
pathways promoting tumor immunity, including the T cell receptor signaling pathway, primary immunodeficiency, and NF-kappa B 

Fig. 10. Drug response of risk genes related with WGD status in breast cancer. (A) Correlation between 22 risk genes expressions and drug sen
sitivities (AUC). (B and C) Comparison of difference in AUC values of 7 drug components (B) and 13 drug components (C) for treating 40 breast 
cancer cell lines. 
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signaling, were more prevalent in low-risk patients (Fig. 9B). 

3.10. Analysis of the correlations between WGD-Related risk genes and drug sensitivity 

To better understand the impact of the risk genes on drug response, we conducted a comprehensive drug sensitivity analysis based 
on the expression levels of risk genes across 40 BRCA cell lines obtained from CCLE and the corresponding drug sensitivity data (AUC) 
from CTRP. Our analysis identified 21 risk genes that exhibited significant correlations with the response to 40 different anticancer 
drugs (P-value <0.05) (Fig. 10A), indicating the pivotal role of these risk genes in drug response. Moreover, we observed that the AUC 
values of seven drugs exhibited a significant increase with higher risk scores (Supplementary Fig. 12A). Specifically, the AUC values of 
these seven drugs in the low-risk group were significantly lower than those in the high-risk group (Fig. 10B). The drugs with this 
correlation included AZD7762 (P = 0.0052), BRD-K84807411 (P = 0.014), CIL41 (P = 0.023), dasatinib (P = 0.0061), staurosporine 
(P = 0.022), semagacestat (P = 0.0029), and vandetanib (P = 0.02). These results suggest that BRCA cell lines with low-risk genes 
exhibited an increased sensitivity to these specific drugs. Additionally, the AUC values of 13 drugs, including Austocystin D (P =
0.027), azacitidine (P = 0.042), BRD-K71935468 (P = 0.047), BRD-K94991378 (P = 0.038), BRD-K97651142 (P = 0.011), BRD1812 
(P = 0.019), elocalcitol (P = 0.00031), KHS101 (P = 0.019), necrostatin-7 (P = 0.0075), PX− 12 (P = 0.003), SB− 525334 (P = 0.0049), 
SCH− 529074 (P = 0.0019), and SU11274 (P = 0.03)), displayed significantly lower AUC values in the high-risk group compared to the 
low-risk group, exhibiting a strong negative correlation with the risk score. These findings indicate that the BRCA cell lines with high- 
risk genes are more sensitive to these 13 specific drugs (Fig. 10C and Supplementary Fig. 12B). 

More importantly, our analysis revealed that 8 out of the 20 drugs had been previously reported for the BRCA treatment. Four drugs 
exhibited significantly lower AUC values in the low-risk group, the remaining exhibited significantly lower AUC values in the high-risk 
group (Supplementary Table 2). For example, Vandetanib, a multitargeted tyrosine kinase inhibitor with anti-tumor activity in pre
clinical models of BRCA [74], exhibited significantly higher AUC values in the high-risk group, suggesting that patients in the low-risk 
group may be more responsive to this drug. Similarly, SU11274, a MET inhibitor, which along with various EGFR inhibitors resulted in 
synergistic suppression of cell viability and cell survival of MSL subtype TNBC cells [75]. The lower AUC of SU11274 in high-risk group 
implied its potential efficacy in treating tumors within this subgroup. These results indicate that the risk genes associated with WGD 
may provide valuable predictive information for drug sensitivity, thereby reducing the risk of adverse drug reactions in patients with 
BRCA. However, further validation is necessary for these findings and to develop more effective and precise treatment strategies for 
BRCA. 

4. Discussions 

In this study, we identified breast cancer-specific genes influenced by WGD using a combination of linear models and gene co- 
expression network analysis. Furthermore, we investigated a set of WGD-specific genes associated with the clinical survival of 
BRCA patients. Through comprehensive evaluation and validation using cohorts from TCGA-BRCA, GEO, and METABRIC, we iden
tified 22 genes that exhibited broad and favorable prognostic effects (Supplementary Fig. 13). Among these genes, ANLN stood out as 
an interesting candidate. ANLN upregulation has been observed in 21 types of cancers and has been associated with poor OS, DFI, and 
PFI in most cancers [76]. Multiple studies have proposed ANLN as a potential molecular marker for predicting breast cancer diagnosis 
[59,77]. Additionally, ANLN has been recognized as a crucial regulatory factor involved in various signaling events, particularly those 
related to the cell cycle and nucleocytoplasmic transport pathways [78]. 

Meanwhile, WGD is often attributed to potential errors during cell division, such as mitotic slippage and cytokinesis failure [79]. 
Defects in the G1 checkpoint can lead to replication and give rise to different malignant phenotypes [3], ultimately impacting the cell 
cycle. We discovered a strong positive correlation between ANLN expression and KIF18A, a cell division driving protein specific to 
WGD cells [31,80], as well as CCNE2. These findings suggest a potential association between ANLN overexpression and the generation 
of WGD in BRCA patients. 

Subsequently, we identified that three cancer genes (BIRC3, CD79A, and PTPRC) from the risk-genes were reported in the Cancer 
Gene Census from COSMIC (v97) [55]. BIRC3 belongs to the inhibitor of apoptosis (IAP) family of proteins. Studies have demonstrated 
that high expression of BIRC3 can lead to increased infiltration of immune cells [81]. Interestingly, we observed a significant upre
gulation of BIRC3 in the low-risk group, suggesting its potential role in enhancing the inhibition of tumor cell apoptosis and promoting 
the development of a tumor immune microenvironment. CD79A is a protein primarily expressed in B cells and plays a critical role in 
activating the immune response. In triple-negative breast cancer, CD79A expression may be associated with an immune response [82]. 
Notably, CD79A-positive triple-negative breast tumors were found to have a higher density of tumor-infiltrating lymphocytes (TILs) 
and improved patient survival [47]. PTPRC, also known as CD45, is a protein tyrosine phosphatase expressed on the surface of all 
nucleated hematopoietic cells. It played a critical role in immune cell signaling and activation. A study revealed that low PTPRC 
expression was associated with worse OS and DFI in BRCA patients [83]. The study also found a positive correlation between PTPRC 
expression and immune cell infiltration, indicating that PTPRC may play a role in the immune response to BRCA. In line with these 
findings, we observed consistent lower expression trends of CD79A and PTPRC in the high-risk group. These studies supported the 
novel WGD–related risk genes as a potentially measurable prognostic indicator in patients with BRCA, which may provide a theoretical 
basis for improving the poor prognosis of patients. 

In this study, we constructed a predictive clinical model based on a set of 22 identified risk genes. To assess the efficacy of our 
proposed model, we also employed three distinct WGD-related gene sets, encompassing the entire gene set, the gene set filtered by our 
linear model, and the gene set filtered by our WGCNA approach. Subsequently, univariate and multivariate COX regression analyses 
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were conducted on these diverse WGD-related gene sets [84,85]. The significant gene sets with the same number of risk genes as our 
method were selected, and the C-index derived from these gene sets was employed to evaluate the performance of our constructed 
model. We calculated and compared the C-index values of models generated through various recombination methods on both the 
TCGA training dataset and the testing dataset. The highest C-index values achieved by these strategies on the TCGA training set and test 
set were 0.65 and 0.63, respectively, which did not surpass those obtained from our method. The results revealed that our method 
yielded a superior C-index compared to alternative strategies (Supplementary Table 3). Furthermore, we determined the AUC values 
for different strategies predicting the three, five, seven, and ten-year OS of patients in eight GEO datasets. The comparative analysis 
revealed a significant advantage in the indices calculated by our method, providing further validation of the effectiveness of the 
predictive model we constructed (Supplementary Table. 4). 

In this study, we developed a scoring system based on the 22 risk genes to stratify patients into various risk groups, which revealed 
noteworthy differences in functional mechanisms, genomic feature distributions, and drug responses. These WGD-related risk genes 
might provide valuable guidance for therapy selection in breast cancer patients with varying risk levels. 

In our study, we also observed a variation in the distribution of tetraploid cells among different risk groups, with a higher frequency 
of tumors exhibiting this genomic event in the high-risk group. However, this trend was not significant in test cohort, potentially due to 
the limited data available from TCGA-BRCA dataset. When we expanded the sample size to include the entire TCGA-BRCA cohort, the 
result became significant. 

There are several limitations in our study. First, we observed a variation in the distribution of tetraploid cells among different risk 
groups, with a higher frequency of tumors exhibiting this genomic event in the high-risk group. However, this trend was not significant 
in the test set, potentially due to small sample size of the test set. The result was further significant for the entire TCGA cohort including 
both training and test sets. Secondly, we acknowledge that the limited sample size might have influenced the significance of certain 
findings, indicating constraints in drawing robust conclusions due to the relatively small number of participants. Our study also unveils 
substantial variations in patient characteristics, such as mutations and clinical features. These variations may introduce confounding 
factors and restrict the generalizability of the study’s findings. Specifically, we note a higher concentration of patients with mutations 
in the low-risk group, implying a potential influence on the comparison between high-risk and low-risk groups and its impact on our 
results. Additionally, our study validated the findings across independent GEO validation cohorts and METABRIC datasets, but further 
experimental validations are required. The absence of experimental validation raises the possibility of overfitting or bias in the model’s 
performance. In short, our study has certain limitations, including the restricted availability of data, small sample size, variations in 
patient characteristics, potential bias in risk group comparisons, and the absence of experimental validation. 

A future direction of our research involves expanding availability of WGD status data. At present, the TCGA project is the primary 
source providing the comprehensive data required to determine whether a sample has undergone WGD. The limited availability of 
WGD status data in other datasets presents a great challenge. Further validation in more external datasets would strengthen the 
confidence in this observation. This is an aspect we intend to address in forthcoming research endeavors. 

5. Conclusion 

In conclusion, our study has yielded insights into the impact of WGD on BRCA. By considering the high frequency of WGD events in 
BRCA, we identified 22 key genes and constructed a risk model that holds clinical significance. Further, we uncovered a potential 
biomarker gene with implications for diagnostic applications. Finally, we identified diagnostic and drug sensitivity-related gene 
markers associated with tetraploid properties in BRCA patients. 
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F. Foijer, Z. Storchová, R. Basto, Author Correction: genetic instability from a single S phase after whole-genome duplication, Nature 608 (2022) E27, https:// 
doi.org/10.1038/s41586-022-05099-w. 

[37] A. Taylor, J. Shih, G. Ha, G. Gao, X. Zhang, A. Berger, S. Schumacher, C. Wang, H. Hu, J. Liu, A. Lazar, A. Cherniack, R. Beroukhim, M. Meyerson, Genomic and 
functional approaches to understanding cancer aneuploidy, Cancer Cell 33 (2018) 676–689.e3, https://doi.org/10.1016/j.ccell.2018.03.007. 
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[41] N. Erin, A. Podnos, G. Tanriover, Ö. Duymuş, E. Cote, I. Khatri, R. Gorczynski, Bidirectional effect of CD200 on breast cancer development and metastasis, with 
ultimate outcome determined by tumor aggressiveness and a cancer-induced inflammatory response, Oncogene 34 (2015) 3860–3870, https://doi.org/ 
10.1038/onc.2014.317. 

[42] W. Tan, M. Liu, L. Wang, Y. Guo, C. Wei, S. Zhang, C. Luo, N. Liu, Novel immune-related genes in the tumor microenvironment with prognostic value in breast 
cancer, BMC Cancer 21 (2021) 126, https://doi.org/10.1186/s12885-021-07837-1. 

[43] J. Wildschutte, D. Ram, R. Subramanian, V. Stevens, J. Coffin, The distribution of insertionally polymorphic endogenous retroviruses in breast cancer patients 
and cancer-free controls, Retrovirology 11 (2014) 62, https://doi.org/10.1186/s12977-014-0062-3. 

[44] Z. Li, Y. Li, X. Wang, Q. Yang, PPP2R2B downregulation is associated with immune evasion and predicts poor clinical outcomes in triple-negative breast cancer, 
Cancer Cell Int. 21 (2021) 13, https://doi.org/10.1186/s12935-020-01707-9. 

[45] P. Li, W. Wang, S. Wang, G. Cao, T. Pan, Y. Huang, H. Wan, W. Zhang, Y. Huang, H. Jin, Z. Wang, PTPRC promoted CD8+ T cell mediated tumor immunity and 
drug sensitivity in breast cancer: based on pan-cancer analysis and artificial intelligence modeling of immunogenic cell death-based drug sensitivity 
stratification, Front. Immunol. 14 (2023) 1145481, https://doi.org/10.3389/fimmu.2023.1145481. 

[46] A. Carnero, Spinophilin: a new tumor suppressor at 17q21, Curr. Mol. Med. 12 (2012) 528–535, https://doi.org/10.2174/156652412800619987. 
[47] R. Harris, A. Cheung, J. Ng, R. Laddach, A. Chenoweth, S. Crescioli, M. Fittall, D. Dominguez-Rodriguez, J. Roberts, D. Levi, F. Liu, E. Alberts, J. Quist, 

A. Santaolalla, S. Pinder, C. Gillett, N. Hammar, S. Irshad, M. Van Hemelrijck, D. Dunn-Walters, F. Fraternali, J. Spicer, K. Lacy, S. Tsoka, A. Grigoriadis, A. Tutt, 
S. Karagiannis, Tumor-infiltrating B lymphocyte profiling identifies IgG-biased, clonally expanded prognostic phenotypes in triple-negative breast cancer, 
Cancer Res. 81 (2021) 4290–4304, https://doi.org/10.1158/0008-5472.Can-20-3773. 

[48] S. Wang, A. Beeghly-Fadiel, Q. Cai, H. Cai, X. Guo, L. Shi, J. Wu, F. Ye, Q. Qiu, Y. Zheng, W. Zheng, P. Bao, X. Shu, Gene expression in triple-negative breast 
cancer in relation to survival, Breast Cancer Res. Treat. 171 (2018) 199–207, https://doi.org/10.1007/s10549-018-4816-9. 

[49] F. Zhang, Y. Zhang, T. Hou, F. Ren, X. Liu, R. Zhao, X. Zhang, Screening of genes related to breast cancer prognosis based on the DO-UniBIC method, Am. J. Med. 
Sci. 364 (2022) 333–342, https://doi.org/10.1016/j.amjms.2022.04.022. 

[50] Y. Feng, C. Guo, H. Wang, L. Zhao, W. Wang, T. Wang, Y. Feng, K. Yuan, G. Huang, Fibrinogen-like protein 2 (FGL2) is a novel biomarker for clinical prediction 
of human breast cancer, Med. Sci. Mon. Int. Med. J. Exp. Clin. Res. : international medical journal of experimental and clinical research 26 (2020) e923531, 
https://doi.org/10.12659/msm.923531. 

[51] J. Zhu, Y. Shen, L. Wang, J. Qiao, Y. Zhao, Q. Wang, A novel 12-gene prognostic signature in breast cancer based on the tumor microenvironment, Ann. Transl. 
Med. 10 (2022) 143, https://doi.org/10.21037/atm-21-6748. 

[52] P. Ji, Y. Gong, M. Jin, H. Wu, L. Guo, Y. Pei, W. Chai, Y. Jiang, Y. Liu, X. Ma, G. Di, X. Hu, Z. Shao, Lgals2In vivo multidimensional CRISPR screens identify as an 
immunotherapy target in triple-negative breast cancer, Sci. Adv. 8 (2022) eabl8247, https://doi.org/10.1126/sciadv.abl8247. 

[53] Y. Meng, T. Huang, X. Chen, Y. Lu, A comprehensive analysis of the expression and regulation network of lymphocyte-specific protein tyrosine kinase in breast 
cancer, Transl. Cancer Res. 10 (2021) 1519–1536, https://doi.org/10.21037/tcr-21-328. 

[54] T. Matsuda, K. Oritani, Possible therapeutic applications of targeting STAP proteins in cancer, Biological & pharmaceutical bulletin 44 (2021) 1810–1818, 
https://doi.org/10.1248/bpb.b21-00672. 

[55] J. Tate, S. Bamford, H. Jubb, Z. Sondka, D. Beare, N. Bindal, H. Boutselakis, C. Cole, C. Creatore, E. Dawson, P. Fish, B. Harsha, C. Hathaway, S. Jupe, C. Kok, 
K. Noble, L. Ponting, C. Ramshaw, C. Rye, H. Speedy, R. Stefancsik, S. Thompson, S. Wang, S. Ward, P. Campbell, S. Forbes, COSMIC: the catalogue of somatic 
mutations in cancer, Nucleic acids research 47 (2019) D941–D947, https://doi.org/10.1093/nar/gky1015. 

[56] C. Lee, K. Fernandez, S. Alexandrou, C. Sergio, N. Deng, S. Rogers, A. Burgess, C. Caldon, Cyclin E2 promotes whole genome doubling in breast cancer, Cancers 
12 (2020) 2268, https://doi.org/10.3390/cancers12082268. 

Y. Lv et al.                                                                                                                                                                                                              

https://doi.org/10.18632/oncotarget.7815
https://doi.org/10.18632/oncotarget.7815
https://doi.org/10.1016/j.artmed.2017.06.008
https://doi.org/10.3390/molecules24101973
https://doi.org/10.1016/j.artmed.2022.102349
https://doi.org/10.1186/bcr3043
https://doi.org/10.1038/s41586-020-03133-3
https://doi.org/10.1038/s41586-020-03133-3
https://doi.org/10.1186/s40880-019-0427-z
https://doi.org/10.1038/s41467-020-14286-0
https://doi.org/10.1038/s41586-020-03114-6
https://doi.org/10.1038/s41586-020-03114-6
https://doi.org/10.1038/nbt.2203
https://doi.org/10.1038/nbt.2203
https://doi.org/10.1038/s41467-022-28421-6
https://doi.org/10.1007/s10142-023-01026-y
https://doi.org/10.1038/ng.2760
https://doi.org/10.1038/ng.2760
https://doi.org/10.1038/s41586-022-05099-w
https://doi.org/10.1038/s41586-022-05099-w
https://doi.org/10.1016/j.ccell.2018.03.007
https://doi.org/10.1093/nar/gkw943
https://doi.org/10.1093/nar/gkw943
https://doi.org/10.1186/s12885-021-08914-1
https://doi.org/10.1002/cam4.2335
https://doi.org/10.1038/onc.2014.317
https://doi.org/10.1038/onc.2014.317
https://doi.org/10.1186/s12885-021-07837-1
https://doi.org/10.1186/s12977-014-0062-3
https://doi.org/10.1186/s12935-020-01707-9
https://doi.org/10.3389/fimmu.2023.1145481
https://doi.org/10.2174/156652412800619987
https://doi.org/10.1158/0008-5472.Can-20-3773
https://doi.org/10.1007/s10549-018-4816-9
https://doi.org/10.1016/j.amjms.2022.04.022
https://doi.org/10.12659/msm.923531
https://doi.org/10.21037/atm-21-6748
https://doi.org/10.1126/sciadv.abl8247
https://doi.org/10.21037/tcr-21-328
https://doi.org/10.1248/bpb.b21-00672
https://doi.org/10.1093/nar/gky1015
https://doi.org/10.3390/cancers12082268


Heliyon 10 (2024) e28586

20

[57] C. Zhang, C. Zhu, H. Chen, L. Li, L. Guo, W. Jiang, S. Lu, Kif18A is involved in human breast carcinogenesis, Carcinogenesis 31 (2010) 1676–1684, https://doi. 
org/10.1093/carcin/bgq134. 

[58] W. Zhou, Z. Wang, N. Shen, W. Pi, W. Jiang, J. Huang, Y. Hu, X. Li, L. Sun, Knockdown of ANLN by lentivirus inhibits cell growth and migration in human breast 
cancer, Mol. Cell. Biochem. 398 (2015) 11–19, https://doi.org/10.1007/s11010-014-2200-6. 

[59] K. Magnusson, G. Gremel, L. Rydén, V. Pontén, M. Uhlén, A. Dimberg, K. Jirström, F. Pontén, ANLN is a prognostic biomarker independent of Ki-67 and essential 
for cell cycle progression in primary breast cancer, BMC Cancer 16 (2016) 904, https://doi.org/10.1186/s12885-016-2923-8. 

[60] K. Zhu, Y. Wu, P. He, Y. Fan, X. Zhong, H. Zheng, T. Luo, PI3K/AKT/mTOR-Targeted therapy for breast cancer, Cells 11 (2022) 2508, https://doi.org/10.3390/ 
cells11162508. 

[61] Z. Sun, Q. Jiang, B. Gao, X. Zhang, L. Bu, L. Wang, Y. Lin, W. Xie, J. Li, J. Guo, AKT blocks SIK1-mediated repression of STAT3 to promote breast tumorigenesis, 
Cancer Res. 83 (2023) 1264–1279, https://doi.org/10.1158/0008-5472.Can-22-3407. 

[62] Y. Liu, M. Sun, B. Zhang, W. Zhao, KIF18A improves migration and invasion of colorectal cancer (CRC) cells through inhibiting signaling, Aging 15 (2023) 
9182–9192, https://doi.org/10.18632/aging.205027. 

[63] C. Suzuki, Y. Daigo, N. Ishikawa, T. Kato, S. Hayama, T. Ito, E. Tsuchiya, Y. Nakamura, ANLN plays a critical role in human lung carcinogenesis through the 
activation of RHOA and by involvement in the phosphoinositide 3-kinase/AKT pathway, Cancer Res. 65 (2005) 11314–11325, https://doi.org/10.1158/0008- 
5472.Can-05-1507. 

[64] A. Belli, D. Cumberland, Percutaneous atherectomy-early experience in Sheffield, Clin. Radiol. 40 (1989) 122–126, https://doi.org/10.1016/s0009-9260(89) 
80067-4. 

[65] G. Haupert, Regulation of Na+, K+-ATPase by the endogenous sodium transport inhibitor from hypothalamus, Hypertension 10 (1987) I61–I66, https://doi. 
org/10.1161/01.hyp.10.5_pt_2.i61. 

[66] A. Klippel, M. Escobedo, M. Wachowicz, G. Apell, T. Brown, M. Giedlin, W. Kavanaugh, L. Williams, Activation of phosphatidylinositol 3-kinase is sufficient for 
cell cycle entry and promotes cellular changes characteristic of oncogenic transformation, Molecular and cellular biology 18 (1998) 5699–5711, https://doi. 
org/10.1128/mcb.18.10.5699. 

[67] X. Long, W. Zhou, Y. Wang, S. Liu, Prognostic significance of ANLN in lung adenocarcinoma, Oncol. Lett. 16 (2018) 1835–1840, https://doi.org/10.3892/ 
ol.2018.8858. 

[68] L. Sheng, Y. Kang, D. Chen, L. Shi, Knockdown of ANLN inhibits the progression of lung adenocarcinoma via pyroptosis activation, Mol. Med. Rep. 28 (2023) 
177, https://doi.org/10.3892/mmr.2023.13064. 

[69] X. Xu, L. Xu, H. Huang, J. Li, S. Dong, L. Jin, Z. Ma, L. Li, Identification of hub genes as biomarkers correlated with the proliferation and prognosis in lung 
cancer: a weighted gene Co-expression network analysis, BioMed Res. Int. 2020 (2020) 3416807, https://doi.org/10.1155/2020/3416807. 

[70] P. Gao, H. Wang, J. Yu, J. Zhang, Z. Yang, M. Liu, Y. Niu, X. Wei, W. Wang, H. Li, Y. Wang, G. Sun, miR-3607-3p suppresses non-small cell lung cancer (NSCLC) 
by targeting TGFBR1 and CCNE2, PLoS Genet. 14 (2018) e1007790, https://doi.org/10.1371/journal.pgen.1007790. 

[71] Q. Wang, H. Wu, Q. Wu, S. Zhong, Berberine targets KIF20A and CCNE2 to inhibit the progression of nonsmall cell lung cancer via the PI3K/AKT pathway, Drug 
Dev. Res. 84 (2023) 907–921, https://doi.org/10.1002/ddr.22061. 

[72] X. Qian, Y. Li, Y. Yu, F. Yang, R. Deng, J. Ji, L. Jiao, X. Li, R. Wu, W. Chen, G. Feng, X. Zhu, Inhibition of DNA methyltransferase as a novel therapeutic strategy 
to overcome acquired resistance to dual PI3K/mTOR inhibitors, Oncotarget 6 (2015) 5134–5146, https://doi.org/10.18632/oncotarget.3016. 

[73] Y. Bao, L. Wang, L. Shi, F. Yun, X. Liu, Y. Chen, C. Chen, Y. Ren, Y. Jia, Transcriptome profiling revealed multiple genes and ECM-receptor interaction pathways 
that may be associated with breast cancer, Cellular & molecular biology letters 24 (2019) 38, https://doi.org/10.1186/s11658-019-0162-0. 

[74] A. De Luca, A. D’Alessio, M. Maiello, M. Gallo, S. Bevilacqua, D. Frezzetti, A. Morabito, F. Perrone, N. Normanno, Vandetanib as a potential treatment for breast 
cancer, Expet Opin. Invest. Drugs 23 (2014) 1295–1303, https://doi.org/10.1517/13543784.2014.942034. 

[75] Y. Yi, K. You, E. Bae, S. Kwak, Y. Seong, I. Bae, Dual inhibition of EGFR and MET induces synthetic lethality in triple-negative breast cancer cells through 
downregulation of ribosomal protein S6, Int. J. Oncol. 47 (2015) 122–132, https://doi.org/10.3892/ijo.2015.2982. 

[76] L. Zhang, Y. Wei, Y. He, X. Wang, Z. Huang, L. Sun, J. Chen, Q. Zhu, X. Zhou, Clinical implication and immunological landscape analyses of ANLN in pan-cancer: 
a new target for cancer research, Cancer Med. 12 (2023) 4907–4920, https://doi.org/10.1002/cam4.5177. 

[77] Y. Xiao, Z. Deng, Y. Li, B. Wei, X. Chen, Z. Zhao, Y. Xiu, M. Hu, M. Alahdal, Z. Deng, D. Wang, J. Liu, W. Li, ANLN and UBE2T are prognostic biomarkers 
associated with immune regulation in breast cancer: a bioinformatics analysis, Cancer Cell Int. 22 (2022) 193, https://doi.org/10.1186/s12935-022-02611-0. 

[78] X. Zhang, L. Li, S. Huang, W. Liao, J. Li, Z. Huang, Y. Huang, Y. Lian, Comprehensive analysis of ANLN in human tumors: a prognostic biomarker associated with 
cancer immunity, Oxid. Med. Cell. Longev. 2022 (2022) 5322929, https://doi.org/10.1155/2022/5322929. 

[79] T. Davoli, T. de Lange, The causes and consequences of polyploidy in normal development and cancer, Annu. Rev. Cell Dev. Biol. 27 (2011) 585–610, https:// 
doi.org/10.1146/annurev-cellbio-092910-154234. 

[80] C. Marquis, C. Fonseca, K. Queen, L. Wood, S. Vandal, H. Malaby, J. Clayton, J. Stumpff, Chromosomally unstable tumor cells specifically require KIF18A for 
proliferation, Nat. Commun. 12 (2021) 1213, https://doi.org/10.1038/s41467-021-21447-2. 

[81] Y. Zheng, K. Wang, N. Li, Q. Zhang, F. Chen, M. Li, Prognostic and immune implications of a novel pyroptosis-related five-gene signature in breast cancer, 
Frontiers in surgery 9 (2022) 837848, https://doi.org/10.3389/fsurg.2022.837848. 

[82] F. Qi, W. Qin, Y. Zang, Molecular mechanism of triple-negative breast cancer-associated BRCA1 and the identification of signaling pathways, Oncol. Lett. 17 
(2019) 2905–2914, https://doi.org/10.3892/ol.2019.9884. 

[83] J. Kim, H. Jung, I. Sohn, S. Woo, H. Cho, E. Cho, J. Lee, S. Kim, S. Nam, Y. Park, J. Ahn, Y. Im, Prognostication of a 13-immune-related-gene signature in patients 
with early triple-negative breast cancer, Breast Cancer Res. Treat. 184 (2020) 325–334, https://doi.org/10.1007/s10549-020-05874-1. 

[84] S. Wang, Y. Xiong, Q. Zhang, D. Su, C. Yu, Y. Cao, Y. Pan, Q. Lu, Y. Zuo, L. Yang, Clinical significance and immunogenomic landscape analyses of the immune 
cell signature based prognostic model for patients with breast cancer, Briefings Bioinf. 22 (2021), https://doi.org/10.1093/bib/bbaa311 bbaa311. 

[85] Z. Wang, K. Xing, B. Zhang, Y. Zhang, T. Chai, J. Geng, X. Qin, X. Zhang, C. Xu, Identification of prognostic gene signatures by developing a scRNA-seq-based 
integration approach to predict recurrence and chemotherapy benefit in stage II-III colorectal cancer, Int. J. Mol. Sci. 23 (2022) 12460, https://doi.org/ 
10.3390/ijms232012460. 

Y. Lv et al.                                                                                                                                                                                                              

https://doi.org/10.1093/carcin/bgq134
https://doi.org/10.1093/carcin/bgq134
https://doi.org/10.1007/s11010-014-2200-6
https://doi.org/10.1186/s12885-016-2923-8
https://doi.org/10.3390/cells11162508
https://doi.org/10.3390/cells11162508
https://doi.org/10.1158/0008-5472.Can-22-3407
https://doi.org/10.18632/aging.205027
https://doi.org/10.1158/0008-5472.Can-05-1507
https://doi.org/10.1158/0008-5472.Can-05-1507
https://doi.org/10.1016/s0009-9260(89)80067-4
https://doi.org/10.1016/s0009-9260(89)80067-4
https://doi.org/10.1161/01.hyp.10.5_pt_2.i61
https://doi.org/10.1161/01.hyp.10.5_pt_2.i61
https://doi.org/10.1128/mcb.18.10.5699
https://doi.org/10.1128/mcb.18.10.5699
https://doi.org/10.3892/ol.2018.8858
https://doi.org/10.3892/ol.2018.8858
https://doi.org/10.3892/mmr.2023.13064
https://doi.org/10.1155/2020/3416807
https://doi.org/10.1371/journal.pgen.1007790
https://doi.org/10.1002/ddr.22061
https://doi.org/10.18632/oncotarget.3016
https://doi.org/10.1186/s11658-019-0162-0
https://doi.org/10.1517/13543784.2014.942034
https://doi.org/10.3892/ijo.2015.2982
https://doi.org/10.1002/cam4.5177
https://doi.org/10.1186/s12935-022-02611-0
https://doi.org/10.1155/2022/5322929
https://doi.org/10.1146/annurev-cellbio-092910-154234
https://doi.org/10.1146/annurev-cellbio-092910-154234
https://doi.org/10.1038/s41467-021-21447-2
https://doi.org/10.3389/fsurg.2022.837848
https://doi.org/10.3892/ol.2019.9884
https://doi.org/10.1007/s10549-020-05874-1
https://doi.org/10.1093/bib/bbaa311
https://doi.org/10.3390/ijms232012460
https://doi.org/10.3390/ijms232012460

	Differential whole-genome doubling based signatures for improvement on clinical outcomes and drug response in patients with ...
	1 Introduction
	2 Materials and methods
	2.1 Cohort datasets and preprocessing
	2.2 Genome features and special pattern analysis associated with WGD status
	2.2.1 Mutational burden
	2.2.2 Aneuploidy score profiling
	2.2.3 Chromosome instability score
	2.2.4 Copy number variation score

	2.3 Identification of WGD-related crucial genes
	2.4 Determination of risk genes linked to WGD status
	2.5 Risk groups of prognostic genes and survival analysis
	2.6 Construction and validation of the nomogram model
	2.7 Functional enrichment analysis
	2.8 Analysis of drug sensitivity
	2.9 Statistical analysis

	3 Results
	3.1 Genomic features associated with WGD in breast cancer
	3.2 Identification of crucial genes derived from WGD status
	3.3 Identification of prognostic genes associated with WGD status for BRCA patients
	3.4 Potential correlation of risk genes with KIF18A and CCNE2 in BRCA
	3.5 The predictive power of the risk genes
	3.6 The protective power of the optimal model
	3.7 Nomogram establishment and validation with clinical features
	3.8 Genomic feature alteration among risk groups in patients with BRCA
	3.9 Functional enrichment analysis of the WGD-related genes
	3.10 Analysis of the correlations between WGD-Related risk genes and drug sensitivity

	4 Discussions
	5 Conclusion
	Funding statement
	Ethics declarations
	Data availability statement
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A Supplementary data
	References


