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Pulse-Wave-Pattern Classification 
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Owing to the diversity of pulse-wave morphology, pulse-based diagnosis is difficult, especially pulse-
wave-pattern classification (PWPC). A powerful method for PWPC is a convolutional neural network 
(CNN). It outperforms conventional methods in pattern classification due to extracting informative 
abstraction and features. For previous PWPC criteria, the relationship between pulse and disease 
types is not clear. In order to improve the clinical practicability, there is a need for a CNN model to 
find the one-to-one correspondence between pulse pattern and disease categories. In this study, five 
cardiovascular diseases (CVD) and complications were extracted from medical records as classification 
criteria to build pulse data set 1. Four physiological parameters closely related to the selected diseases 
were also extracted as classification criteria to build data set 2. An optimized CNN model with stronger 
feature extraction capability for pulse signals was proposed, which achieved PWPC with 95% accuracy 
in data set 1 and 89% accuracy in data set 2. It demonstrated that pulse waves are the result of multiple 
physiological parameters. There are limitations when using a single physiological parameter to 
characterise the overall pulse pattern. The proposed CNN model can achieve high accuracy of PWPC 
while using CVD and complication categories as classification criteria.

Pulse waves contain a large quantity of pathological and physiological information1,2. Pulse-wave characteristics 
are closely related to diseases (hypertension, type 2 diabetes, atherosclerosis, etc.), especially cardiovascular dis-
eases (CVD) and physiological parameters [pulse-wave velocity, cardio-ankle vascular index (CAVI), blood pres-
sure, etc.]3,4. Therefore, pulse analysis is extensive used in cardiovascular function assessment and non-invasive 
early diagnosis of cardiovascular disease and related complications5. TCPD (Traditional Chinese Pulse Diagnosis) 
refers to the diagnosis of diseases via traditional Chinese medical practices by feeling the change in pulse at 
the patient’s wrist, which is highly dependent on the doctor’s skill and experience6. Computer-aided analysis 
has made some achievements in pulse diagnosis, especially in pulse-wave-pattern classification (PWPC). For 
example, Wang et al. divided 407 sets of pulse data into five pulse patterns by using a Bayesian network based on 
six pulse parameters: depth, width, length, frequency, rhythm and strength (84% successful classification rate)7. 
Moreover, Xu et al. divided 320 sets of pulse data into 16 pulse patterns by using a fuzzy neural network based 
on differences in pulse shapes, widths, positions and some specific local parameters (90% successful classifica-
tion rate)8. However, the diverse morphology of pulse waves remains a difficulty for PWPC, which may lead to 
problems such as waveform local time shifting, as shown in Fig. 19. In addition, the classification criteria of these 
studies are based on TCPD theory, which means that a pulse pattern may correspond to a variety of disease cate-
gories, as shown in Fig. 110. It also leads to a decrease in the clinical practicality of pulse-based diagnosis. Thus, in 
this study, we selected new classification criteria—that is, the CVD and complication categories and the clinical 
physiological parameters—with the aim of developing a practical PWPC method with a high classification rate.

With the research and development of deep learning, various of neural network structures have been designed 
for signal processing. Recurrent neural network (RNN)11, based on its internal memory, is used to process arbi-
trary time series input sequence such as non-segmented handwriting recognition, speech recognition, etc. Long 
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short term memory (LSTM)12, as a variant of RNN, can effectively prevent the occurrence of gradient vanishing 
from processing time series signals. In recent years, remarkable achievements have been made in the field of 
pattern classification via the use of convolutional neural networks (CNNs) as deep learning structures13–16. CNNs 
provide an end-to-end learning model. The trained CNNs by the gradient descent method can learn the charac-
teristics of input data and further complete the pattern classification. CNNs have strong ability of feature learning 
and pattern classification. The main reason is that the features of the lower layers are derived from the partial 
information and convolution kernel with sharing weights from the upper layer. CNNs have been applied in the 
classification of human physiological signal patterns. Based on a 34-layer CNN, Rajpurkar et al. classified the elec-
trocardiogram (ECG) signals into 14 types17. Moreover, Rubin et al. performed heart-sound recordings based on 
deep CNN and Mel-frequency cepstral coefficients18. These studies used CNN to achieve pattern classification of 
relevant physiological signals and achieved higher accuracy than the diagnostic results of experienced physicians. 
Furthermore, Hu et al. used CNN to divide pulse waves into two types: health and subhealth19. In the present 
study, in view of the large amount of pathological and physiological information contained in pulse signals, we 
collected the required data under the guidance of the doctor and established two data sets based on either CVD/
complication categories or physiological parameters. We proposed an optimised CNN model for PWPC based 
on these two data sets. The purpose of this study was to identify a practical and efficient classification criterion for 
PWPC based on CNN, which contributed to non-invasive, practical and effective diagnosis of CVDs and related 
complications.

Results
The average pulse waves of each pattern in the two data sets are shown in Fig. 2.

We showed the learning curves of data set 1 and data set 2 respectively to evaluate their PWPC performance 
on the proposed CNN model, as shown in Fig. 3. For cost-value curve, the decline rate of data set 1 was signifi-
cantly higher than that of data set 2. For training error and test error, the minimum value of data set 1 was smaller 
than that of data set 2. Especially test error, data set 1 (When epoch was 90, the minimum test error was 0.08. 
Epoch was the number of iterations in CNN pattern classification) was much smaller than data set 2 (When epoch 
was 100, the minimum test error was 0.34). With the same proposed CNN, the six pulse patterns in data set 1 
showed higher calculation efficiency and feature expression ability than those five patterns in data set 2.

Figure 1. According to previous studies’ classification criteria, we show five pulse waves that exhibit a taut pulse 
pattern, which involves a pulse with a high second peak (local time shifting), as follows: (a) typical taut pulse, 
(b) taut pulse with high tidal wave and (c) taut pulse with tidal wave merged with percussion wave9. With the 
help of medical doctors, (d) and (e) were extracted from our database. Although (a–e) all feature a taut pulse 
pattern, there are still differences in some local waveform characteristics. In addition, the subject of (d) suffered 
from hyperlipidaemia, while the subject of (e) suffered from atherosclerosis. This shows that, under the previous 
classification criteria, a single pulse pattern might correspond to many disease categories.
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Table 1 shows the overall values of the evaluation parameters in the two data sets. The accuracy and other 
evaluation parameters of PWPC in data set 1 (overall accuracy = 0.95) were higher than those in data set 2 (over-
all accuracy = 0.89). Tables 2 and 3 show the details for each pattern in the two data sets separately. Pulse-wave 
patterns representing healthy subjects (H1 and H2) could be identified with high precision (precision H1 = 1, 
recall H1 = 0.99; precision H2 = 0.97, recall H2 = 0.97). The HCA, as the pulse pattern of complications, had the 
lowest classification rate in data set 1 (precision HCA = 0.89, recall HCA = 0.91). In addition, the classification 
performance of other pulse patterns in data set 1 was higher than that in data set 2.

To further assess the PWPC result of the proposed CNN model, the two data sets were put into different 
neural networks models for PWPC. Table 4 shows the accuracy of PWPC with those different models. It details 
network methods, classification criteria, number of subjects, and the accuracy. It demonstrated that compared 
with other neural networks or other CNN structures, our proposed CNN model achieved higher accuracy in 
PWPC under the new classification criteria, which also meant stronger feature extraction ability for pulse signals.

To further analyse the causes of errors in pattern classification, we determined the confusion matrix of the two 
data sets, as shown in Fig. 4. The cause of errors in data set 1 was mainly the erroneous classification of the four pulse 
patterns of Hn, At, HCA and Td. In data set 2, with the exception of the control group (H2), the remaining four pulse 
patterns (BP, CAVI, baPWV and BV) were found to interfere with each other and have higher error rates.

Figure 2. Average pulse-wave patterns in data set 1 (a) and data set 2 (b). Abbreviation Represents Pulse Wave 
Patterns: H1-Healthy Control Group in Data Set 1; Hn- hypertension; At-atherosclerosis; Ha-hyperlipidaemia; 
Td-type 2 diabetes; HCA-Hypertension complicated by atherosclerosis; H2-Healthy Control Group in Data Set 
2; BP-blood pressure; baPWV- brachial-ankle pulse wave velocity; BV-blood viscosity.
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Discussion
In this study, CVD and associated complications as well as related physiological parameters were extracted, which 
were used as classification criteria. According to the new classification criteria, we screened the subjects’ pulse 
waves and created data set 1 and data set 2, respectively. An optimised CNN model was proposed for PWPC. It 

Figure 3. Learning curve in data set 1 (a) and data set 2 (b).

Data set
Overall 
accuracy

Overall 
precision

Overall 
recall

Overall 
F-measure

Data set 1 0.95 0.95 0.95 0.95

Data set 2 0.89 0.89 0.89 0.89

Table 1. PWPC evaluation of per pulse patterns in two data sets.

Pulse pattern Precision Recall F-measure

H1 1 0.99 0.99

Hn 0.94 0.93 0.94

At 0.90 0.94 0.92

Ha 1 0.99 0.99

Td 0.96 0.93 0.94

HCA 0.89 0.91 0.90

Table 2. PWPC evaluation of per pulse patterns in data set 1.
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achieved the classification of six pulse patterns in data set 1 with an accuracy of 95% and the classification of six 
pulse patterns in data set 2 with an accuracy of 89%. The main contributions of this study are as follows:

 1. Two pulse wave data sets were created, which contained a large amount of physiological and pathological 
information of subjects.

 2. New classification criteria and optimized CNN model were proposed, which achieves higher accuracy than 
previous studies7,8,19–21.

This study demonstrates that CVD and complications are practical and efficient classification criteria, enabling 
the optimised CNN model to achieve high accuracy for PWPC.

We observed that the classification errors in data set 1 were mainly due to the erroneous classification of the 
Hn, At and HCA patterns. This was due to the simultaneous occurrence of hypertension and atherosclerosis on 
behalf of HCA. There must be some similar pulse characteristics between HCA and the other two diseases, which 

Pulse pattern Precision Recall F-measure

H2 0.97 0.97 0.97

BP 0.89 0.89 0.89

CAVI 0.82 0.84 0.83

baPWV 0.84 0.87 0.85

BV 0.95 0.89 0.92

Table 3. PWPC evaluation of per pulse patterns in data set 2.

Network Method Classification criteria
Number of 
subjects Accuracy

The proposed CNN 
model

CNN CVD and complications 412 0.95

CNN Physiological parameters 412 0.89

LetNet38
CNN CVD and complications 412 0.69

CNN Physiological parameters 412 0.63

AlexNet14
CNN CVD and complications 412 0.73

CNN Physiological parameters 412 0.70

VGG-Net15
CNN CVD and complications 412 0.81

CNN Physiological parameters 412 0.79

Wang’s network7 Bayesian Network Based on TCPD 407 0.84

Xu’s network8 Fuzzy Neural 
Network Based on TCPD 320 0.90

Table 4. PWPC accuracy of different methods.

Figure 4. The confusion matrices of data set 1 (a) and data set 2 (b). The confusion matrix is an intuitive 
method for evaluating the results of pattern classification CNN models. The real categories (rows) and predicted 
categories (columns) of the classification results can be read directly. For example, in matrix (a), there were 70 
(65 + 5) pulse waves which really belonged to the Hn pattern (the second row), while the CNN model predicted 
69 (65 + 1 + 1 + 2) pulse waves in the Hn pattern (the second column).
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indicates that, in order to ensure that the characteristics of the different pulse patterns are typical, the selected data 
specimen must exclude the effect of complications at the same time. In addition, in data set 1, Td was also par-
tially misclassified as Hn (n = 1), At (n = 3) and HCA (n = 1). Previous studies showed that type 2 diabetes could 
increase the risk and mortality of CVD, and they had similarities in the damage to the cardiovascular system22–24. 
Thus, there might have been similar pulse waveform characteristics between Td and Hn, At, HCA patterns, which 
led to classification errors.

In data set 2, four pulse patterns (BP, CAVI, baPWV and BV) were found to interfere with each other in pat-
tern classification. Previous studies showed that the effect of a single physiological parameter on pulse waveform 
was mainly reflected in the change of some local characteristics25–27. The pulse waveform characteristics with the 
same value of one specific physiological parameter would change as a result of the differences of other physiolog-
ical parameters, as shown in Fig. 5. It may have led to the errors of pattern classification in data set 2. Our study 
showed that the pulse-wave was the result of multiple physiological parameters. There are clearly limitations 
associated with using a single physiological parameter in characterising the overall pulse pattern. Disease was the 
result of multiple physiological parameters, which might explain the higher classification accuracy in data set 1.

This study had several limitations. The most important one was the relatively limited number of subjects. 
Limited by the number of subjects, the effects of some physiological information such as age, height and weight 
on pulse waveform were ignored, which inevitably led to errors in pattern classification1. However, in our study, 
the number of pulse waves in each pulse pattern was several times that in some previous studies21,28. To some 
extent, the findings indicated that each of our patterns could represent the typical pulse characteristics. In addi-
tion, this study focused on the classification criteria of pulse patterns. For this purpose, we used the same CNN 
model to classify two data sets. Regarding the low classification rate of data set 2, we did not explore whether it 
could be improved by optimising the architecture of the CNN model.

Conclusions
In this study, we established pulse wave data set 1 and data set 2 based on the classification criteria: CVD cate-
gories and related physiological parameters. CNN was used to extract features from two data sets and to achieve 
PWPC with high accuracy. The main contribution of this study is to propose the new classification criteria for 
PWPC and construct a matching CNN model. The optimized CNN model achieved PWPC with 95% accuracy 
in data set 1 and 89% accuracy in data set 2. This study demonstrated that pulse waves are the result of multiple 
physiological parameters, so there are limitations when using a single physiological parameter to characterize the 
overall pulse pattern. The proposed CNN model can achieve high accuracy PWPC while using CVD and compli-
cation categories as classification criteria, which contributes to non-invasive, practical and effective diagnosis of 
CVD and associated complications.

Figure 5. The pulse-wave form baPWV pulse pattern with the different baPWV and different CAVI. Pulse 
waves from six subjects were selected.
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Method
Data collection. The original pulse wave data were from the “Study on Evaluation Method of Cardiovascular 
System Based on Non-invasive Detection of Blood Pressure and Pulse-Wave of Limbs29”, which recruited 412 sub-
jects and determined their physiological parameters and more than 12,000 cycles of pulse waves. The pulse and 
blood pressure signal measuring device was Fukuda VS-1500A. In addition, the subjects’ brachial ankle pulse-
wave velocity (baPWV) and blood viscosity were collected. All subjects were registered at Beijing University of 
Technology Hospital, and information on their diseases was collected through the subjects’ medical records.

The study with its experimental protocols and relevant details was approved by the Institutional Ethics 
Committee of Beijing University of Technology and Tohoku University. All experiments were performed in 
accordance with relevant guidelines and regulations. We explained the content of the study to the subjects in 
detail, and on this basis, the subjects signed the informed consent form.

Pulse waveform denoising and normalisation. In this study, we collected the pulse signals from the 
wrist of the subjects. The denoising and normalization of pulse signals were processed with the same method as 
the previous studies30. Firstly, the noise was removed with wavelet transform decomposition method31. Then, in 
order to prevent the distortion of pulse signals, according to Nyquist theorem and actual sampling frequency8,19, 
the sampling points of single cycle of pulse wave were set at 200. Because the focus of this study was the change of 
pulse wave model, the amplitude of pulse wave was normalized to 0–200 in each cycle.

Data sets. Previous studies classified pulses into patterns based on the TCPD theory7–10,32. However, as men-
tioned previously, under this classification criterion, one pulse pattern may correspond to a variety of disease 
categories. Thus, in this study, based on subjects’ clinical data, we directly selected five diseases as new classifi-
cation criteria: hypertension, atherosclerosis, hyperlipidaemia, type 2 diabetes and hypertension complicated by 
atherosclerosis (HCA). Type 2 diabetes, as one of the common complications of CVD33, and HCA were used to 
study the effects of CVD complications on pulse waves. To ensure the typical characteristics of each pulse pattern, 
the pulse signals from subjects who only suffered from one of the five diseases and healthy subjects (a total of six 
types) were used as new pulse patterns to build data set 1, as shown in Fig. 6.

We simultaneously selected four physiological parameters closely related to the selected diseases as classifi-
cation criteria: blood pressure, which can be used as an indicator for assessing hypertension34; cardio-ankle vas-
cular index (CAVI), which is one of the indicators for assessing atherosclerosis35; and brachial ankle pulse-wave 
velocity (baPWV), which can be used as an indicator for evaluating cardiovascular function in type 2 diabetics36; 
For patients with hyperlipidaemia, an increase of blood lipids often occurs simultaneously with increased blood 
viscosity37. Based on the subjects in data set 2 and the medical reference range, we determined the range of each 
physiological parameter. The pulse waves of subjects in whom only one of the four parameters was beyond the 
range were selected. The pulse waves of subjects whose four parameters were all within the range were also selected 
as a healthy control group. Then the five types of pulse pattern were used to build data set 2, as shown in Fig. 7.

For the processing of pulse image, this study used the same method as previous studies30. We extracted the 
pulse cycles from the selected subjects. To avoid data duplication affecting the accuracy of CNN prediction, all 

Figure 6. The process of screening the subjects in data set 1. a,b,c,dScreening criteria: The number of subjects for 
a selected disease should be more than 20. The disease or complications must be of the five types selected in this 
study. There is no serious abnormality in pulse waves caused by noise or incorrect data collection, among others. 
We show all cases and numbers of excluded subjects in c: type 2 diabetes complicated by hypertension (n = 4), 
type 2 diabetes complicated by atherosclerosis (n = 3), type 2 diabetes complicated by heart failure (n = 5) and 
diabetic foot disease (n = 8). Based on the screening criteria, we excluded these cases.
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pulse waves in the two data sets were taken from different cycles. The total cycles of each pulse pattern were 210, 
which were divided into training set and test set, as shown in Table 5. As mentioned above, the number of sam-
pling points in a single cycle of normalized pulse wave was 200, and the amplitude was 0–200. Therefore, the pulse 
wave signals were processed as input PNG pulse images with a size of 200 × 200 pixels.

The proposed CNN. In this study, an optimised CNN model (10-layer) was proposed based on DCNN19 
and LeNet-538, which had been applied for PWPC, as shown in Fig. 8. Compared with the previous networks, 
we added dropout39 between the third max pooling layer and the fully connected layer. When CVDs were used 
as classification criteria, each pulse pattern changed from local waveform difference under previous criteria to 
overall pulse waveform difference. This led to too many characteristic parameters of pulse wave extracted by 
CNN, which further led to over-fitting in the training process. Pre-experimental results showed that dropout 
layer could help reduce test errors and avoid over-fitting phenomenon in the training process (see Supplementary 
Fig. S1). In addition, the final Softmax activation produced a distribution over the output probability classes for 
each pulse pattern of two data sets. Besides the layers mentioned above, the CNN also included three convolution 
layers, three max pooling layers and two fully connected layers. The number of convolution layers was determined 
by the number of pulse wave characteristic. The insufficient layers led to the inadequate feature extraction ability 
of CNN, while the excessive layers increased the time cost and calculation cost. In this study, we determined the 
number of layers by pre-experimental results. The convolutional layers were used to extract complex parameters 

Figure 7. The screening process of the subjects in data set 2. a,b,c,dScreening criteria: The number of subjects 
for selected parameters should be more than 20. Subjects’ other parameters, such as stroke output and cardiac 
output, must be within the normal range of medical reference. There is no serious abnormality in pulse-wave 
caused by noise or incorrect data collection, among others. For a,b,c,d, most of the excluded subjects had three or 
even four parameter values outside of the range. To ensure that the characteristics of each pulse pattern were 
typical, we excluded these subjects.

Pulse 
categories

Total pulse 
number

Training 
number

Test 
number

Type of disease or physiological parameters 
(range)

Data 
set 1

H1 210 140 70 Healthy control group in data set 1

Hn 210 140 70 Only hypertension

At 210 140 70 Only atherosclerosis

Ha 210 140 70 Only hyperlipidaemia

Td 210 140 70 Only type 2 diabetes

HCA 210 140 70 Hypertension complicated by atherosclerosis

Data 
set 2

H2 210 140 70 Healthy control group in data set 2

BP 210 140 70 Only high blood pressure (>90/140 mmHg)

CAVI 210 140 70 Only CAVI (>9.0)

baPWV 210 140 70 Only baPWV (>1400 cm/s)

BV 210 140 70 Only blood viscosity (>5.0)

Table 5. The details of PWPC data sets.
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of the input feature maps by convolution with kernels. The max pooling layers achieved the down-sampling of the 
input signals by choosing the maximum value of the area as the value of the pooled area. The max pooling layers 
could retain the main features of the input signals while reducing the parameters and computation, which helped 
to avoid the occurrence of over-fitting and improve the generalization ability of the CNN model40. The final two 
fully connected layers combined all of the upper feature maps into a one-dimensional array, which was used to 
classify the output. In this study, we used the Adam optimiser, which is straightforward to implement, with high 
calculation efficiency and low memory requirements41. In accordance with previous studies and a preliminary 
experiment, the parameters of the Adam optimiser were as follows: learning rate = 0.001, ϵ = 0.001, ρ1 = 0.9, 
ρ2 = 0.999 and δ = 1E−8. During the optimisation process, we saved the best model configuration as evaluated on 
the test set. The CNN was trained by neural_network_console (Sony Company) on an Intel(R) HD Graphics 630 
with batch size 64 for 100 epochs.

Evaluation. The proposed CNN was evaluated with the average of the operating parameters calculated over 
time. The overall accuracy, precision, recall and F-measure were determined to assess the classification perfor-
mance of the network, as presented in the results section. To further evaluate the classification performance of 
each pulse pattern, we also present the evaluation parameters of each pattern and the confusion matrices for the 
two test sets. The evaluation parameters were calculated using the true positive (TP), true negative (TN), false 
positive (FP) and false negative (FN).

In order to further evaluate the PWPC capability of the CNN model proposed in this study, we selected three 
different neural networks (LetNet38, AlexNet14, VGG-Net15). Data set 1 and data set 2 were used as inputs of these 
three networks respectively. The PWPC results were compared with the CNN model proposed in this study.

Data availability
The datasets analysed during the current study are available from the corresponding author on reasonable request.
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