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Abstract

Background: The accurate diagnosis of idiopathic pulmonary fibrosis (IPF) is a major clinical challenge. We
developed a model to diagnose IPF by applying Bayesian probit regression (BPR) modelling to gene expression
profiles of whole lung tissue.

Methods: Whole lung tissue was obtained from patients with idiopathic pulmonary fibrosis (IPF) undergoing
surgical lung biopsy or lung transplantation. Controls were obtained from normal organ donors. We performed
cluster analyses to explore differences in our dataset. No significant difference was found between samples
obtained from different lobes of the same patient. A significant difference was found between samples obtained at
biopsy versus explant. Following preliminary analysis of the complete dataset, we selected three subsets for the
development of diagnostic gene signatures: the first signature was developed from all IPF samples (as compared
to controls); the second signature was developed from the subset of IPF samples obtained at biopsy; the third
signature was developed from IPF explants. To assess the validity of each signature, we used an independent
cohort of IPF and normal samples. Each signature was used to predict phenotype (IPF versus normal) in samples
from the validation cohort. We compared the models’ predictions to the true phenotype of each validation sample,
and then calculated sensitivity, specificity and accuracy.

Results: Surprisingly, we found that all three signatures were reasonably valid predictors of diagnosis, with small
differences in test sensitivity, specificity and overall accuracy.

Conclusions: This study represents the first use of BPR on whole lung tissue; previously, BPR was primarily used to
develop predictive models for cancer. This also represents the first report of an independently validated IPF gene
expression signature. In summary, BPR is a promising tool for the development of gene expression signatures from
non-neoplastic lung tissue. In the future, BPR might be used to develop definitive diagnostic gene signatures for
IPF, prognostic gene signatures for IPF or gene signatures for other non-neoplastic lung disorders such as
bronchiolitis obliterans.

Background
Pulmonary fibrosis is a significant cause of morbidity
and mortality worldwide [1,2]. The multiple subtypes of
pulmonary fibrosis carry different prognoses. Idiopathic
pulmonary fibrosis (IPF), for example, is a particularly
fatal subtype of pulmonary fibrosis that leads to death
within 3-5 years of its diagnosis; IPF does not usually
respond to immunosuppressant therapy [3-5].

Nonspecific interstitial pneumonia (NSIP) is another
subtype of pulmonary fibrosis that has much better
rates of survival and treatment response [2,6]. All
together, there are perhaps 200 subtypes of pulmonary
fibrosis [7]. The American Thoracic Society and Eur-
opean Respiratory Society published a classification
scheme that describes the major subtypes of pulmonary
fibrosis [2]. Other authors describe complex algorithms
for making an accurate diagnosis of pulmonary fibrosis
[7-9].
An accurate diagnosis of pulmonary fibrosis requires

the integration of clinical, radiographic and pathologic
information [3,10]. Yet, there is no single test by which
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an accurate diagnosis of pulmonary fibrosis can be
secured. The complexity of diagnostic algorithms makes
it difficult to establish an accurate diagnosis of pulmon-
ary fibrosis outside of the academic setting [11,12]. This
increases the risk for inaccurate diagnoses and the
administration of inappropriate treatments. For the pur-
poses of this study, we focused on IPF. The goal of this
study was to assess methods by which a diagnostic test
for IPF could be developed.
Bayesian probit regression (BPR) is a statistical

method, well-suited to the analysis of highly dimensional
data such as that produced by gene expression profiling.
In the past, BPR was used to model differences in gene
expression detected in cases of prostate cancer and
ovarian cancer [13,14]. BPR has never been used to ana-
lyze non-neoplastic lung tissue.
The experiments described herein were designed as a

proof-of-principle for the concept of “developing IPF
gene expression signatures with BPR”. Our aims were to
develop a provisional diagnostic model for IPF; and to
establish BPR as an appropriate method for developing
additional gene signatures for non-neoplastic lung
disease.

Methods
Ethics Statement
This study was approved by the Duke University Health
System Institutional Review Board (IRB # Pro00007903,
Pro00008725 and Pro00008819) and written informed
consent was obtained from all subjects.

Study Population
We selected consecutive patients with IPF. Specimens
were collected from 11 patients. All cases fulfilled multi-
disciplinary diagnostic criteria described in the Ameri-
can Thoracic Society/European Respiratory Society
consensus statement [3]. In addition, pathological con-
firmation was obtained for every case. IPF was con-
firmed by the identification of a usual interstitial
pneumonia (UIP) under the light microscope.
Samples of whole lung tissue were obtained at the

time of diagnostic surgical lung biopsy (6 cases) or dur-
ing orthotopic lung transplantation surgery (5 cases).
Specimens were collected from both the upper and
lower lobes whenever possible (6 out of 11 cases).
Control specimens (6 cases) were obtained from

donated organs that were accepted for lung transplanta-
tion. At the end of lung transplant surgeries, we collected
a portion of the newly transplanted lung that was removed
during the process of routine lung volume reduction.

Sample Processing
Samples were immediately processed following removal
from the body. First, specimens were cut into small

pieces (< 5 mm in diameter), immersed in RNAlater
solution (Ambion, Inc., Austin, TX) and incubated over-
night at 4°C as per the manufacturer’s instructions.
Next, the supernatant was removed and samples were
stored in a -20°C freezer.
At a later date, frozen RNA-protected samples were

homogenized with a FastPrep device by using Lysing
Matrix A (MP Biomedicals, Solon, OH). Total RNA
was extracted from the homogenates by using RNAqu-
eous-4PCR kits (Ambion, Inc., Austin, TX) as per the
manufacturer’s instructions. RNA quantity was mea-
sured with a spectrophotometer and RNA quality was
assessed with a bioanalyzer (Agilent Technologies,
Santa Clara, CA).
Isolated RNA was used to produce labeled-cRNA.

Then labeled-cRNA was hybridized to Affymetrix
Human Genome U133 Plus 2.0 GeneChips; and scanned
using standard Affymetrix protocols. Our complete data-
set is available through the Gene Expression Omnibus
database (http://www.ncbi.nlm.nih.gov/geo/; accession
number GSE24206).

Validation Cohort
The dataset for the validation cohort was accessioned
from the Gene Expression Omnibus (http://www.ncbi.
nlm.nih.gov/geo/; accession number GSE10667). This
dataset contains raw and processed gene expression pro-
files from thirty-one patients with IPF and 15 expression
profiles from normal lung controls. This data was con-
tributed to the Gene Expression Omnibus by investiga-
tors at the University of Pittsburgh; these samples were
previously described [15,16]. This dataset was generated
on Agilent-014850 Whole Human Genome 4 × 44K
Microarrays according to the manufacturer’s protocol as
reported by the original investigators.

Statistical Analysis
Data processing
Expression estimates for the Affymetrix U133 Plus 2.0
GeneChips were obtained by robust multi-array average
(RMA) then log2 transformed [17-19]. Data were filtered
prior to analysis to annotated probe sets with average
expression values > 4.
Unsupervised cluster analysis
Global patterns of gene expression were evaluated (with
the top 10% of genes by coefficient of variation) by Prin-
cipal Component Analysis (PCA) and hierarchical clus-
tering algorithms using the average linkage of the
Pearson correlation coefficient.
Differential gene expression
Paired t-tests were used to assess differences in gene
expression between upper and lower lobe samples.
Unpaired Student’s t-tests were used to compare the
gene expression from IPF biopsies and IPF explants.
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Supervised classification
Multi-gene models for binary phenotypes were derived
using singular value decomposition (SVD) and Bayesian
probit regression models, as described previously
[13,14,20]. In tuning the model parameters, a data-dri-
ven empirical approach was taken to select the optimal
number of features in each gene signature, using the
sum of deviances as a metric of relative performance.
For a complete description, refer to Additional file 1,
Supplemental Methods and Additional file 2, Figure S1.
Validation
To independently validate the multi-gene models, fea-
tures were mapped on a many-by-many basis between
the training dataset (Affymetrix HGU133 Plus 2.0) and
GSE10667 dataset (Agilent-014850 Whole Human Gen-
ome 4 × 44K Microarray) using Unigene and RefSeq
IDs (Additional files 3, 4 and 5, Tables S1-S3). Gene
expression estimates were scale/shift normalized across
the datasets, and loadings from the SVD were derived
from the training dataset only, such that predicted prob-
abilities from the Bayesian regression model are inde-
pendent for the validation set. Association with the
phenotype of IPF versus normal control was assessed
using a Wilcoxon rank sum test, and the predictive
value of the signature was evaluated using receiver
operator characteristic (ROC) curves.

Computational Software
All microarray pre-processing, BPR modeling and ana-
lyses were performed using R version 2.9 and Biocon-
ductor packages designed for use with Affymetrix
microarray data (Additional file 6, Software Codes). Gra-
phical images were produced in R and in MATLAB
R2009a (The MathWorks, Inc., Natick, MA).

Results
Patients
Demographic and physiologic characteristics of the 11
patients enrolled in this study are reported in Table 1.
Each patient underwent either a medically-indicated sur-
gical lung biopsy or medically-indicated lung transplan-
tation surgery; remnants of the biopsy sample or pieces
of the explanted lung were preserved for microarray
analysis. Physiologic measurements were made prior to
surgery. When we compared biopsy to explant, we
found no differences in the average age of patients
(60.67 ± 2.72 to 66.6 ± 0.68); the proportion of males
(83% versus 60%); or the forced vital capacity (65.17 ±
5.75 to 56.8 ± 5.54). However, diffusing capacity for car-
bon monoxide was decreased in patients undergoing
lung transplantation surgery (61.83 ± 6.38 to 29.2 ±
4.19, p-value < 0.01) which is statistically significant in
this patient cohort.

Global Analysis of Gene Expression
To explore gene expression differences (and similarities)
between all of the samples, we carried out an unsuper-
vised hierarchical cluster of the entire dataset (Figure
1A). The dataset contains gene expression from 23 sam-
ples: 17 samples of IPF from 11 different patients (6
pairs of samples from upper and lower lobes; and 5
samples of single lobes); and 6 samples from normal
lung donors. Examining the hierarchical dendrogram
(Figure 1B), we found a natural separation between IPF
samples and normal lung samples (normals are found
on the left-hand side of the figure; IPF samples fall in
the middle and on the right-hand side of the dendro-
gram), with the exception of one outlier, a sample of
normal lung (Normal_C) which falls among the IPF
samples.
We further observed that pairs of samples from the

upper and lower lobes have similar global gene expres-
sion profiles, such that each pair forms its own node in
the hierarchical cluster. In order to meet the assump-
tions of independent and identically distributed samples
for developing signatures of IPF, we chose to use only
one sample (the upper lobe, when available) per patient
in the subsequent analyses.
Finally, we observed that explanted samples and biop-

sied samples largely segregate in the hierarchical clusters
with the exceptions of: one pair of biopsied samples
(Biopsy_159U and Biopsy_159L) and one normal sample
(Normal_C) falling in the explant cluster; and a pair of
explants (Explant_152U and Explant_152L) which fall in
the biopsy cluster.
To further evaluate global differences in gene expres-

sion, we decomposed the high-dimensional gene expres-
sion data using principal component analysis (PCA),
whereby 47% of the variance in this dataset is captured
within the first two principal components for all 23
samples. Again, we found that normal and IPF samples
are distinctive (Figure 1C). Furthermore, a separation
was seen between the biopsied IPF samples and the
explants. Meanwhile, the upper/lower lobe pairs showed
strong similarity (average Pearson correlation of 0.929)
as compared to unmatched pairs (average Pearson cor-
relation of 0.781).

Comparing Gene Expression from the Upper and Lower
Lobes
To further characterize the upper/lower lobe pairs, we
decomposed the gene expression data for pairs alone by
PCA. This analysis captured 74% of the variance within
the first three principal components. We plotted the
upper/lower lobe pairs according to expression of the
first three principal components (Figure 2A) and found
that clusters were not determined by lobe, but rather by
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the patient (intraclass correlation coefficient = 0.474, p-
value = 0.02 [for the first principal component]).
To identify genes that might be differentially

expressed between the upper and lower lobes, we per-
formed a paired LIMMA test [21,22] as an empirical
Bayesian approach to analyzing microarray data that
uses hierarchical linear models to improve estimates
of variance. First, we excluded unannotated and lowly
expressed genes. Then we plotted the unadjusted p-
values for all tests on a frequency histogram and note
that the frequency of nominally significant p-values (<
0.05) is no greater than that expected by chance alone
(Figure 2B). This suggests that greater differences in
expression are observed across subjects than between
upper and lower lobe, as supported by serial 2-way
ANOVA (data not shown), and the hierarchical clus-
ter in Figure 1 where 5 of 6 pairs are noted to be
most similar. Therefore, a single sample from each
patient was selected for further analysis regardless of
lobe.

Comparing Gene Expression from Biopsies and Explants
To investigate the difference between biopsies and
explants, we selected the data from this subset of sam-
ples (excluding lobar replicates) and decomposed the
data by PCA such that 68% of the variance was captured
within the first three principal components. The samples
were plotted according to expression of the first three
principal components (Figure 2C). Here, we could
appreciate a distinct separation between IPF biopsies
and IPF explants.

Next, we carried out the LIMMA test to identify genes
that were differentially expressed between biopsy and
explant. Before adjusting p-values, we plotted the results
on a frequency histogram. We noted that the frequency
of nominally significant p-values (< 0.05) was greater
than expected by chance alone (Figure 2D). After adjust-
ing the p-values with the Benjamini-Hochberg step-
down method to control the false discovery rate (FDR)
[23], 13 probesets (corresponding to 11 unique genes)
were identified as statistically significant using a FDR
threshold of 10% (Additional file 7, Table S4).

Approach to Developing Gene Expression Signatures
A schematic diagram illustrates the process by which we
develop genomic signatures using BPR models (Figure
3). The first step is to select, as the training dataset, a
collection of samples that represent two distinct pheno-
types. Prior to analysis, the training dataset is filtered to
exclude unannotated and lowly expressed genes, without
regard to phenotypic information.
Because there is no prior knowledge on which to base

the number of genes included in the model, we propose
an iterative data-driven approach to model-fitting. We
propose using the “sum of deviances” between observed
and predicted phenotypes, coupled with the “misclassifi-
cation rate” under a leave-one-out process, to determine
the optimal size of our BPR model (i.e., the number of
genes to include in the regression equation). Once the
number of genes is selected, the model is summarized
by the gene annotation and the average of the posterior
distribution of the linear predictor under the Bayesian

Table 1 Study Population

Patient Number Sample ID Age Gender FVC% DLCO% Sample Type Multiple Lobes Sampled?

1 Biopsy_140U 58 Male 55 54 Biopsy No

2 Biopsy_142U 56 Female 55 65 Biopsy No

3 Biopsy_144U 70 Male 84 87 Biopsy No

4 Biopsy_145U 54 Male 68 52 Biopsy No

5 Biopsy_149U 58 Male 79 70 Biopsy Yes

Biopsy_149L

6 Biopsy_159U 68 Male 50 43 Biopsy Yes

Biopsy_159L

7 Explant_146L 64 Male 56 23 Explant No

8 Explant_152U 67 Male 53 29 Explant Yes

Explant_152L

9 Explant_157U 67 Male 51 34 Explant Yes

Explant_157L

10 Explant_158U 68 Female 78 18 Explant Yes

Explant_158L

11 Explant_160U 67 Female 46 42 Explant Yes

Explant_160L

FVC% = forced vital capacity (expressed as a percentage of the normal expected value); DLCO% = diffusion capacity for carbon monoxide (expressed as a
percentage of the normal expected value).
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model. The gene signature is visualized by a heatmap
that shows normalized expression values of the selected
genes (rows) over the set of samples (columns).
Finally, a second set of samples is used to test the per-

formance of the tuned model. This represents an inde-
pendent validation. Because the validation dataset is
derived on a different microarray platform, expression
values need to be mapped and normalized in a merged
dataset to account for differences in batch and the

information content of each array. Then, each sample in
the validation dataset is applied to the Bayesian regres-
sion model in order to generate a predictive probability
(from 0.0 to 1.0) as a relative score indicating the likeli-
hood of one phenotype over the other. Given informa-
tion regarding the true phenotype of each validation
sample, it is possible to construct a receiver-operating
characteristic (ROC) curve for the predictive value of
the gene signature.

B

C

A

Figure 1 Unsupervised cluster of the complete dataset (training cohort). Samples include normal lung (black) and IPF (brown). IPF is
divided into biopsy (red) and explant (green). Samples are also identified by their lobe of origin: upper lobe (orange), lower lobe (blue) or
unknown lobe (yellow). (A) Unsupervised hierarchical clustering of all samples based on gene expression profiles. Samples include 6 normals
(Normal_[A through F]) and 17 samples of IPF (6 upper/lower lobe pairs and 5 singletons) of which 8 are biopsies (Biopsy_[3-digit sample ID][U
= upper or L = lower] and 9 are explants (Explant_[3-digit sample ID][U = upper or L = lower]). (B) Enlargement of the dendrogram, sample
names and color key from Figure 1A. (C) Samples are plotted according to expression of the first two Principal Components. [Key: singletons =
colored square; all other shapes represent lobar pairs].
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Binary Classification for Signature Development
We chose to develop three separate models for the clas-
sification of IPF; we planned to test each model for
diagnostic accuracy (i.e., functional validity) in an inde-
pendent dataset. We developed the first model from all
IPF samples (excluding lobar replicates) versus normal
controls. This training dataset is summarized in an
unsupervised hierarchical cluster (Figure 4A) of the
genes showing the largest coefficient of variation (CoV).
Since we identified differential gene expression

between IPF biopsies and IPF explants, we chose to sepa-
rately develop diagnostic signatures from each class, as

compared to normal controls. For the IPF biopsy sam-
ples, the training dataset is summarized in an unsuper-
vised hierarchical cluster (Figure 4B). Likewise, for the
subset of IPF explants, the training dataset is summarized
in an unsupervised hierarchical cluster (Figure 4C).
The three training datasets are each decomposed by

PCA and the samples are plotted with regard to the first
two principal components (Figures 4D,E and 4F).

Model Parameterization for Signature Development
For all signatures, the top two factors from singular
value decomposition were used to fit independent terms
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Figure 2 Comparison of samples from different lobes; comparison of samples from biopsy and explant. In panels A and B, we compare
samples from the upper (orange) and lower lobes (blue). In panels C and D, we compare samples obtained by biopsy (red) versus explant
(green). (A) Upper and lower lobe samples are plotted according to expression of the first three Principal Components. [Key: each shape
represents a lobar pair.] (B) Paired LIMMA tests were performed for every gene to compare expression between the upper and lower lobes; a
frequency histogram shows the distribution of unadjusted p-values. (C) Biopsied and explanted samples are plotted according to expression of
the first three Principal Components. (D) Unpaired LIMMA tests were performed for every gene to compare expression between biopsies and
explants; a frequency histogram shows the distribution of unadjusted p-values.
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to the BPR models. The “misclassification rate” and
“sum of deviance” were used to determine the number
of genes in each model, as described in Additional file 1
(also see Additional file 2, Figure S1). We determined
that 151 genes were needed to optimize the “All IPF”
model; 153 genes were needed to optimize the “IPF
Biopsy” model; and 70 genes were needed to optimize
the “IPF Explant” model.
BPR was performed on each training dataset. Each

model was visualized with a heatmap (Figure 5). To
illustrate that each training dataset produces a unique
set of predictors, we list the top 10 gene predictors
alongside each model. The complete gene list for each
signature is supplied in the additional files (see Addi-
tional files 8, 9 and 10, Tables S5-S7).

Independent Validation of Gene Signatures
We used the GSE10667 dataset to test each gene signa-
ture. By using the same dataset to validate all three sig-
natures, we were able to make a direct comparison
between the models.
First we mapped the features of the Agilent microar-

ray GSE10667 dataset to the corresponding features in
our Affymetrix training datasets. We found that 148
features of the GSE10667 dataset mapped to features
of the “All IPF” model (out of a possible 151 features,
98.0%); 151 features were mapped to the “IPF Biopsy”
model (out of 153 possible features, 98.7%); and 69
features were mapped to the “IPF Explant” model (out
of 70 possible features, 98.6%). After features were
mapped, we merged the training and validation data-
sets. Gene expression was normalized across the
merged datasets.

Then, each model was used in turn to predict the phe-
notype of each sample in the validation cohort (Figure
6A, B and 6C). Predicted probabilities indicate the likeli-
hood of IPF. The true phenotype of each validation sam-
ple is shown in color (blue for normal and red for IPF).
Correct predictions are indicated with a solid marker
while incorrect predictions are indicated with an open
marker. The Youden index was used to compute cut
points that maximize linear combinations of sensitivity
and specificity for each model in this cohort, run on
Agilent arrays. Evaluation of the quality of these thresh-
olds would require additional validation on the Agilent
platform as part of future investigations.
ROC curves are drawn on a single graph to facilitate

comparison (Figure 7). Area under the curve, sensitivity,
specificity, positive and negative predictive values and
overall predictive accuracy are reported in Table 2. Wil-
coxon rank sum was performed on each signature to
test the general association of predictions and pheno-
types. Interestingly, the “IPF Explant” model outper-
forms the “All IPF” and “IPF Biopsy” models.

Discussion
This study shows that IPF gene signatures can be
derived from whole lung tissue, given appropriate bios-
pecimen selection and acquisition. In fact, this study
serves as a proof-of-principle: mathematical models
such as BPR (that handle high-dimensional data) can be
used to develop multi-gene biomarkers for non-neoplas-
tic lung disease, starting from gene expression profiles.
We profiled gene expression from whole lung in 11

patients with IPF and 6 normal controls. Samples of IPF
were obtained during diagnostic surgical lung biopsies

Figure 3 Schematic diagram of the workflow.
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or during lung transplantation procedures. Whenever
possible, we obtained samples from two different lobes
of the lung. During the initial data processing phase of
our analysis, we made several interesting discoveries.
We found that gene expression is similar between differ-
ent lobes of the lung (upper and lower) sampled from
the same patient. We also found that gene expression
differs substantially between IPF samples obtained at the
time of biopsy versus explant.
Then we developed three gene expression models,

designed for the diagnosis of IPF. These models were
designed for functionality and portability: they were
designed to predict the diagnosis of IPF across different
patient populations and across different microarray

platforms. Therefore, we needed to test our models on
an independent cohort of samples containing both IPF
and normal lung, to see if the models’ predictions were
accurate. This represents the first reported attempt to
show validity of IPF gene expression signatures as diag-
nostic models.
We found that all three of our IPF gene expression

signatures exhibited discriminatory power and could be
used to predict a diagnosis of IPF (see Wilcoxon rank
sum, Table 2). However, the signature derived from
explanted samples was the most accurate at diagnosing
IPF in this particular validation cohort. We postulate
several explanations. First, our “IPF Explant” training
cohort is probably the most similar cohort as compared

A                                                                              B                     C

D                                                                                                         E                  F
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Figure 4 The training sets. All IPF (brown), IPF biopsy (red), IPF explant (green) and normal lung (black). (A) Unsupervised hierarchical clustering
of 11 IPF samples (6 biopsies and 5 explants) and 6 normals. (B) Unsupervised hierarchical clustering of 6 IPF biopsy samples and 6 normals. (C)
Unsupervised hierarchical clustering of 5 IPF explants samples and 6 normals. (D) 11 IPF samples (biopsy and explant) and 6 normals are plotted
according to expression of the first two Principal Components. The left panel shows the difference between IPF and normal lung; while the right
panel reveals the difference between IPF biopsy and IPF explant. (E) 6 IPF biopsies and 6 normals are plotted according to expression of the first
two Principal Components. (F) 5 IPF explants and 6 normals are plotted according to their expression of the first two Principal Components.
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with the validation cohort, which is highly enriched with
explant and autopsy samples. Second, the homogeneity
of samples in the “IPF Explant” cohort promotes a more
discriminative model, given the available sample size;
while the clinically heterogeneous “All IPF” and “IPF

Biopsy” cohorts tend to develop less discriminative mod-
els. Finally, predictive accuracy of our models is linked
to the prevalence of IPF in the validation cohort. These
factors must be considered in the design of more defini-
tive studies.

A

B

C

Figure 5 Gene signatures. (A) A heatmap displays the normalized expression values of 151 genes that comprise the All IPF model, derived
from 6 normals and 11 IPF samples (rows = genes; columns [left to right] = 6 normals, 6 biopsies and 5 explants). A partial gene list (top ten) is
shown to the right. (B) A heatmap and partial gene list for the IPF Biopsy model, 153 genes derived from 6 normals and 6 IPF biopsies. (C)
Heatmap and partial gene list for the IPF Explant model, 70 genes derived from 6 normals and 5 IPF explants.
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The fact that a homogeneous “IPF Explant” cohort is
most robust highlights the inherent heterogeneity in
the general IPF population (represented by “IPF
Biopsy”) and supports the need for better diagnostic
tools.

In the past, other investigators examined gene expres-
sion from the lungs of patients with pulmonary fibrosis.
Studies were designed to detect gene expression that
was altered in pulmonary fibrosis [24-26]. Experiments
were also designed as a means to elucidate mechanisms

A

B

C

Figure 6 Validation tests. Each sample of the GSE10667 cohort is assigned a probability of IPF. Cutoffs were determined by calculating the
Youden index. The true phenotype of each sample is indicated in color (15 normals [blue] and 31 IPF [red]). (A) The All IPF signature is used to
assign IPF probability. (B) The IPF Biopsy signature is used to assign IPF probability. (C) The IPF Explant signature is used to assign IPF probability.
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Figure 7 ROC curves. All IPF (brown), IPF Biopsy (red) and IPF Explant (green) are shown for comparison. Optimal cutoff points are circled.

Table 2 Operating Characteristics of the Gene Signatures

Gene
Signature
Model

Area
Under the
Curve

Sensitivity Specificity Positive
Predictive
Value

Negative
Predictive
Value

Overall
Accuracy

Wilcoxon
Rank-sum
(p-value)

All IPF 0.774 45% 100% 100% 47% 63% 0.0023

IPF Biopsy 0.682 71% 67% 81% 53% 70% 0.048

IPF Explant 0.944 74% 100% 100% 65% 83% < 0.0001
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of pathogenesis or identify novel targets for therapy [27].
One problem with these older studies is the lack of
replication in independent cohorts [28]. More recent
studies focus on differential gene expression between
clinical phenotypes such as acute exacerbations of IPF
versus stable IPF [15,29,30]; and IPF versus hypersensi-
tivity pneumonitis (HP) [31]. Yet, no study to date has
presented a functional gene-based diagnostic model.
We acknowledge the limitations of our study. Our pro-

visional models range from 63-83% accurate. The present
study was performed on a small cohort and was only
intended as a proof-of-principle. However, we believe
that, by increasing the number of samples in our training
cohort, we can refine the diagnostic model and increase
the accuracy of diagnostic predictions. We also recognize
the need to discriminate IPF from other subtypes of pul-
monary fibrosis. Therefore, a definitive investigation
must compare IPF gene expression with gene expression
profiles of NSIP, HP and other subtypes of pulmonary
fibrosis. Since BPR models are restricted to binary classi-
fications, we would potentially extend the Bayesian SVD
approach to multinomial outcomes, or other commonly
employed methods for high-dimensional expression data
(e.g., Classification and Regression Trees [CART]).

Conclusions
We show that BPR is a powerful tool for developing
gene signatures from non-neoplastic lung tissue. We
hope that this study will lead to the development of a
definitive diagnostic gene signature for IPF. To do this,
it will be necessary to collect a larger cohort of high-
quality biospecimens. We suggest that BPR can also be
used to develop a prognostic gene signature for IPF by
training a model with samples of rapidly progressive IPF
versus slowly progressive IPF. Furthermore, we believe
that BPR can be used to model other lung disorders
(such as NSIP, HP, bronchiolitis obliterans) by substitut-
ing with different phenotypes in the training cohort.

Additional material

Additional file 1: Supplemental Methods. Complete summary of the
statistical methods and data integration steps used to develop and
validate the multi-gene models.

Additional file 2: Model Selection (Figure S1). In order to optimize the
fitted models for IPF Biopsies and IPF Explants, (A) and (C) the total sum
of deviance was calculated for the observed phenotype versus posterior
probabilities, and (B) and (D) the misclassification rate was computed
under leave-one-out re-sampling for model sizes from 50 to 250 genes.

Additional file 3: Mapping the ALL IPF Gene Signature to GSE10667
(Table S1). 148 out of 151 (98.0%) possible features from the training
dataset were mapped to corresponding features of the validation dataset
on a many-by-many basis.

Additional file 4: Mapping the IPF Biopsy Gene Signature to
GSE10667 (Table S2). 151 out of 153 (98.7%) possible features from the

training dataset were mapped to corresponding features of the
validation dataset on a many-by-many basis.

Additional file 5: Mapping the IPF Explant Gene Signature to
GSE10667 (Table S3). 69 out of 70 (98.6%) possible features from the
training dataset were mapped to corresponding features of the
validation dataset on a many-by-many basis.

Additional file 6: Software codes in the R programming language
(Bioconductor). Includes the algorithm for Bayesian Probit Regression.
These codes are written for a specific machine. Please contact the
authors for instructions on how to run these codes on another machine.

Additional file 7: Differentially Expressed Genes, IPF Biopsies versus
IPF Explants (Table S4). Between IPF biopsies and IPF explants, 13
probesets, corresponding to11 unique genes, are differentially expressed
at a FDR threshold of 10%. A positive t-statistic indicates up-regulation in
the explants relative to the biopsies.

Additional file 8: Complete Gene List for the All IPF Model (Table
S5). The top 151 probe sets identified by Student t-test correspond to
136 unique genes. A positive t-statistic indicates up-regulation in IPF
relative to Normal.

Additional file 9: Complete Gene List for the IPF Biopsy Model
(Table S6). The top 153 probe sets identified by Student t-test
correspond to 131 unique genes. A positive t-statistic indicates up-
regulation in Biopsies relative to Normal.

Additional file 10: Complete Gene List for the IPF Explant Model
(Table S7). The top 70 probe sets identified by Student t-test correspond
to 65 unique genes. A positive t-statistic indicates up-regulation in
Explants relative to Normal.
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