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ABSTRACT

Comparative genomics has revealed a class of non-
protein-coding genomic sequences that display an
extraordinary degree of conservation between two
or more organisms, regularly exceeding that found
within protein-coding exons. These elements, collec-
tively referred to as conserved non-coding elements
(CNEs), are non-randomly distributed across chro-
mosomes and tend to cluster in the vicinity of genes
with regulatory roles in multicellular development
and differentiation. CNEs are organized into func-
tional ensembles called genomic regulatory blocks—
dense clusters of elements that collectively coor-
dinate the expression of shared target genes, and
whose span in many cases coincides with topolog-
ically associated domains. CNEs display sequence
properties that set them apart from other sequences
under constraint, and have recently been proposed
as useful markers for the reconstruction of the evo-
lutionary history of organisms. Disruption of sev-
eral of these elements is known to contribute to
diseases linked with development, and cancer. The
emergence, evolutionary dynamics and functions of
CNEs still remain poorly understood, and new ap-
proaches are required to enable comprehensive CNE
identification and characterization. Here, we review
current knowledge and identify challenges that need

to be tackled to resolve the impasse in understanding
extreme non-coding conservation.

INTRODUCTION

Extremely conserved sequences within the non-coding por-
tion of metazoan genomes were initially identified more
than three decades ago by comparing the introns and UTRs
of mammalian and avian mRNAs (1-5). These pioneering
studies identified elements that had maintained >70% se-
quence identity over hundreds of millions of years of evo-
lution, far greater than that expected for neutrally evolv-
ing DNA. Progress in DNA sequencing technologies aided
the further identification of numerous individual exam-
ples of non-coding conservation (6-9). The prevalence of
these elements was only truly appreciated when multiple
groups published the systematic, genome-wide identifica-
tion of conserved non-coding elements (CNEs) (10-12).
This established that there are hundreds to thousands of ex-
tremely conserved non-coding elements identifiable across
more than 400 million years of evolution that, in many
cases, exhibit levels of conservation well beyond those seen
in protein-coding genes (Figure 1).

Since then, numerous studies have defined sets of evolu-
tionarily conserved CNEs, each using different conserva-
tion criteria, species comparisons and nomenclature (sum-
marized in Supplementary Table S1). Our current under-
standing is that these overlapping sets represent the same
elements, maintained by similar, poorly understood pro-
cesses. Therefore, we collectively refer to those elements as
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Figure 1. The phenomenon of extreme non-coding conservation. A conserved CNE (Human-Tetraodon CNE, on the left) shown here is more conserved
than a protein-coding sequence (HIST1H4D, on the right). The multiple sequence alignment of 46 vertebrate species and the corresponding phyloP scores
illustrate the evolutionary conservation of the CNE and protein-coding sequence. PhyloP scores range from negative to positive scores (red to blue) and
indicate positive and negative selective pressure respectively. The 46-way alignment was downloaded from the UCSC genome browser and spans ~600
million years of evolution since the last common ancestor of humans and lampreys.

CNEs. As conservation is dependent on the species com-
pared, elements can be lineage-specific. For example, not
all CNEs identified by comparing mammalian genomes ap-
pear conserved when the same conservation criteria are
used on more distant genome comparisons. Additionally,
all CNEs detected among closely related species (e.g. hu-
man and mouse) may not be functional elements, whereas
an overwhelming majority of the CNEs conserved between
distant species are likely to be functional.

A handful of resources, mainly databases, exist which
contain pre-computed sets of CNEs (13-19) (Table 1).
These databases contain many of the CNE sets studied so
far; their disadvantage is that they are static and seldom up-
dated.

In this review, we provide a comprehensive account of
the genomic organization of CNEs and their intriguing se-
quence properties. We discuss CNE functions, their roles
in disease aetiology and hypotheses regarding their emer-
gence and evolutionary dynamics. We conclude with unad-
dressed questions important for our progress in understand-
ing these elements in the future.

KNOWN FUNCTIONS OF CONSERVED NON-CODING
ELEMENTS

Many CNE:s function as developmental enhancers

A pioneering study by Aparicio et al. published more than
two decades ago identified one of the first CNEs, and at
the same time demonstrated that it exhibited enhancer ac-
tivity in a transgenic mouse model (20). Since then, re-
porter gene assays throughout the vertebrate phylogeny,
from mouse (21-24), chicken (25,26), frog (27) to zebrafish
(28-30) have demonstrated that CNEs typically function
as enhancers in various developmental contexts. This has
led to the view of CNEs as cis-regulatory elements coordi-
nating spatial-temporal gene expression, especially during
embryonic development (11,31,32). While the majority of
CNEs act as enhancers, it should be noted that not all func-
tional enhancers display such extreme levels of conservation
as CNEs (33,34), including many enhancers found within
dense genomic clusters of CNEs.

In line with CNEs predominantly being developmen-
tal enhancers, detectable phenotypic changes have been

associated with alterations in CNEs. A particularly well-
characterized case is the SHH ZRS enhancer, in which point
mutations result in preaxial polydactyly in both human and
mouse (35-38). Mutations in a CNE proximal to the HM X1
gene cause aberrant external ear development in wild pop-
ulations of rats and highland cattle (39). A mouse sequence
called M280, which contains a CNE identical between hu-
man, mouse and rat, is indispensable for body growth in
mice (40). Many more cases linking CNEs to both hu-
man disease and lineage-specific traits are discussed in more
depth in the ‘Diseases associated with non-coding conser-
vation’ and ‘CNE Modifications and Losses’ sections. They
highlight the important role of CNEs as developmental en-
hancers.

GENERAL FEATURES OF NON-CODING CONSERVA-
TION

Genomic organization of conserved non-coding elements

One of the most striking features of CNEs is their non-
random distribution across genomes (10,11,41-43). CNEs
reside in clusters (12) that often span regions with low
gene density, including gene deserts (44). These clusters
tend to coincide with key developmental regulatory target
genes, such as SHH and HMXI mentioned above, with
CNEs driving the expression of these target genes with-
out affecting unrelated bystander genes within the cluster
(11,30,45,46). CNEs, their target genes, and associated by-
standers are maintained in syntenic blocks due to the re-
quirement for regulatory elements to remain in cis with their
target genes. This has constrained the evolution of meta-
zoan genomes, resulting in arrays of syntenic CNEs that
form functional, long-range, gene regulatory modules. The
regions spanned by these arrays are named genomic regula-
tory blocks (GRBs) and, in addition to the array of CNEs,
always contain a target gene regulated by the CNEs. Some,
but not all, GRBs also contain bystander genes. Bystander
genes frequently contain CNEs within their introns; how-
ever, they are unresponsive to CNE regulation due to dif-
ferences in their promoter architecture (45,46). GRB target
genes share defining properties that distinguish them from
bystander genes. In vertebrate genomes, these include: (i)
longer CpG islands, often several of them bound by Poly-



Table 1. Conserved non-coding elements (CNE) resources
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Abbreviation Description Identification Reference
ANCORA Atlas of non-coding conserved regions in animals >70% seq. id. over 30 or 50 nt in different metazoa (13)
CEGA Conserved elements from genomic alignments threshold-free phylogenetic modeling (14)
cneViewer Conserved non-encoding element viewer user-specified (15)
CONDOR COnserved Non-coDing Orthologous Regions multiple and multi-pairwise alignments of (16)
database orthologous regions between Fugu and human,
mouse, rat, and dog; coding and repetitive regions
are removed
UCbase Ultraconserved elements database 100% seq. id. over 200 nt between human and (17)
mouse
UCNEDbase Ultraconserved CNEs >95% seq. id. over 200 nt in the human and (18)
chicken genomes; coding regions are removed
VISTA ViSualization tool for alignment extremely conserved sequences between human (19)

and rodents that have been tested in vivo for
enhancer activity

comb proteins, (ii) distinct patterns of histone modifica-
tions, (iii) differences in the distribution of alternative tran-
scription start sites and (iv) a characteristic spatial organi-
zation of transcription factor binding sites (TFBS) in their
core promoters (46). In Drosophila, GRB target genes are
also characterized by broad Polycomb binding, and longer
than average introns that often contain CNEs (45). The
GRB model is depicted schematically in Figure 2A. The
MEIS?2 target gene is presented in Figure 2B as part of a
GRB with a well-characterized regulatory landscape.

Relationship with TADs. Recent studies in bilaterian
genomes have led to the identification of genomic regions
within which frequent chromatin interactions occur. These
regions, known as TADs, form distinct genomic bound-
aries within which preferentially self-interacting regions are
enriched (47-49). TAD boundaries are largely invariant
across cell types (48,50,51) and between species (52). This
robustness and prevalence of TADs prompted Harmston
et al. to investigate whether TADs and GRBs reflect the
same underlying phenomenon (53); see also Figure 2B.
They demonstrated that GRB boundaries are resilient to
CNE identification thresholds and the evolutionary dis-
tance of the species comparison used (53). Further, GRB
boundaries coincide with TAD boundaries around devel-
opmental genes in both vertebrates and invertebrates, sug-
gesting that TADs associated with GRBs display unique
genomic features. TADs which closely correspond with
GRBs are termed ‘GRB-TADs’, and those that show no
evidence of non-coding conservation ‘nonGRB-TADs’.
Several features distinguish GRB-TADs from nonGRB-
TADs; GRB-TADs are larger than nonGRB-TADs, gene-
sparse and their target genes are expressed in a cell-type and
tissue-specific manner. In contrast, nonGRB-TADs more
often span regions of high gene density, and the strength of
within-TAD interactions in them is consistently lower than
in GRB-TADs (53). This may indicate a less defined or less
consistent 3D organization across Hi-C experiments. Since
strong and stable GRB-TADs are interspersed with less
strongly interacting nonGRB-TADs there is an open pos-
sibility that the weaker TADs are simply regions between
stronger TADs, which would mean that a stable 3D arrange-
ment is not required in the absence of long-range regulation.
At present, this is still a hypothesis (53), whose testing will

require more high-resolution Hi-C data across different cell
types and different species.

The observation that GRBs coincide with TADs around
developmental genes puts an interesting twist on the ques-
tion of co-regulation of genes within TADs. Since the GRB
model predicts different expression profiles of target and by-
stander genes, with bystanders typically broadly expressed,
the co-regulation of target and bystander genes is not ex-
pected. Harmston et al. examined several GRB loci for
co-regulation and showed that the dynamic range of tar-
get gene expression is much wider than that of bystander
genes (53). Moreover, on the limited number of loci, they
show that GRB-TADs in different cell types switch be-
tween the two compartments identified by Hi-C: the A com-
partment (reported to be dominated by actively transcrib-
ing chromatin) and the B compartment (enriched for het-
erochromatin and other transcriptionally inactive regions).
Remarkably, the activity state of the GRB target gene is the
only one that predicts whether the GRB will be in the A or
B compartment: the expression of bystander genes appears
to change little between the two. While still a preliminary
observation, this pattern is consistent with the GRB model
of long-range regulation.

CNEs are an ancient feature of metazoan genomes. While
the bulk of CNE research has focused on the identifica-
tion and functional characterization of CNEs in human and
other vertebrate genomes, it is clear that CNEs are not a
vertebrate innovation as equivalent elements are detected
in multiple metazoan lineages (32,54-58). Despite a lack
of CNEs identifiable between each clade, some general fea-
tures of CNEs are recapitulated in each case:

1) CNEs occur in clusters around crucial regulators of
early development such as MEISI (59), SHH (60),
IRX3 (27) and around the orthologs of these genes in
other lineages.

i1)) CNEs have constrained genome organization and thus
occur in GRBs in other metazoa (30,45).

iii) Finally, genes proposed as targets of CNE regulation
are marked by broad polycomb repression in an inactive
state (45).

The observation that CNEs are so prevalent and func-
tionally similar within metazoan genomes indicates that
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Figure 2. (A) The GRB model. The regulatory input for one or more target genes (red) is provided by long-range interactions (dashed lines) between CNEs
(green) and the target gene’s promoter. Bystander genes (gray) often contain CNEs in their introns but remain unresponsive to CNE-mediated regulation.
For more details, see text, (B) CNE clustering across chromosome 15 and at the MEIS2 locus (shown zoomed in below the whole chromosome track).
The human MEIS2 GRB (brown) is a 3.3 Mb region defined by an array of conserved non-coding elements. MEIS?2 (red) encodes a transcription factor
involved in lens development through regulation of P4 X6. Regardless of species used in the pairwise comparison against human, CNEs (black) clearly
mark the boundaries of this GRB. The boundaries of the topologically associated domain (TAD) covering MEIS2 (TAD in blue; HI-ESC TAD calls are
generated using HM M _calls) and the GRB spanning this locus are highly concordant.

they are an ancient and crucial feature of metazoan gene
regulation.

Plant CNEs. Clusters of non-coding conservation also oc-
cur in genomes of higher plants (61-64), although their
equivalence to metazoan CNE:s is unclear. In plants, CNEs
were found to cluster around genes involved in responses to
hormonal stimuli, regulation of organ development (64-67)

and flowering-time control (68). However, plant CNEs have
so far not been shown to form GR B-like clusters, and much
more work is needed to understand their distribution and
roles.

Sequence features of CNEs

Walter et al. analyzed the nucleotide composition of hu-
man and fugu CNEs, showing that they are AT-rich and



often contain runs of identical nucleotides (69). This is in
contrast to the flanking regions just outside their bound-
aries which exhibit a marked drop in AT content, form-
ing a distinct composition pattern. In line with this, Chi-
ang et al. have shown that vertebrate CNEs are enriched
in TAATTA, which contains the core recognition mo-
tif (TAAT) for homeodomain DNA-binding factors (70).
In Figure 3, we order vertebrate CNEs (identified using
human/chicken whole-genome alignments) by width, and
plot the enrichment of AT, GC, WW and SS dinucleotides.
This clearly illustrates this boundary effect. As regions out-
side boundaries of CNEs are by definition mismatched, i.e.
mutated sites in the alignment, the WW depletion at the
boundaries of CNEs might be due to the higher mutability
of CpG nucleotides. However, the latter does not explain
why we find the same pattern in Drosophila where CpG
methylation is absent. Importantly also, such GC-content
transitions are known to occur at transcription boundaries
and serve as genomic punctuation marks (71). In summary,
it is still unclear why we find this pattern in CNEs.

CNEs overlap transcription factor binding sites (TFBS).
One of the suggested explanations for extreme non-coding
conservation would be that CNEs constitute an ordered
combination of overlapping TFBS (72,73). While there is
clear evidence that CNEs are strongly enriched for overlap-
ping TFBS (74,75), there is no evidence to suggest that this
enrichment is higher for CNEs than for enhancers in gen-
eral. Furthermore, it is unclear whether overlapping bind-
ing sites would be sufficient to explain extreme non-coding
conservation, given promiscuity of binding sites and bind-
ing site divergence between species (76). A recent paper also
proposed that CNEs are not under selective pressure as a
whole DNA segment but are under various evolutionary
constraints on the single nucleotide level (77), suggesting
that overlapping TFBS likely do not account for the degree
of conservation characteristic of CNEs.

Mining the distinguishing sequence features of CNEs. Two
approaches have been presented to classify CNEs and dis-
tinguish them from other constrained elements within and
between genomes: (i) N-gram graphs which combine neigh-
borhood information (co-occurrence of substrings) with se-
quence compositional motifs (78) and (ii) logic alignment
free which attempts to infer logic rules based on the under-
lying lexicon of sequences (79). Both approaches concluded
that the most extremely conserved CNEs form a unique
category bearing sequence features distinct from protein-
coding exons. More sophisticated methods could be ap-
plied to CNE classification and deep learning, a variation
of multi-layered artificial neural networks, is a promising
candidate to elucidate potentially complex patterns within
CNEs (80-82).

CNEs AS PHYLOGENETIC MARKERS

The deep sequence conservation of CNEs across phylo-
genies makes them particularly useful for the elucidation
of evolutionary relationships. Using CNEs as the anchor
points for targeted DNA enrichment and sequencing, Fair-
cloth et al. recovered the established primate phylogeny (83)
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and McCormack et al. resolved the placental mammal phy-
logeny (84). As a further proof of concept, this approach
was applied to 32 arachnids, again producing a highly re-
solved arachnid phylogeny consistent with transcriptome-
based phylogenetic analyses. Due to the increasing variabil-
ity of the sequence flanking the ‘core’ CNE region, the au-
thors were also able to generate accurate phylogenies of
the spider, scorpion and harvestman orders, demonstrating
the utility of this method for shallower taxonomic scales
(85,86). CNEs as probes have also proven useful in the case
of ancient and degraded DNA (87). An overview of the
workflow for using CNEs as phylogenomics markers is pro-
vided in Figure 4.

This method is implemented in the software package
PHYLUCE (88). It is particularly useful for phylogenomic
analysis of non-model organisms, as the extreme conserva-
tion of CNEs allows for targeted sequencing of informa-
tive loci without a complete reference genome. The ‘core’
regions of CNEs alone are sufficient to recapitulate gene
trees, as demonstrated by Davies ef al. (89), and have re-
cently been considered for resolving nodes that are difficult
to place in the eutherian tree (90). For a comprehensive re-
view on CNEs as a tool in phylogenomics, see Edwards et
al. (91).

DISEASES ASSOCIATED WITH NON-CODING CON-
SERVATION

Mutations in CNEs have been established as causal for a
number of diseases. Single point mutations are associated
with malformations, including Pierre Robin syndrome (92),
cleft lip (93), holoprosencephaly (36,94), preaxial polydactyly
(35,37,95) and Hirschsprung disease (96). A single nu-
cleotide variant associated with JRX1, IRX2 and IRX4, lo-
cated within a CNE, was also recently found to be involved
in the pathogenesis of kyphoscoliosis (97). Beyond malfor-
mations, variations within CNEs can even be linked to com-
plex behavioral or neurological disorders, evident from re-
search linking cases of attention-deficit/hyperactivity dis-
order (98), autism (99) and restless leg syndrome (100) to
single point mutations within CNEs.

Several diseases have been linked with duplications of
CNEs, e.g. brachydactyly A2 (101) and brachydactyly-
anonychia (102). Copy-number variations of the Indian
Hedgehog region involving CNEs are related to syndactyly
and craniosynostosis (103). Translocation of a CNE has
been implicated in the actiology of aniridia (104). Deafness
(105), Leri-Weill dyschondrosteosis (25), blepharophimo-
sis syndrome (106,107) and Waardenburg syndrome type 4
(108) are well-known cases of pathologies that are associ-
ated with deletions of CNEs. These findings further high-
light and establish the role of CNEs in neurodevelopmen-
tal diseases. For a comprehensive review on this subject, see
Amiel et al. (109).

Large-scale CNE deletions without visible phenotype

Despite strong evidence that the majority of CNEs play cru-
cial roles in development, two early studies found that dele-
tions of entire CNE-rich loci produced no detectable pheno-
typic changes in mouse models (110,111). However, it may
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Figure 3. Sequence heatmaps showing dinucleotide content within and outside vertebrate CNEs. Plots are generated using heatmaps package (https:
/Ibioconductor.org/packages/release/bioc/html/heatmaps.html). CNEs which show sequence identity >98% for >50 nt between human and chicken are
identified using CNEr (https://bioconductor.org/packages/release/bioc/html/CNEr.html). Sequences are ordered from shortest to longest on the Y-axis
(aligned on the center) and X-axis shows distance in nucleotides from the center of each CNE.

be the case that either the phenotypes were difficult to de-
tect in the tested experimental context, or that the tested el-
ements were not deeply conserved. More elaborate method-
ologies are required to study CNE loss in greater detail. To-
wards this direction, Dickel and colleagues recently used
CRISPR to knockout four CNEs near ARX, a gene with
roles in sexual and brain development (112). At first, re-
moving these elements individually or in pairs resulted in
seemingly unaffected mice. A closer inspection of the brains
of the knockout mice, however, revealed an atypical num-
ber of neurons or a diminished hippocampus, both of which
were more pronounced in the double knockout mice. This
supports the idea that a CNE phenotype might be context-
specific, having little effect on mice in laboratory conditions
but potentially detrimental in the wild.

Transcribed ultraconserved regions (T-UCRs)

Other than congenital abnormalities associated mainly with
development, there are confirmed roles for CNEs in cancer.
Calin et al. compared the transcription levels of the 481 ul-
traconserved regions from Bejerano et al. (10), and found
that 93% of of those regions were transcribed over back-
ground in at least one of the tested normal human tissues.
They named those elements transcribed ultraconserved re-
gions (T-UCRs), and demonstrated that CNE transcrip-
tional profiles could be utilized in order to differentiate car-
cinomas from leukemias (113). Since then, roles of T-UCRs
have been investigated in hepatocellular carcinoma (114),
prostate cancer (115,116), colorectal carcinoma (113,117),
neuroblastoma (118,119), Barrett’s esophagus (120) and
bladder cancer (121). In addition, reducing the overexpres-

sion of a T-UCR (uc.261) has been suggested as a therapeu-
tic intervention for patients with Crohn’s disease (122).

At the level of GRBs, highly conserved elements that
serve as long-range regulatory input for the TF genes
HHEX, SOX4 and IRX3 were found to be associated with
type 2 diabetes and obesity (123-125). Additional cases
where GRBs are implicated in human diseases may be
found in a review by Navratilova and Becker (126).

Summarizing this section, disruption of CNEs can con-
tribute to the onset of severe diseases mainly associated with
development and cancer. We anticipate more examples will
be discovered in the future, especially now that it has been
established that the majority of GWAS SNPs lie in the non-
coding part of our genomes (127,128). It is possible that loss
of even the most conserved CNEs is not guaranteed to re-
sult in visible phenotypes, emphasizing how much we still
have to learn about extreme non-coding conservation.

EMERGENCE AND EVOLUTIONARY DYNAMICS OF
CONSERVED NON-CODING ELEMENTS

The structural and implied functional equivalence of CNEs
across vastly different realms of life, along with their ex-
treme levels of sequence conservation, suggest that CNEs
perform an ancient and irreplaceable function in genomes
of multicellular eukaryotes. The emergence and mainte-
nance of CNEs however remain poorly understood and no
current theories can satisfactorily explain the source of se-
lective pressure capable of maintaining such extreme levels
of conservation (129).

Initial speculations that CNEs were not a product of neg-
ative selection, but simply genomic loci with a low local mu-
tation rate, were dispelled by evidence that CNEs exhibit
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Figure 4. Methodology describing how CNEs are utilized as markers for constructing phylogenies (adopted and modified with permission from Brant
Faircloth and John McCormack). Panels (A-G) describe the steps for constructing phylogenies starting from CNE sequences to generating species trees.

traits associated with sequences under purifying selection—
namely very low derived allele frequencies, indicating evo-
lutionary suppression of variation within these elements
(130-132). This finding was corroborated in 2014 using
1000 Genomes human variation data (133).

Emergence

CNEs are readily recruited de novo from a diverse range
of genomic sequences, an observation which is reflected
by the general lack of similarity between CNEs on a se-

quence level. There is evidence for CNE recruitment from
introns (10,54,56), transposable elements (TE) (134,135)
and ancient repeats (136). There also exist several exam-
ples of CNEs which have been recruited from parts of ex-
ons (137,138). While GRBs are depleted of TEs, it seems
that TEs that have been retained have significantly con-
tributed to lineage-specific CNE evolution (139). Of the
CNEs arising since split of eutheria and marsupials, 16%
contain recognizable TEs. This is in contrast to 0.7% of the
CNEs which had an orthologous marsupial CNE. These
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TE-derived, lineage-specific CNEs may underlie some of
the innovative features responsible for eutherian-specific
morphology and neural development.

CNE recruitment varies across lineages, with primates
appearing to gain CNEs at particularly high rates (140).
This recruitment tends to be enriched around different
genes in different lineages, although CNEs are also gained
around a conserved core of developmental genes (141). Fur-
thermore, Lowe et al. (142) have proposed that there have
been three distinct periods of regulatory innovation during
vertebrate evolution: CNEs appear to have been preferen-
tially recruited around genes that encode for TFs and key
developmental regulators during early vertebrate evolution,
then to cell signaling genes, and then to genes involved in
post-translational modifications during placental mammal
evolution. These patterns underline the importance of CNE
recruitment in shaping vertebrate evolution. Further, it has
been suggested that following the initial recruitment of a
CNE, it’s flanking sequences could be co-opted to regula-
tory function over time in a lineage-specific manner (143).
Under this model, the recruited flanking sequence would
increase the modularity and complexity of the overall regu-
lation by the element. This could explain that the core con-
served regions of vertebrate enhancers are often sufficient
to drive gene expression in reporter assays (144). However,
these observations could also be explained by flanking se-
quences being under a relatively lower selection pressure
than the core CNE region.

Taken together, the literature suggests that CNEs are re-
cruited from any existing genomic sequence within the reach
of the target gene if it contributes an advantageous alter-
ation in gene expression. Furthermore, the alteration of
key developmental genes’ expression can and does under-
lie the basis of many lineage-specific traits. Still, however,
the mechanism by which CNE recruitment occurs remains
unknown.

CNE modifications and losses

Despite the high degree of sequence and functional main-
tenance typical of CNEs, substitutions and deletions still
occur, albeit at a much reduced rate. Such changes can be
without apparent phenotype, but equally can be disruptive,
and likely underlie many lineage-specific traits.

Losses of individual CNEs can be sufficient for alter-
ations to anatomical structures. Deletions are thought to
underlie penile spine loss (145) and foot digit shortening in
humans (146). More extensive changes have been observed
in other animals: snake limblessness, for example, is asso-
ciated with partial and complete deletions of CNEs that
regulate limb development genes (147-150). For example, a
vertebrate conserved SHH enhancer has a few substitutions
in snakes with vestigial hindlimbs, but a short deletion and
multiple changes in snakes that have undergone complete
limb loss (148). Interestingly, this ZRS enhancer is the same
element implicated in human polydactyly. In stickleback,
the deletion of a CNE, regulating the developmental gene
PITX1I, leads to pelvic reduction. The loss of this element,
which may be beneficial due to reduced predation and cal-
cium availability in freshwater environments, has occurred
multiple times in independent freshwater populations, with

strong evidence that PITXI regulatory mutations are un-
der positive selection in these populations (151). CNEs are
even recurrently lost across species, with Hiller ez al. discov-
ering hundreds of CNEs independently lost in more than
one mammal (152). A recent study demonstrated that many
such losses could be linked to common anatomical changes.
Those included an independent loss of an element proximal
to EGR2, a TF linked to forelimb morphology, in manatees
and dolphins. The deletions are postulated to play a role
in elbow structure modifications common to both species
(153). Additionally, the vast phenotypic diversity of teleost
fish has been hypothesized to be related to large-scale loss
of and increased substitution rates in ancestral vertebrate
CNEs (154). The recent whole genome sequencing of one
of the more morphologically distinct teleosts, the seahorse
(Hippocampus comes), revealed a high degree of CNE loss
compared to other teleost fish. Many of these CNEs clus-
ter around key retained developmental genes, and may have
contributed to the extensive morphological changes in sea-
horses (155).

As new elements are regularly recruited, a subset will have
near-equivalent functions to extant CNEs, and thus could
potentially replace them. This appears to be the case for
nPE1 and nPE2, mammalian enhancers of POMC derived
from TE (156). These elements have likely replaced ances-
tral enhancers, which are lost in mammals but still main-
tained in other vertebrates (157). The CNE turnover model
posits that in the long term no sequences are indispensable,
and that such furnover of elements may be quite common
(129). This would explain why expression patterns are of-
ten preserved across species despite large changes in cis-
regulation (158).

Several thousand CNEs have undergone bursts of
lineage-specific positive selection in humans (159-164).
These elements, referred to as human accelerated regions,
are highly conserved in most mammals and often in other
vertebrates, but have rapidly accumulated substitutions in
humans. A number of these regions have been tested using
transgenic mouse models, comparing how the human se-
quence drives gene expression compared to the equivalent
in chimpanzee. This has demonstrated that some, often very
highly conserved, CNEs have divergent function in humans,
seemingly contributing to several human-specific traits, in-
cluding bipedalism and increased brain size (165,166).

PERSPECTIVES

Most CNEs act as developmental enhancers, however, this
does not explain the extreme levels of their conservation.
Methodological advances for studying those elements in
vivo are necessary: recently proposed genome-wide editing
techniques for large-scale interrogation of regulatory ele-
ments (167,168) could prove promising towards addressing
the role of CNEs on an individual or on a per-GRB basis.
We conclude by outlining questions, the answers to which
may further our understanding of CNEs and their function:

1) What is the origin of selection pressure on CNEs? CNEs
that form clusters around developmental genes share
the unknown source of purifying selection. According
to this criterion, they are not a set of elements with dif-



ferent function. However, we still lack understanding on
what is being selected for in CNEs and how.

i1) How ancient is the mode of regulation that includes
CNEs? There are CNE-like elements in plants and
some fungi, which cluster around genes involved in
morphogenesis. We still do not know where in evolu-
tion the phenomenon of extreme non-coding conserva-
tion emerged, but the available evidence points to early
emergence in multicellular eukaryotes.

iii) Are CNEs that belong to the same GRB more similar
to each other compared to CNEs found in other GRBs?
Most CNEs are single copy elements (10) although
there is a subset of non-unique CNEs in the human
genome that appear to be the result of whole genome
duplication events (169). We currently do not know
what are the sequence properties of CNEs within dif-
ferent GRBs and whether different sequence features
within CNEs play fundamental roles in the regulation
of corresponding target gene(s).

iv) What is the sequence grammar of extreme non-coding
conservation? Our grasp of the importance of spac-
ing, orientation and copy number of TFBS for CNEs
function remains rudimentary. It is currently unknown
whether the underlying organization of consensus mo-
tifs within CNEs could have potential impact on their
functionalities.

v) What is the role (if any) for CNEs in the folding, estab-
lishment or maintenance of TADs? TAD structures are
lost during mitosis, indicating that TADs must consis-
tently refold after each cell division. The principles that
guide TAD folding and maintenance are still largely un-
known. Given the correspondence between GRBs and
TAD:s, it would be tempting to investigate the possible
role of CNEs in TAD formation.

vi) What is the role of CNEs in disease pathogenesis? Re-
cent studies have demonstrated that when elements that
define TAD boundaries are disrupted, distinct develop-
mental disorders and cancer arise (170-173). Given the
role of CNEs in diseases and the correspondence be-
tween GRBs and TADs, it will be interesting to explore
how enhancer—promoter interactions are perturbed in
various diseases, in the context of GRBs.
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