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Definition of fractal topography to 
essential understanding of scale-
invariance
Yi Jin1,2, Ying Wu1, Hui Li1, Mengyu Zhao1 & Jienan Pan1,2

Fractal behavior is scale-invariant and widely characterized by fractal dimension. However, the cor-
respondence between them is that fractal behavior uniquely determines a fractal dimension while a 
fractal dimension can be related to many possible fractal behaviors. Therefore, fractal behavior is 
independent of the fractal generator and its geometries, spatial pattern, and statistical properties in 
addition to scale. To mathematically describe fractal behavior, we propose a novel concept of fractal 
topography defined by two scale-invariant parameters, scaling lacunarity (P) and scaling coverage (F). 
The scaling lacunarity is defined as the scale ratio between two successive fractal generators, whereas 
the scaling coverage is defined as the number ratio between them. Consequently, a strictly scale-
invariant definition for self-similar fractals can be derived as D = log F /log P. To reflect the direction-
dependence of fractal behaviors, we introduce another parameter Hxy, a general Hurst exponent, which 
is analytically expressed by Hxy = log Px/log Py where Px and Py are the scaling lacunarities in the x and y 
directions, respectively. Thus, a unified definition of fractal dimension is proposed for arbitrary self-
similar and self-affine fractals by averaging the fractal dimensions of all directions in a d-dimensional 
space, which D H d F P= ∑ ( / )log /logi

d
xi x=1 . Our definitions provide a theoretical, mechanistic basis for 

understanding the essentials of the scale-invariant property that reduces the complexity of modeling 
fractals.

Fractals were originally introduced by Mandelbrot1 to describe the fractal behaviors of similar geometries in dis-
ordered and irregular objects such as the natural coastlines1–3, phenomena in natural and artificial materials4–6, 
porous media7–10, biological structures11, rough surfaces12–15, as well as novel application of factuality to complex 
networks and brain systems16–18.

The unique property of fractals is that they are independent of the unit of measurement3 and follow a scaling 
law in the form

∝M l l( ) (1)D

where M can be the length of a line or the area of a surface or the volume of an object, and D is the fractal dimen-
sion. Eq. (1) implies the property of self-similarity, which means that the value of D from Eq. (1) remains constant 
over a range of length scales l.

Fractal dimension extends the concept of “dimension”, because it can be a fraction, rather than an integer as in 
conventional Euclidean space, indicating the degree of complexity of fractal behaviors. Fractal theory now serves 
as a powerful, perhaps fundamental, tool for characterizing scale-invariance in many fields19–27.

In practical applications, D can be obtained by a number-size approach or one of its variants, as demonstrated 
in Eq. (2)

∝ =− −N G l l cl( ( )) (2)D D

where N(G(l)) is the number of similar objects of G with characteristic linear dimension l and c is a constant pro-
portionality. D can be determined by the slope of the relationship between log l and logN(G(l))
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= −D N G l
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log ( ( ))
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However, the number-size relationship is not a definition, but rather a method for determining the implied 
fractal dimension. Reexamining fractal theory, D is a parameter uniquely determined by the fractal behavior of a 
similar object (scaling object or fractal generator) in a fractal object, not a parameter that determines such behav-
ior. Different fractal generators following the same fractal behavior will result in the same fractal dimension, while 
the same fractal generator with different fractal behaviors will lead to different fractal dimensions.

As the variants of the Sierpinski gasket in Fig. 1 show, the fractals in rows 1 and 2 are constructed by differ-
ent fractal generators, but they share the same fractal dimension, log2/log3, per the number-size relationship 
(Equation (3)) because their fractal behaviors are the same. The fractal generators for the fractals in rows 2–4 are 
the same; however, they follow diverse fractal behaviors, resulting in different fractal dimensions (log2/log3, log8/
log3, and log5/log6, respectively).

These examples imply that the definition of fractal behavior must satisfy three key requirements: it must be 
(1) independent of the fractal generator, (2) not constrained by the geometries, spatial patterns, or statistical 
properties of the fractal generator, and (3) scale-invariant. The number-size relationship does not suffice to pre-
serve fractal behavior information, which hinders the essential understanding of fractal properties and strictly 
constrains their applications.

Methods and Discussion
To provide a theoretical, mechanistic basis for understanding the property of scale-invariance, we must math-
ematically define it per the key requirements we have previously laid out. The first one is what parameters 
determine fractal behavior? For convenience, we call what defines fractal behavior fractal topography not only 
because of the scale and size background, but also that natural structures are often hierarchical, for example, with 
a sponge-like topology28.

To demonstrate fractal topography, it suffices to exhibit structure in a fractal object using a variant of the 
Sierpinski gasket. As shown in Fig. 2, there are two scale-invariant parameters that determine the fractal behavior 
of fractal generator G: the ratio of the sizes of two successive scaling objects (li/li+1) and the ratio of their number 
(N(G(li+1))/N(G(li))).

Fractal topographic information is actually implied in the number-size relationship. For convenience, to 
mathematically define fractal topography, we first propose two notations:

Scaling lacunarity (P): The unit ratio between two successive fractal generators G(li) and G(li+1), with the 
characteristic dimensions li and li+1 in a fractal object, as

=
+

P l
l (4)

i

i 1

Scaling coverage (F): The numeric ratio between two successive fractal generators G(li) and G(li+1) in a fractal 
object, yields:

= +F
N G l
N G l
( ( ))
( ( )) (5)

i

i

1

Apparently, P and F uniquely determine the fractal behavior of the scaling object in a fractal. These two 
parameters are dimensionless and scale-invariant, because no matter how we compress or stretch the fractal 
space, P and F will not be altered. Taking the properties independent of a fractal generator and its constraints 
together, demonstrated in Fig. 1, fractal topography is defined by Ω(P, F) in this report.

The above discussion answers the question of how to define fractal behavior, but how does fractal behavior 
uniquely determine fractal dimension?

According to Eq. (2), the number of scaling objects of characteristic dimension li yields

= −N G l cl( ( )) (6)i i
D

while the number of the successive objects N(G(li/P)) satisfies
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Taking Eqs (4), (5), (6) and (7) into account, we obtain the relationship between the scaling lacunarity and the 
scaling coverage

= =
( )( )

F
N G

N G l
P

( ( )) (8)

l
P

i

D
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Consequently, a scale-invariant definition of fractal dimension is obtained:
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=D F
P

log
log (9)

Eq. (9) indicates that the fractal dimension D is the exponent of the power-law relationship between P and 
F, a dependent parameter determined uniquely by P and F. Compared with Eq. (3), Eq. (9) preserves fractal 

Figure 1.  Fractals constructed by different fractal generators with the same fractal behaviors or by the same 
fractal generators with different fractal behaviors. From left to right in each row, the subfigures demonstrate 
the construction of fractals with greater detail. Left: the fractal generator is scaled to the characteristic 
dimension of a fractal object l0. Center: following a fractal behavior, a simple fractal is constructed. Right: 
based on the fractal generator and following the fractal behavior, a more complex fractal is obtained in a scale-
invariant manner.
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topography information and defines fractal dimension in a strictly scale-invariant manner, other than what is 
implied in the number-size relationship.

To verify Eq. (9), some classic fractals, the Koch curve, Sierpinski carpet, Sierpinski gasket, and Menger 
Sponge (Fig. 3, here the Menger Sponge not demonstrated), are used to validate it and check its generality.

For a Koch curve, at the stage n =​ 0, N(G(l0)) =​ 1 (Fig. 3(a)); at the next stage, N(G(l1)) =​ 4 and l1 =​ l0/3 
(Fig. 3(b)). Following the definitions of scaling lacunarity and scaling coverage, P =​ l0/l1 =​ 3 and F =​ N(G(l1))/N
(G(l0)) =​ 4. Therefore, the fractal dimension of the Koch curve D =​ log4/log3 =​ 1.2618. The parameters defining 
and characterizing the fractal topographies of different classic fractals are listed in Table 1. The results are consist-
ent with their theoretical values3.

Eq. (9) indicates that:

(1)	 P and F are the intrinsic and basic properties of fractal behavior. P controls scaling behavior while F deter-
mines the degree of space filled by a fractal generator, and together they quantitatively define the topography 
of a fractal;

(2)	 fractal topography uniquely determines fractal dimension, while a fractal dimension can be associated with 
different fractal topographies/fractal behaviors. For example, the fractal topography with P and F of a and b 
shares the same fractal dimension with those of aβ and bβ for an arbitrary choice of β;

(3)	 scaling lacunarity and scaling coverage are real scale-invariant dimensionless parameters different from the 
scale l and number N(G(l)), and they are also independent of the fractal generator G(l0) and its geometries, 
spatial patterns, and statistical properties.

In Fig. 3, the maximum scaling coverages Fmax are 4 (Koch curve), 8 (Sierpinski carpet), and 3 (Sierpinski 
gasket) at the minimium scaling lacunarities Pmin of 3, 3, and 2, respectively. However, F can be fixed to be a value 
in the series  F{0, 1, , }max , and can even be a fraction in [0, Fmax]. For simplicity and without loss of generality, 
F and P are set to integers for discussion in this report. Using the Koch curve for explanation, F can be assigned to 
be 0, 1, 2, 3, and 4 while P is set to be 3. These fractal dimensions are log0/log3 →​ −​∞​29, log1/log3, log2/log3, 
log3/log3 and log4/log3, respectively. Meanwhile, the scaling lacunarity can also be chosen to be larger than Pmin. 
As the fractal in row 4 of Fig. 1, the scaling lacunarity is 6, which is greater than the minimum scaling lacunarity 
determined by the geometry of the fractal generator.

The definition of the fractal dimension by Eq. (9) is not new and ideas about topography can be found in many 
previous works4,9, and can be even tracked back to its original introduction1. For convenience of description, we 

Figure 2.  A fractal and its topography for a variant of the Sierpinski gasket. 



www.nature.com/scientificreports/

5Scientific Reports | 7:46672 | DOI: 10.1038/srep46672

call the fractal topography of Ω{Fmax, P} the fully-filling scheme, otherwise the partially-filling scheme, where Fmax 
represents the maximum scaling coverage at a scaling lacunarity of P.

In 1967, Mandelbrot defined fractal dimension as =D Nlog /log
l
1  with a number-size approach, implying 

the idea of fractal topography. In his demonstration of self-similar curves, 1/(1/4) =​ l0/l1 which is the scaling lacu-
narity P, and N =​ N(G(l1))/1 =​ N(G(l1))/N(G(l0)) characterizes the scaling coverage. If this were not the case, for 
example, when l0 was set to 1/3, 1/2, or any different scale, the calculation results would not be unique; it is only 
when the scale is “sufficiently fine” that N llog ( )/log

l
1  would tend to the limit of D and become independent of 

scale. And the description of scale-invariant phenomena Mandelbrot proposed is very special, because fractal 
behavior characterized by D was heavily dependent on the fractal generators, which means the scaling lacunarity 
was set to Pmin while the scaling coverage was set to Fmax.

In the application of fractal theory in porous media modeling, Perrier and Bird9 pointed out the limitations 
in understanding fractal behavior and proposed a more general filling mode, namely the partially-filling scheme 
noted before. However, the scaling lacunarity was not broken away from the constraint of fractal generators to 
be an independent parameter, which means that P was fixed to Pmin. Turcotte4 had proposed a calculation model 
for D, log(Ni+1/Ni)/log(li/li+1), which is exactly the same topographic definition of fractal dimension as Eq. (9). 
Unfortunately, the physical meanings of the expressions li/li+1 and Ni+1/Ni were not defined and left the quantita-
tive description of fractal topography elusive, obscuring an essential understanding of scale-invariant properties.

Based on Ω(P, F), together with the fractal generator G and its scaling range [lmin, lmax], a self-similar fractal 
object is uniquely defined as Fsim{Ω(P, F), G, [lmin, lmax]}, which facilitates the modeling of fractal objects, as Fig. 4 
demonstrates.

(b)(a) (c)

(f)(e)(d)

Figure 3.  Fractals to demonstrate the validity of Eq. (9). (a–c) are the initiators of scaling objects of the 
Koch curve, Sierpinski carpet, and Sierpinski gasket, respectively. For convenience, we denote them as fractal 
generators. At the next step, each potential subpart is replaced by a reduced replicate of the generator and the 
fractals are obtained.

Fractals P F D

Koch curve 3 4 1.2618

Sierpinski carpet 3 8 1.8927

Sierpinski gasket 2 3 1.5842

Menger Sponge 3 26 2.9656

Table 1.   The fractal topography information of classic fractals and their fractal dimensions calculated 
by Eq. (9).
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However, except for the self-similarity, the scale-invariant property might be direction-dependent in a fractal 
object. Then, can we unify the definition of fractal dimension for arbitrary fractals?

Self-affine fractals are objects with scale-invariant and direction-dependent properties30. In nature, vertical 
cross sections are often examples of this type13,31. A formal definition of a self-affine fractal in a two-dimensional 
xy-space is that G(ζx, ζHy) is statistically similar to G(x, y), where ζ is a scaling factor and H is the Hurst exponent. 
Based on the scaling lacunarity definition, G(ζx, ζHy) can be written into G(x/Px, y/Py); and by replacing ζ by 1/Px, 
G(ζx, ζHy) takes the form of G x P y P( / , / )x x

H . Consequently, we obtain the relationship between Px and Py as:

=P P (10)y x
H

where Px and Py are the scaling lacunarities in the x and y directions respectively. Therefore, the Hurst exponent 
is scale-invariantly defined by

=H
P
P

log
log (11)

y

x

Eq. (11) indicates that the Hurst exponent is a scale-invariant parameter that characterizes the power-law 
relationship between scaling lacunarities in two different directions. However, the results of Eq. (11) are not 
constrained in the range of [0, 1]. To clarify the distinction, we call this exponent the general Hurst exponent and 
express it as Hxy =​ logPx/logPy.

In a d-dimensional space, the fractal dimension in the ith direction is denoted by Di for convenience. 
According to the additive law3,32, the fractal dimension D is the average of the direction-dependent fractal dimen-
sions, which yields = ∑ =D D d/i

d
i1 . Taking Eq. (9), (11), and the general Hurst exponent together, the fractal 

dimension of a self-affine fractal is expressed by

= ∑ =D H
d

F
P

log
log (12)

i
d

xi

x

1

To be consistent with the value range of the Hurst exponent, [0, 1], we denote the maximum scaling lacunarity 
in all directions of a fractal object by Pmax. According to Eq. (11), the Hurst exponent Hi in the ith direction yields 
logPi/logPmax. Therefore, the general definition of arbitrary fractals is then rearranged into

= ∑ =
−

D H
d

F
P

log
log (13)

i
d

i1
1

max

If all Pi are the same, Hi =​ 1 are all satisfied. Thus, Eq. (13) is same as Eq. (9), which characterizes self-similar 
fractal behaviors. Otherwise, it depicts the direction-dependent fractal behavior of self-affine fractal objects. 
Obviously, Eq. (9) is only a special case of the general definition of fractal dimension (Equation (13)) to charac-
terize fractal behaviors.

Conclusion
Based on the theoretical, mechanistic basis for understanding the nature of fractal behaviors, two parameters are 
proposed to define the fractal topography that uniquely determine fractal behavior and dimension. These two 
parameters, scaling lacunarity and scaling coverage, are independent of the fractal generator and the scale and 
they are intrinsic properties of a fractal topography. However, owing to anisotropic origins, fractal topography 
may appear direction-dependent, meaning that the scaling lacunarities are different in different directions. In this 
study, we find that the physical meaning of the Hurst exponent is a scale-invariant exponent that characterizes 
the power-law relationship of scaling lacunarities in two different directions. Consequently, a unified definition 
of fractal dimension for arbitrary fractals is proposed by averaging the fractal dimensions of all directions in a 
strictly scale-invariant manner.

Figure 4.  Fractals sharing the same fractal generator but different fractal topographies Ω(F, P). The scaling 
lacunarities of (a)–(d) are 3, 3, 6, and 6, respectively, while the scaling coverages are 5, 8, 17, and 32. According 
to Eq. (9), the fractal dimensions of (a–d) are log5/log3, log8/log3, log17/log6, and log32/log6, respectively.
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Apparently, Eq. (13) unifies the definition of fractal dimension for arbitrary fractals, including self-samenesses, 
self-similarites and self-affinities, due to the proposal of fractal topography. In addition to that, fractal topography 
provides an essential understanding of fractal behavior that eases the implementation and reduces the modeling 
complexity of disordered and irregular fractal objects, as demonstrated in some cases of two-dimensional porous 
media in Fig. 5. Although our definitions are derived in view of regular geometries, their practical application is 
straightforward in a statistical form.
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