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Abstract: The retina is a part of the central nervous system, a thin multilayer with neuronal
lamination, responsible for detecting, preprocessing, and sending visual information to the brain.
Many retinal diseases are characterized by hemodynamic perturbations and neurodegeneration
leading to vision loss and reduced quality of life. Since catecholamines and respective bindings
sites have been characterized in the retina, we systematically reviewed the literature with regard to
retinal expression, distribution and function of alpha1 (α1)-, alpha2 (α2)-, and beta (β)-adrenoceptors
(ARs). Moreover, we discuss the role of the individual adrenoceptors as targets for the treatment of
retinal diseases.
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1. Introduction

Many ocular diseases, such as age-related macular degeneration (AMD), diabetic retinopathy,
retinal vascular occlusion and glaucoma frequently cause severe visual impairment substantially
diminishing the quality of life [1–5]. Permanent ischemia or ischemia-reperfusion injury of the retina
and/or optic nerve have been implicated in the pathophysiology of these diseases [6–9]. Retinal ischemic
conditions may lead to a direct loss of cellular function. However, they can also induce various
secondary sequelae, such as retinal edema, hemorrhage, neovascularization, detachment and secondary
glaucoma [10].

Since the retina is the tissue with the highest metabolic demand in the body, it is not surprising
that retinal hemodynamic perturbations play a critical role in the pathogenesis of numerous ocular
diseases [11–18]. The retinal vascular structure provides metabolic support for neural and glial cells
while minimizing interference with light-sensing [19]. In this context, modulation of vascular diameter
by local mechanical and chemical stimuli can be considered the main basic regulatory mechanism in
the retinal circulation [20,21].

Receptor families comprising multiple subtypes with organ-specific patterns of neurovascular
expression and function appear to be attractive candidates for the development of targeted therapies
against diseases associated with abnormal tissue perfusion. One such intriguing receptor family is the
adrenoceptor (AR) family.

The discovery of ARs by Ahlquist more than six decades ago has uncovered the adrenergic
signaling pathways as pivotal regulators of systemic arterial blood pressure and other metabolic and
central nervous system functions [22]. ARs belong to the superfamily of guanosine triphosphate-binding
protein (G protein)-coupled receptors (GPCRs) and are targets of catecholamines, especially epinephrine
and noradrenaline [22–25]. According to its pharmacological properties, amino acid sequence,
and signaling mechanisms, the AR family is subdivided into three subfamilies, the alpha1 (α1)-, alpha2
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(α2)-, and the beta (β)-AR subfamily [26]. Each class is composed of three subtypes (α1A, α1B, α1D,
α2A, α2B, α2C, β1, β2, and β3) (Figure 1) [27]. Members of the α1-AR subfamily are widely expressed
throughout the cardiovascular system [28]. They critically participate in the regulation of vascular
tone and blood flow primarily by mediating the vasoconstrictive effects of catecholamines [28–35].
Remarkably, the expression pattern of individual α1-AR subtypes and their involvement in mediating
vascular responses to catecholamines differ considerably between individual vascular beds [34,36–39].
Members of the α2-AR subfamily are expressed in both the central and the peripheral nervous system
throughout the body. They are localized either pre- or postsynaptically and mediate inhibition of
neurotransmitter release [40,41]. β-ARs are widely distributed at both the central and peripheral
nervous system and are involved in important functions activated by circulating catecholamines,
such as heart rate regulation, vasorelaxation, bronchodilation, and neurotransmitter release [42].

Figure 1. The three adrenoceptor (AR) subfamilies and their subtypes. α1-, α2-, and β-ARs mainly
couple to Gq/11, Gi, and Gs proteins, respectively. To be more exact, the α2A-AR subtype has an unusual
dual pharmacological effect by coupling to Gi proteins when concentrations of agonists are low and
mainly coupling to Gs proteins when concentrations are high [43]. β-ARs are mainly coupled to Gs

proteins and both β1- and β2-AR are able to switch their G protein-coupling specificity from Gs to Gi

proteins [44].

The purpose of the present review is to summarize the current state of research on the role of
α1-, α2- and β-ARs in the retina. We provide an overview of the expression, structural distribution,
and regulation of the individual AR subfamilies and their subtypes in the retina and discuss their
therapeutic implications.

2. The Retina

The retina is a thin multilayer with neuronal lamination responsible for detecting, preprocessing,
and sending visual information to the brain [45]. The neuronal lamination in the retina includes neural
circuits containing six major types of neuronal cells: retinal ganglion cells (RGCs), amacrine cells,
bipolar cells, horizontal cells, and the cone and rod photoreceptors [46]. Despite the retina’s peripheral
location, retinal neurons utilize the same types of neurotransmitters (noradrenaline, dopamine,
and acetylcholine) as those of the central nervous system [47]. Since visual formation highly depends
on the complex neuronal structure of the retina, a variety of detrimental factors, such as ischemia and
oxidative stress, may result in the deterioration of retinal cell function and consequently lead to retinal
diseases [48].

Two different circulatory systems are originating from the ophthalmic artery, the retinal circulation
and the choroidal circulation, which both supply oxygen and nutrients to the retina [19]. While choroidal
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blood vessels are innervated and modulated by the autonomic nervous system, no sympathetic nerve
fiber terminals have been found in or on the wall of human retinal blood vessels, suggesting that the
retinal circulation lacks autonomic innervation [49]. Notably, retinal arterioles were shown to respond
to local chemical factors, such as oxygen (O2), carbon dioxide (CO2), nitric oxide (NO), and hydrogen
sulfide (H2S) [50–52]. Although no evidence for sympathetic nerve fibers has been provided in the
retina, catecholamines, including noradrenaline, adrenaline and dopamine, have been detected [53].
One possible source of noradrenaline in the mammalian retina are sympathetic nerve terminals located
in the choroid [54]. In support of this concept, a decrease in noradrenaline concentration has been
observed in the retina after removal of the superior cervical ganglion, which provides sympathetic
input to the choroid [53]. This finding indicates that noradrenaline may originate from sympathetic
nerve terminals in the choroidal circulation and reach the ARs in the retina by paracrine diffusion [55].

Dopaminergic amacrine (DA) cells, a class of retinal neurons, synthetize and release dopamine,
which is the prevailing catecholamine in the retina [56,57]. In the bovine retina, noradrenaline was
detected in the inner nuclear and plexiform layers, and Osborne suggested that retinal tissue can
metabolize dopamine to form noradrenaline [58]. Also, amacrine cells have been detected in the
retina, which differs morphologically from DA cells and can be detected only after a preload with
exogenous noradrenaline [54,59]. It has been proposed that these cells contain only small amounts
of endogenous catecholamines, but are equipped with high-affinity uptake properties for exogenous
catecholamines [54]. There is also compelling evidence indicating that in addition to noradrenaline,
dopamine can also activate α1-, α2-, and β-ARs, but may be less potent [60]. Importantly, members of
all three AR subfamilies, α1-, α2-, and β-ARs, have been detected in retinal tissue, including blood
vessels [61].

3. Expression and Function of ARs in the Retina

3.1. α1-ARs

3.1.1. Expression of α1-ARs in the Retina

In contrast to choroidal blood vessels, the retinal vasculature seems to lack autonomic,
i.e., adrenergic, cholinergic or peptidergic innervation [49,50,62–64]. However, α1-ARs have been found
in retinal tissue of various mammalian species [65,66]. Particularly with regard to the intra-retinal
vasculature, Forster et al. have demonstrated the presence ofα1-adrenergic binding sites in homogenates
of isolated bovine retinal arteries and veins, which were few in number, but of high agonist affinity [61].
In homogenates of isolated murine retinal arterioles, our laboratory has found mRNA for all three
α1-AR subtypes, which were expressed at similar levels [67].

Several studies provided evidence that the cellular components of the three main layers of a
vascular wall, i.e., endothelial cells of the intima, smooth muscle cells of the media, and fibroblasts of the
adventitia, have the potential to express α1-ARs [29–33]. Furthermore, evidence has been provided that
individual α1-ARs may exert distinct functions within one vessel [32,68,69]. For example, it has been
suggested that in coronary arteries, endothelialα1B-ARs mediate vasodilation by stimulating endothelial
nitric oxide synthase, while α1D-ARs localized on smooth muscle cells mediate vasoconstriction [68].

The cellular location of α1-ARs within the architecture of retinal blood vessels is still elusive but
may have relevant pharmacological and pathophysiological implications. For example, with regard to
α1-ARs located on retinal vascular smooth muscle cells, one would expect that the intact blood-retinal
barrier prevents circulating hydrophilic molecules, such as catecholamines, from reaching these binding
sites [70]. Conversely, they might become well-accessible in pathological states associated with an
impaired endothelial barrier function [61,71]. Since a series of enzymes involved in catecholamine
synthesis has been localized in retinal cells of different species, retinal vascular α1-ARs may also be a
target of agonists released from surrounding retinal cells [72–75]. From a therapeutic point of view, the
blood-retinal barrier may be circumvented by administering α1-adrenergic ligands into the vitreous
body [76].
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In addition to retinal vessels, Zarbin et al. localized α1-ARs in the outer plexiform layer of the
rat retina in vitro by semiquantitative autoradiography using [3H]prazosin. The authors reported
that α1-adrenergic binding sites were only enriched in the outer plexiform layer [77]. Other research
groups demonstrated that α1-ARs are expressed on retinal pigment epithelium (RPE) of the rabbit and
bovine retina, where they modulate K+ and Cl− transport and electrical currents [78,79]. Unfortunately,
at present, antibody-based methods to localize α1-AR subtypes within the tissue structure appear to
lack validity, since a growing body of evidence indicates that many commercially available antibodies
directed against individualα1-AR subtypes do not specifically detect their alleged target antigen [80–83].
A combined approach of ligand-receptor binding techniques and immunostainings and/or functional
studies in tissues from knockout (KO) animal models lacking the respective receptor subtype may
represent a more suitable methodological alternative to determine the location and function of α1-ARs
within the retina, which remains a subject of further research [28].

3.1.2. α1-ARs in Retinal Vascular Reactivity

In vivo studies performed in experimental animals and healthy humans have investigated the
impact of systemically administered α1-adrenergic agonists on retinal vessel reactivity. The results,
however, are partly contradictory, which makes it difficult to draw unequivocal conclusions regarding
the functional role of α1-ARs in the regulation of retinal vascular resistance and perfusion. While Mori
et al. observed a dose-dependent constriction of rat retinal arterioles in response to intravenous
administration of noradrenaline, Alm et al. did not observe any effect of exogenously administered
noradrenaline on retinal blood flow in cats [84,85]. Dollery et al. reported that intravenously
administered noradrenaline decreased retinal vascular diameter in healthy humans, whereas other
studies detected only a negligible impact of circulating noradrenaline and the α1-adrenergic agonist,
phenylephrine, on human retinal vessel diameter and blood flow [86–88].

In general, in vivo studies investigating the effects of systemically applied adrenergic agonists or
antagonists on retinal vascular responses are hampered by considerable changes in systemic blood
pressure induced by these ligands. Due to the pronounced autoregulatory capability of the retinal
vascular bed, the resulting changes in ocular perfusion pressure may also induce compensatory
responses of the retinal vasculature, which makes it difficult to discern between direct pharmacological
effects on retinal vessels and their reactive responses to systemic blood pressure changes [70,71,88,89].
This methodological dilemma may, at least in part, explain the contradictory results of the in vivo
studies outlined above.

Ichikawa et al. and Hara et al. reduced systemic influences by intravitreal drug injection and
observed constriction of rabbit retinal arteries in response to phenylephrine, which was attenuated after
application of the α1-AR antagonist, bunazosin [76,90]. Additionally, in vitro studies using isolated
eyes, retinal tissue grafts, and preparations of retinal arterioles also demonstrated a constrictive effect
of α1-adrenergic agonists on retinal blood vessels [71,91–94].

In this context, Hoste et al. reported that on the one hand, the contractile response of bovine retinal
arteries to α1-adrenergic stimulation was greatly masked under resting conditions [94]. On the other
hand, retinal arteries became sensitive to α1-adrenergic agonists when activated by circumferential
stretch and displayed an enhanced myogenic vasoconstrictor response to elevated perfusion pressure
during α1-adrenergic stimulation [94]. In the study of Yu et al., the extent of vasoconstriction in
isolated porcine retinal arterioles with intact endothelium in response to α1-adrenergic agonists
differed between intra- and extra-luminal drug application. Adrenaline and noradrenaline caused
concentration-dependent vasoconstriction, which was larger when applied intraluminally [70,92].

Although the aforementioned in vitro studies found a constrictive effect of α1-adrenergic agonists
on retinal vessels with an intact endothelium, the reported vascular responses were mostly weak
and had a relatively high threshold [91–94]. In a study conducted on murine retinal explants, our
group has demonstrated that retinal arteriole constriction to α1-adrenergic stimulation is largely
masked by endothelial mechanisms and becomes more relevant when the endothelium is damaged [67].
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In contrast, a prior study of our own performed on endothelium-intact murine ophthalmic arteries under
similar experimental conditions has shown pronounced vasoconstrictive responses to α1-adrenergic
stimulation [67]. These findings suggest that endothelial modulation of α1-adrenergic vasoconstriction
differs between retinal and retrobulbar blood vessels.

Due to its characteristic properties, the endothelium of retinal vessels represents a mechanical
barrier, which is considered to prevent most blood-borne hydrophilic compounds, including
catecholamines, from reaching vascular smooth muscle cells [20,50,62–64,70,95]. In the referred
study, however, the blood-retinal barrier was circumvented, since vasoactive substances were applied
extraluminally [67]. Therefore, the observed attenuating influence of the endothelium most likely
results from endothelium-derived vascular mechanisms that functionally antagonize constrictive
responses of retinal arterioles to α1-adrenergic stimuli. Endothelium-dependent attenuation of retinal
α1-AR-mediated vasoconstriction appears physiologically plausible, since it would confer a safety net
by protecting the retina against inappropriate reductions in blood flow induced by elevated levels
of catecholamines during exercise, hemorrhage, or stress. Based on studies in various vascular beds,
including cerebral vessels, it is well documented that vascular responses to α1-adrenergic stimuli are
modulated by the vascular endothelium and are altered when endothelial function is impaired [96–106].
Apparently, the endothelium mitigates the vasoconstrictive impact of elevated circulating catecholamine
levels particularly in organs whose uncompromised blood supply and functioning are of vital
importance during fight and flight responses [34,39,107]. Conversely, under conditions of endothelial
impairment, e.g., in atherosclerosis and diabetes, vascular sensitivity to α1-adrenergic vasoconstrictors
appears to be increased [107–112].

In general, endothelial compensation of α1-AR-mediated vasoconstriction is attributed to relaxing
factors, such as nitric oxide, released by endothelial cells [113–119]. While nitric oxide release in
response to increased shear stress during vascular constriction is considered a possible endothelial
mechanism counteracting vasoconstriction, some other studies suggest that activation ofα1-ARs located
on endothelial cells also promotes the endothelial release of nitric oxide, functionally antagonizing
adrenergic vasoconstriction [29,107,120–125].

Retinal pathologies, such as diabetic retinopathy, arterial occlusive disease or glaucoma,
are associated with impaired endothelial function [12,126–128]. However, so far, no compelling
evidence has been provided that under retinal pathological conditionsα1-AR-mediated vasoconstriction
becomes a relevant contribution factor, although an in vivo study in rabbits suggested that blockade
of α1-AR signaling may alleviate the impairment in blood flow and retinal function caused by nitric
oxide synthase inhibition [129].

3.1.3. Contribution of Individual α1-AR Subtypes to Vascular Reactivity in the Retina

In their in vivo study, Mori et al. aimed to identify the α1-AR subtype(s) involved in
noradrenaline-induced constriction of retinal arterioles in anaesthetized rats by analyzing the vascular
effects of systemically administered subtype-preferring agonists and antagonists. The authors
concluded from their results that vascular constriction to noradrenaline in rat retinal arterioles
is primarily mediated by the α1A- and the α1D-AR, and that this finding corresponds to the situation in
the rat peripheral circulation [84]. From a methodological point of view, the interpretation of the results
is hampered by the confounding influence of retinal vascular autoregulation in an in vivo setting and by
the lack of highly selective agonists and antagonists for allα1-AR subtypes [24,28,35,70,71,88,89,130,131].

Using an in vitro approach and gene-targeted mice deficient in individual α1-AR subtypes,
our group has recently demonstrated that α1-AR-mediated vasoconstriction in retinal arterioles with
damaged endothelium is predominantly conveyed by the α1B-AR subtype [67]. By contrast, in the
murine ophthalmic artery, which is directly afferent to the retinal vasculature, the α1A-AR subtype has
previously been shown to mediate constrictive responses to adrenergic stimuli [132]. These results
indicate that the retrobulbar (α1A-AR) and the retinal (α1B-AR) vasculature are under the functional
control of different α1-AR subtypes. This finding is in line with previous studies reporting that
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the distribution of individual α1-AR subtypes and their contribution to adrenergic vasoconstriction
varies considerably between circulatory beds, between different-sized vessels of a given vascular bed,
and between different species [24,34,39,133–135].

Although mRNA for all three α1-AR subtypes was found to be expressed at similar levels
in murine retinal arterioles, α1-AR-mediated vasoconstriction is predominantly mediated by the
α1B-AR subtype [67]. Several studies have provided evidence that the presence of mRNA or
protein of a particular α1-AR subtype does not necessarily go along with its participation in
vasoconstriction [31,132,136–138]. Furthermore, each receptor subtype can activate distinct downstream
signaling components in the Gq/11 signaling pathways and also couple to other independent signaling
pathways [35,36,131,139–141]. Therefore, a particular α1-AR subtype that does not contribute to
vasoconstriction despite its expression may, nevertheless, be involved in the regulation of other
physiological or pathophysiological processes of the retinal vasculature. However, whether these
results derived from animal models correctly represent the expression and function of α1-AR subtypes
in the human retinal vasculature remains to be elucidated.

3.2. α2-ARs

3.2.1. Expression of α2-ARs in the Retina

In 1982, Osborne detected retinal α2-ARs in the bovine retina in binding studies utilizing
[3H]noradrenaline and [3H]clonidine [142]. In 1986, α2-AR binding sites were identified in the
inner plexiform layer of the rat retina by [3H]para-aminoclonidine ([3H]PAC) [77]. Most of these
sites were also related to the proximal layer of cell bodies in the inner nuclear layer and with some
putative displaced amacrine or ganglion cell bodies [77]. Furthermore, α2-ARs were identified in calf
retinal cellular membranes by binding experiments employing the radiolabelled antagonists, [3H]-RX
781,094 and [3H]-rauwolscine [143]. Matsuo and Cynader found α2-AR binding sites in the retina of
human cadaveric eyes by an in vitro ligand-binding technique and autoradiography [144].

Three distinct subtypes of α2-ARs, α2A, α2B, α2C, have been identified by molecular and
pharmacological characterization techniques [145]. The International Union of Pharmacology has
identified species orthologues and termed them α2A-AR in humans and α2D-AR in rats and mice [27].
Venkataraman et al. indicated that the α2D-AR gene in the bovine retina was a structural variant of the
rat and mouse genes and defined the α2D-AR subtype in the bovine retina [146]. The expression of the
α2D-AR subtype was detected in the bovine retina and its photoreceptors [146]. Messenger RNA of the
α2D-AR was identified in the bovine retina by amplification through reverse transcription-polymerase
chain reaction (RT-PCR) [146]. It is now generally accepted that the α2D-AR represents a species variant
of the α2A-AR [147].

Immunohistochemical studies revealed the presence of α2-ARs (specifically α2A-ARs) on rat RGCs
and inner nuclear layer cells [148]. In the human retina, Kalapesi et al. found α2A-ARs on human
RGCs and cells in the inner and outer nuclear layers [148].

In addition, Pfizer et al. reported that in rat retinas, α2A-ARs were mainly found in the cell bodies
located in the ganglion cell layer, the inner plexiform layer and the outer plexiform layer [149]. In other
immunohistochemical studies, α2A-AR staining was also observed in the membrane of cells located
in the inner nuclear layer, specifically amacrine and horizontal cells. In human and monkey retinas,
the α2A-AR staining pattern was relatively consistent with that observed in rats [149]. In contrast to
α2A-ARs, α2B-AR immunoreactivity was observed in all retinal layers, especially in the presynaptic
regions of neurons. In the outer retina, α2B-AR immunoreactivity was seen in more than one cell
type, such as the inner segments of photoreceptors, Müller cells, and bipolar cells [149]. Moreover,
Pfizer et al. observed that α2A-ARs were mainly present in the cell membrane of photoreceptor cells
and in their inner segments [149]. Notably, some studies reported that many commercially available
antibodies directed against ARs, including α2-ARs, lack sufficient specificity [80,82,83]. Based on these
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findings, expression studies employing commercially available AR antibodies need to be interpreted
with caution [82].

3.2.2. α2-AR in Retinal Neuroprotection

The family of α2-ARs is one of the pharmacological targets of the natural stress hormone,
norepinephrine, and is involved in modulating cellular resistance and adaptation to stress stimuli [150].
α2-ARs were first described as presynaptic receptors inhibiting the release of various transmitters
from neurons in the central and peripheral nervous systems [151]. In vivo studies revealed that α2-AR
stimulation reduces ischemic injury in the brain [152]. This effect has been largely attributed to its
classic presynaptic inhibition of signaling molecules released by blocking Ca2+ channels, activating K+

channels, or reducing active release sites [153,154]. Neuroprotective treatment strategies for retinal
diseases whose course includes neuronal degeneration have arisen a great deal of interest. Some studies
have assessed the functional role of α2-ARs in the retina in a variety of animal models through the
mechanism of α2-mediated neuroprotection. For example, Donello et al. suggested that activation
of α2-ARs might reduce ischemic retinal injury and preserve retinal function following transient
ischemia by preventing extracellular glutamate and aspartate accumulation [155]. An in vivo study
by Manuel et al. revealed neuroprotective effects of α2-ARs in preventing RGC death after transient
retinal ischemia [156]. In the study, pre-treatment with two α2-AR-selective agonists, AGN 191,103
and brimonidine tartrate, has proven very effective not only in preventing rapid RGCs loss, but also
long-term RGCs loss in a rat model [156].

Glaucoma with elevated intraocular pressure (IOP) often continues to progress even after the
reduction of IOP to normal levels [5]. The progressive loss of vision in eyes with glaucoma is a result
of RGCs degeneration, emphasizing the need for a neuroprotective therapy [157]. The α2-AR agonist,
brimonidine, and other α2-AR agonists were shown to lower IOP mainly by reducing aqueous humor
production and by increasing uveoscleral outflow [158–160]. In a rat model of chronically elevated
IOP, pharmacological activation of α2-ARs exerted neuroprotective effects in RGCs, irrespective of the
IOP level [157]. In addition, the α2-AR agonist, brimonidine, preserved visual function in glaucoma
patients with low/normal IOP and high IOP, suggesting that pharmacological α2-AR activation may
exert neuroprotective effects IOP independently [161–163]. Various mechanisms underlying the
neuroprotective activity of α2-AR agonists have been proposed. For example, activation of α2-ARs
was shown to decrease the IOP-induced overexpression of intermediate filament glial fibrillary acidic
protein (GFAP) in Müller cells, suggesting that activation of α2-ARs may reduce stress responses in
glial cells. [157]. Furthermore, the α2-AR agonist, brimonidine, was reported to protect RGCs from the
effects of chronic ocular hypertension through mechanisms involving α2-AR-mediated survival signal
activation and up-regulation of endogenous neurotrophic factors in the rat retina [164]. Another study
demonstrated that α2-adrenergic modulation of N-methyl-d-aspartate (NMDA) receptor function was
an important mechanism for neuroprotection in experimental glaucoma models [154]. Brimonidine may
protect RGCs by preventing abnormal elevation of cytosolic free Ca2+ evoked by NMDA receptors in
RGCs under stress conditions [165,166]. Other studies suggested that brimonidine-mediated inhibition
of the cyclic adenosine 3′,5′-monophosphate/protein kinase A (cAMP/PKA) pathway could be an
important mechanism to protect RGCs from glaucomatous neurodegeneration [162]. Based on a recent
study in a rat glaucoma model, Zhou et al. suggested that α2-AR activation hyperpolarizes RGCs
by improving the γ-aminobutyric acid (GABA) receptor response to spontaneous and elicited GABA
release, thus reducing the risk for excitotoxicity and RGC injury [167].
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Activation of α2-ARs has also been shown to exert neuroprotective effects in other retinal diseases,
such as light-induced photoreceptor damage, retinal detachment, and optic nerve injury [168–170].
For example, α2-adrenergic agonists were shown to induce the expression of basic fibroblast growth
factor (bFGF) in photoreceptors in vivo and to alleviate light-induced damage in the retina [168].
In retinal detachment, stimulation of α2-AR signaling protected photoreceptors by inhibiting oxidative
stress and inflammation [170]. Furthermore, in a mouse optic neuritis model, topical administration
of the α2-AR agonist, brimonidine, exerted neuroprotective effects against RGCs death by increasing
retinal bFGF expression in the retina, particularly in Müller cells and RGCs [171]. In contrast,
in mechanic optic nerve injury, activation of α2-AR signaling promoted optic nerve regeneration via
activation of extracellular-signal-regulated kinase (ERK) phosphorylation [169].

Activation of α2-ARs was suggested to induce vasoconstriction in the vasculature distal to the
ophthalmic artery, such as ciliary and retinal blood vessels [172–174]. While the α2A-AR subtype was
proposed to mediate adrenergic vasoconstriction in porcine ciliary arteries, no suggestion regarding
the contribution of individual α2-AR subtypes has been made for retinal blood vessels [172].

Only little is known about the functional role of individual α2-AR subtypes in the retina.
A study by Harun-Or-Rashid et al. showed that α2A-ARs are expressed by chicken Müller cells and
that pharmacological activation of the α2A-AR subtype triggers a mitogen-activated protein kinase
(MAPK)-dependent response with phosphorylation of ERK1/2 both in vivo and in vitro. Taken together,
most studies indicate that activation of α2-ARs raises neuronal resistance to retinal injury suggesting
that the receptors may become potent treatment targets in various retinal diseases. However, the role
of individual α2-AR subtypes remains to be better characterized in the retina.

3.3. β-ARs

3.3.1. Expression of β-ARs in the Retina

In 1986, Zarbin et al. localized β-AR binding sites by [3H]dihydroalprenolol in nearly all rat retinal
layers (the outer nuclear layer, outer plexiform layer, inner nuclear layer, and inner plexiform layer),
but with the lowest concentration in the outer nuclear layer [77]. In the human retina, β-AR binding
sites were visualized by [125I] (-) iodocyanopindolol in vitro autoradiography [175].

Three distinct β-AR subtypes, β1-AR, β2-AR and β3-AR, have been identified [176]. In 2001,
the β4-AR was hypothesized by Granneman as a novel state of the β1-AR [176]. Six years later,
the β4-AR was considered by Madamanchi as a low-affinity state of the β1-AR, which still needs
pharmacological and genetic characterization [177]. Among β-AR subtypes, β1-AR and β2-AR binding
sites were found in bovine retinal vessels and in the neural retina [178]. The presence of functional
β3-ARs has also been verified in rat retinal blood vessels [179]. By immunohistochemistry, β3-ARs
were localized in the inner capillary plexus of the mouse mid-peripheral retina, whereas β1-ARs and
β2-ARs were localized in rat cultured Müller cells [180]. However, since many commercially available
antibodies lack sufficient specificity for β-ARs, data based on antibodies need to be interpreted with
caution [83]. Expression of β3-ARs has been shown for the first time on cultured human retinal
endothelial cells in 2003 [181]. In that study, pharmacological activation of β3-ARs promoted migration
and proliferation of endothelial cells [181]. Based on the wide distribution of β-ARs in retinal blood
vessels and the neural retina, β-ARs are believed to play an important role in retinal vascular and
neuronal function. The localization of individual AR subfamilies in individual retinal layers and
structures is shown in Figure 2.
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Figure 2. The distribution of ARs in individual retinal layers and structures.

3.3.2. Role of β-ARs in the Retina

Stress conditions, such as hypoxia, can cause catecholaminergic overstimulation in the
cardiovascular system, which in turn may activate β-ARs [182]. A study in mice reported
that the noradrenaline level increased by approximately 90% in the hypoxic retina compared to
normoxic conditions [183]. Activation of β-ARs is considered to upregulate the hypoxia-inducible
factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF), which plays a key role in the
formation of pathogenic blood vessels in various retinal diseases, such as retinopathy of prematurity
and diabetic retinopathy [183–185]. The β-AR blocker, propranolol, effectively inhibited the
increase of VEGF expression caused by hypoxia and the consecutive neovascular response in the
retina [55]. Likewise, propranolol administered subcutaneously reduced VEGF and HIF-1α levels in
an oxygen-induced retinopathy (OIR) mouse model, suggesting that β-AR blockade was protective
against retinal angiogenesis and ameliorated blood-retinal barrier dysfunction [186].

Intriguingly, a novel β-AR agonist, compound 49b, was reported to decrease VEGF levels in
the diabetic rat retina [187]. The effect of compound 49b was attributed to an increase in insulin-like
growth factor binding protein 3 (IGFBP-3), which reduced VEGF levels via modulation of eNOS and
PKC pathways [187]. These seemingly contradictory findings regarding the impact of β-AR agonists
and antagonists on VEGF levels suggest that the effects may be mediated through diverse regulation
mechanisms depending on the retinal disease and the experimental setting.

β-AR activation was also shown to increase human and mouse pericyte survival under diabetic
conditions [188]. Conversely, a significant decrease in the number of pericytes has been reported
in the rat retina after surgical removal of the superior cervical ganglion, which supplies the eye
with sympathetic nerve fibers [189]. These findings suggest that proper β-AR signaling is essential
for pericyte survival. An in vitro study proposed that β-ARs are involved in the regulation of
inducible nitric oxide synthase (iNOS) expression [190]. Activation of β-ARs reduced levels of iNOS
and other inflammatory molecules, such as interleukin (IL)-1β, tumor necrosis factor-α (TNF-α),
and prostaglandin E2 (PGE2) in human retinal endothelial cells and rat Müller cells in an in vitro model
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of hyperglycemia [191]. The proposed mechanism for the protective effects was that the stimulating
β-ARs decrease the levels of the MAPK family members, PKA, p38 MAPK, and p42/p44 MAPK,
in human retinal endothelial cells [190].

Stimulation of β-AR by agonists can activate members of the G protein-coupled receptor (GPCR)
kinase (GRK) family, which is the potential mechanism that leads to β-AR desensitization [192].
A first mechanism underlying desensitization is phosphorylation of the GPCR [193]. After coupling to
activated receptors, G proteins are phosphorylated by GRKs [194,195]. Seven GRKs (GRK1–7) have been
identified, at present [196]. GRK1, as a rhodopsin kinase, is responsible for phosphorylating rhodopsin,
which is richly expressed in the retinal rod and cone cells [197]. β-ARs can be phosphorylated by
a protein kinase termed GRK2 [198]. The GRK-phosphorylated receptor binds to arrestins, leading
to the uncoupling of the receptor from the G protein, desensitizing the agonist-induced response,
and subsequently mediating the internalization of receptors [195,199]. Consequently, the GRK-arrestin
pathway plays a central role in the desensitization of GPCR responses [195,199]. Two arrestin subtypes
were found to be expressed in the retina, arrestin-1 and -4. These arrestins are specialized in binding
light-activated phosphorylated rhodopsin and suppressing G protein activation [200,201]. It has
been demonstrated that retinal and nonretinal arrestins mediate suppression of GPCRs, suggesting a
common mechanism for desensitizing ARs [202]. Apart from this role, arrestins were also shown to be
involved in receptor-mediated endocytosis by clathrin-coated pits [202,203].

3.3.3. Contribution of Individual Receptor Subtypes to β-Adrenergic Function in the Retina

Hypoxia was reported to trigger the release of catecholamines, which have been shown to
contribute to the increase in retinal VEGF expression, causing pathologic neovascularization [183–185].
In a mouse model of OIR, deletion of β1- and β2-ARs reduced retinal VEGF receptor-2 expression
and abolished the development of vascular abnormalities in the superficial plexus of the retina [204].
In another study employing a mouse model of OIR, β1- and β2-AR blockade by propranolol was
shown to reduce the expression of VEGF and to ameliorate retinal dysfunction [186]. Other studies
demonstrated that ICI 118,551, a selective β2-AR blocker, decreased retinal levels of proangiogenic
factors and reduced pathogenic neovascularization in a mouse OIR model, suggesting that β2-AR
blockade may be effective in the blockade of retinal angiogenesis [205].

As we mentioned before, there are inconsistent results regarding the role of β-AR activation
or blockade on VEGF expression and pathogenic vessel formation. While most studies reported
on inhibitory effects of pharmacological β-AR blockade on VEGF formation some other studies
observed blockade of VEGF formation by β-AR agonist exposure [55,182–186]. An explanation to
these seemingly contradictory results provides a study by Dal Monte et al., which suggested that
the nonselective β-ARs agonist, isoproterenol, can cause agonist-induced β2-AR desensitization that
downregulates the expression of β2-ARs in the retina, which in turn exerts a downregulation effect on
VEGF expression in OIR [183]. Jiang et al. proposed that β2-AR KO mice exhibited certain features
similar to diabetic retinopathy, resulting in retinal cell death [206]. A study in β2-AR KO mice has
shown a functional link between β-ARs and insulin receptor signaling pathways in the retina [200].
Furthermore, β2-ARs can maintain insulin receptor signaling in retinal Müller cells, which potentially
supports neuroprotective effects promoted by β-AR stimulation in diabetic retinopathy models [200].
Xamoterol, a β1-AR agonist, attenuated iNOS expression in human retinal endothelial cells grown in
high glucose medium [191]. Studies by Mori et al. have demonstrated that stimulation of β1-, β2-,
and β3-ARs can cause dilation of retinal arterioles in rats, thus, increasing retinal blood flow [207,208].
Moreover, the latest study by Mori et al. reported that retinal vasodilation by β2-AR stimulation is
mediated via a Gi protein by activation of large-conductance Ca2+-activated K+ channels [209].

β3-ARs were shown to be involved in the neovascularization processes of various retinal vascular
diseases [186]. For example, β3-ARs were upregulated in response to hypoxia in an OIR mouse model
with dense β3-ARs immunoreactivity in engorged retinal tufts, suggesting that activation of β3-ARs is
likely to constitute an important part in pathologic angiogenesis [186]. It has also been demonstrated
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that the β3-AR antagonists, L-748,337 and SR59230A, downregulated retinal VEGF release in hypoxia
via modulation of the nitric NO signaling pathway [210]. Moreover, the β3-AR agonist, CL316243, was
shown to reduce retinal damage following intravitreal injection of N-methyl-D-aspartate (NMDA) in
rats [211]. Furthermore, β3-ARs, which differ from β2-ARs with regard to a lack of GRK, are resistant
to agonist-induced desensitization [192,212]. Taken together, based on the studies performed so far,
the β3-AR appears to be an attractive therapeutic target for the treatment of ischemic retinal diseases.

Notably, β-AR genes have genetic polymorphisms caused by mutations in the gene promoter,
leading to changes in the expression of receptors and the regulation of signal transduction [195,213,214].
The mutations of ARs mainly affect receptor responses and are associated with some diseases [214].
An in vivo study tested the effects of two polymorphisms (codon 16 and codon 27) of the β2-AR
on agonist-mediated vascular desensitization, suggesting that the arginine at position 16 (Arg16)
polymorphism (the substitution of glycine for arginine) of the β2-AR is associated with enhanced
agonist-mediated desensitization in the vasculature [215]. However, to the best of our knowledge,
no association between genetic polymorphisms of β-AR genes and retinal diseases has been described,
so far.

4. Future Directions and Clinical Implications

Although α1-ARs play a potential physiological and/or pathophysiological role in the regulation
of retinal vascular tone, retinal α1-adrenergic vasoconstriction is largely masked by endothelial
mechanisms under physiological conditions and becomes more relevant when the endothelium is
damaged. Therefore, α1-AR signaling pathways may represent therapeutic targets primarily in the
context of retinal pathologies associated with impaired endothelial function. However, there are
inconsistent findings regarding the subtype mediating adrenergic vasoconstriction in retinal blood
vessels. While Mori et al. found that α1A- and α1D-ARs mediated vasoconstriction in vivo in the rat
retina, Gericke et al. reported that the α1B-AR-mediated adrenergic vasoconstriction in the isolated
mouse retina [67,84]. It remains to be determined which α1-AR subtype mediates vascular responses
in the human retina. However, the lack of highly specific pharmacological ligands and antibodies
for individual α1-AR subtypes hampered the progress in this research area so far. From a clinical
point of view, subtype-selective agonists and antagonists would constitute a therapeutic approach to
specifically influence retinal perfusion.

It should be emphasized, however, that many issues remain poorly understood and need further
investigation. The location of α1-ARs in general and of the three α1-AR subtypes in particular within
the architecture of retinal vessels is still elusive but may be indicative of their vascular function(s) and
relevant for their pharmacological accessibility. The endothelial mechanisms involved in masking
retinal α1-adrenergic vasoconstriction have not yet been identified. In retinal diseases associated
with endothelial dysfunction, the actual pathogenic contribution of α1-AR-mediated vasoconstriction
remains an open question.

Various animal experiments and cell culture studies revealed neuroprotective effects of the
selective α2-AR agonist, brimonidine, in the retina [148,150,216]. In 2011, a randomized clinical trial
reported on the neuroprotective effects of topically applied brimonidine tartrate 0.2% in preventing
visual field loss progression in patients with low-pressure glaucoma, which supports the concept of
direct activation of retinal α2-ARs [163]. In contrast, another trial failed to show neuroprotective effects
of 0.2% brimonidine tartrate in patients with non-arteritic anterior ischemic optic neuropathy [217]. In a
pilot study on patients with retinal dystrophies, topical treatment with brimonidine suggested a trend
towards reduced disease progression [218]. However, the number of patients (n = 26) was relatively
small and the mean follow-up period (mean 29 months) relatively short, which does not allow to draw
unequivocal conclusions. Taken together, the retinal neuroprotective effects of brimonidine obtained in
various experimental disease models remain to be confirmed in large human trials.

Propranolol, which has a high affinity to β1- and β2-AR subtypes, is the only β-AR antagonist that
has been tested in clinical trials, so far [55]. Propranolol 0.1% eye micro-drops have been developed and
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administered in a multicenter pilot clinical trial to analyze the safety and efficacy in treating preterm
newborns with stage 2 ROP [219]. However, the second stage of this study was discontinued, since the
fourth of the 19 newborns showed a progression to stage 2 or 3 with additional disease [219]. Based on
animal studies, β3-ARs appear to be involved in pathogenic vessel formation in the ischemic retina.
Hence, future studies are needed to explore β3-AR ligands in human ischemic retinal diseases.

5. Conclusions

In conclusion, the studies reviewed in this article provide evidence for the presence of α1-, α2- and
β-ARs in the retina of various species, including humans. α1-ARs function as stimulatory receptors
involved mainly in the contraction of vascular smooth muscle, resulting in vasoconstriction. In contrast,
α2-ARs are primarily expressed in neurons and glia. Its pharmacological activation was shown to
lower IOP and to induce neuroprotective effects in the retina. β-ARs are expressed in blood vessels,
neurons and glial cells, where they were shown to contribute to the regulation of vascular diameter
and to responses to hypoxia. The results of numerous in vitro and in vivo studies suggest that these
retinal receptors are functionally active and, hence, may constitute potential targets for the treatment
of several retinal diseases.
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