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Abstract

Perceiving speech-in-noise (SIN) demands precise neural coding between brainstem and cortical 

levels of the hearing system. Attentional processes can then select and prioritize task-relevant cues 

over competing background noise for successful speech perception. In animal models, brainstem-

cortical interplay is achieved via descending corticofugal projections from cortex that shape 

midbrain responses to behaviorally-relevant sounds. Attentional engagement of corticofugal 

feedback may assist SIN understanding but has never been confirmed and remains highly 

controversial in humans. To resolve these issues, we recorded source-level, anatomically 

constrained brainstem frequency-following responses (FFRs) and cortical event-related potentials 

(ERPs) to speech via high-density EEG while listeners performed rapid SIN identification tasks. 

We varied attention with active vs. passive listening scenarios whereas task difficulty was 

manipulated with additive noise interference. Active listening (but not arousal-control tasks) 

exaggerated both ERPs and FFRs, confirming attentional gain extends to lower subcortical levels 

of speech processing. We used functional connectivity to measure the directed strength of coupling 

between levels and characterize “bottom-up” vs. “top-down” (corticofugal) signaling within the 

auditory brainstem-cortical pathway. While attention strengthened connectivity bidirectionally, 

corticofugal transmission disengaged under passive (but not active) SIN listening. Our findings (i) 
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show attention enhances the brain’s transcription of speech even prior to cortex and (ii) establish a 

direct role of the human corticofugal feedback system as an aid to cocktail party speech 

perception.
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1. Introduction

Complex speech-in-noise (SIN) perception requires the listener to isolate a talker’s voice 

from competing background noise. Extraction of cues necessary for SIN perception relies on 

accurate and efficient bottom-up perceptual and top-down cognitive processes. Bottom-up 

encoding serves to provide rich neural representations of acoustic features while higher-

order cognitive processes enable the prioritization and integration of inputs for 

comprehension. A breakdown at any point within this integrated system could lead to SIN 

deficits (Humes, 1996; Moore, 2015).

Attention is a top-down cognitive process that alerts and orients listeners to focus 

concentration on environmental stimuli (Petersen and Posner, 2012). In complex listening 

environments, attention aids the selection of behaviorally-relevant inputs over irrelevant 

background noise to prioritize target cues for robust speech-in-noise (SIN) understanding. 

Given that top-down mechanisms fine-tune auditory neural coding (Atiani et al., 2009; Gao 

and Suga, 2000; Suga and Ma, 2003), attention is thought to influence all stages of auditory 

processing from the inner ear to cortex (Galbraith et al., 2003; Giard et al., 1994; 

Hernandez-Peon, 1966; Lukas, 1980; Picton and Hillyard, 1974; Rinne et al., 2008).

Attentional modulation of auditory cortical activity is well documented (Alho et al., 2014; 

Alho and Vorobyev, 2007; Picton and Hillyard, 1974), but whether similar enhancements 

exist at earlier stages prior to cortex (e.g., brainstem) remains contentiously debated. Human 

brainstem responses to nonspeech stimuli are largely invariant to attentional state 

(Hirschhorn and Michie, 1990; Picton and Hillyard, 1974; Picton et al., 1971; Woods and 

Hillyard, 1978). Newer contradictory findings have emerged from more recent studies on 

frequency-following responses (FFRs)—microphonic-like potentials generated 

predominantly from brainstem (i.e., subcortical structures including cochlear nucleus, 

medial geniculate body of the thalamus, and inferior colliculus) which index neural phase-

locking to dynamic sound features (Bidelman, 2018; Coffey et al., 2019; Gardi et al., 1979; 

Marsh et al., 1970; Smith et al., 1975; Tichko and Skoe, 2017; White-Schwoch et al., 2019). 

Some electrophysiological studies suggest attention enhances the robustness and temporal 

precision of speech FFRs (Forte et al., 2017; Galbraith et al., 2003; Hartmann and Weisz, 

2019; Lehmann and Schonwiesner, 2014). Still, others demonstrate mixed (Holmes et al., 

2018; Saiz-Alia et al., 2019) or even null attention-related FFR effects (Galbraith and Kane, 

1993; Varghese et al., 2015). Brainstem responses are reliably recorded during sleep and 

sedation (Skoe and Kraus, 2010a) which bolsters long-held assumptions that subcortical 

processing is largely pre-attentive and automatic (Tzounopoulos and Kraus, 2009). Attention 
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effects at the brainstem level might be too subtle to detect in scalp EEG (Varghese et al., 

2015) or require highly specialized/unnatural perceptual tasks that overly challenge speech 

processing (Galbraith and Arroyo, 1993; Lehmann and Schonwiesner, 2014). Equivocal 

findings have even led to assertations that “efferent-mediated inhibitory mechanisms have 

[no] role to play in selective attention” and do not “suppress irrelevant information at early 

stages of the auditory system” (Hirschhorn and Michie, 1990, p. 507).

Architecturally, the auditory neuroaxis contains both afferent (ear-to-brain) and efferent 

(brain-to-ear) projections. Germane to the present experiments, descending cortico-collicular 

(i.e., corticofugal)1 fibers from primary auditory cortex (PAC) with targets in brainstem (BS; 

i.e., inferior colliculus) recalibrate sound processing of midbrain neurons by fine-tuning their 

receptive fields in response to behaviorally relevant stimuli (Suga, 2008; Suga et al., 2000). 

Corticofugal efferents also drive learning-induced plasticity in animals (Bajo et al., 2010; 

Suga et al., 2000). Given the midbrain (upper BS) is the primary source of human scalp 

FFRs (Bidelman, 2018; Bidelman and Momtaz, 2021; Marsh et al., 1970; Saiz-Alia and 

Reichenbach, 2020; White-Schwoch et al., 2019), these efferents may account for 

experience-dependent plasticity observed in seminal human FFR studies (Chandrasekaran 

and Kraus, 2010; Kraus and White-Schwoch, 2015; Musacchia et al., 2007; Wong et al., 

2007). Despite experience-dependent changes observed in human FFRs and ample evidence 

for online subcortical modulation in animals (Bajo et al., 2010; Slee and David, 2015; Suga 

et al., 2000; Vollmer et al., 2017), there have been no direct measurements of corticofugal 

system function in humans. Theoretically, efferent control of brainstem activity should occur 

for behaviorally relevant stimuli (Suga, 2008), in states of goal-directed attention (Slee and 

David, 2015; Vollmer et al., 2017), and strengthen in more taxing listening conditions (e.g., 

SIN tasks) (Ahissar and Hochstein, 2004). Attention-based neuronal feedback provided by 

the descending hearing system could help refine early sensory speech representations and 

assist the brain in navigating complex listening environments.

Here, we aimed to elucidate two highly disputed topics regarding our understanding of the 

human auditory system. First, we aimed to determine the degree to which attention actively 

reinforces early neural representations for speech prior to neocortex. To this end, we 

recorded high-density EEGs as listeners performed rapid SIN tasks varying in attentional 

demand. To overcome challenges of prior work, we used anatomically constrained source 

imaging to disentangle speech-evoked responses generated from brainstem (FFR) and cortex 

(ERP). This approach allowed us to jointly index attentional gain in speech processing at 

both stages of the hearing pathway and evaluate hierarchical processing in auditory 

attention. Secondly, we aimed to quantify human corticofugal function in SIN perception. 

We used functional connectivity to characterize “bottom-up” vs. “top-down” (corticofugal) 

signaling within the brainstem-cortical pathway. Under the premise that the corticofugal 

system shapes brainstem signal processing only for perceptually taxing and behaviorally-

relevant sounds (i.e., “ego-centric selection,” Ahissar and Hochstein, 2004; Suga et al., 

1EEG does not afford the level of granularity necessary to assess the relative roles of sub-nuclei or associated interconnecting neural 
fibers comprising the auditory afferent/efferent pathways. With source and functional connectivity analyses, we are able to evaluate 
and interpret activity within and between gross anatomical levels (midbrain and auditory cortex), so our analyses should be taken as 
broad measures of neural encoding and transmission rather than reflecting activity from and between unitary nuclei within the 
pathway.

Price and Bidelman Page 3

Neuroimage. Author manuscript; available in PMC 2021 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2000), we predicted stronger PAC→BS connectivity for noise-degraded relative to clear 

conditions. Furthermore, if speech perception conforms to early “sensory gating” and 

“bottleneck” models of attentional locus (Broadbent, 1971; Hirschhorn and Michie, 1990; 

Picton et al., 1971; Woods and Hillyard, 1978), we hypothesized attention would enhance 

brainstem phase-locking to speech as measured via source-resolved FFRs (with similar or 

stronger gains in cortical ERPs). Our results provide the first direct evidence that attention 

reinforces brainstem auditory processing in humans via corticofugal signaling and confirm 

this feedback is critical for cocktail party speech perception.

2. Materials and methods

2.1. Participants

Twenty young adults (age: 18–35 years, M = 24, SD = 3.4 years; 11 female) participated in 

the study. An a priori power analysis (t-test, 2-tailed, α = 0.05, power = 95%) revealed this 

sample was sufficient to detect similar sized effects (d = 0.84–1.0) as in previous FFR/ERP 

SIN studies (Bidelman et al., 2019; Faul et al., 2007). All participants exhibited normal 

hearing thresholds (≤ 25 dB HL; 250–8000 Hz). Because language background and music 

experience influence FFRs/ERPs and SIN performance (Mankel and Bidelman, 2018; 

Parbery-Clark et al., 2009; Zhao and Kuhl, 2018), we required participants to have < 3 years 

of formal musical training (M = 0.8 years, SD = 1.2) and be native English speakers. They 

were monolingual except for 2 participants who rated their second language (e.g., Spanish, 

ASL) proficiency as functional-to-good. Participants were predominantly right-handed (M = 

82.04%, SD = 21.04) (Oldfield, 1971) with no history of neuropsychiatric disorders. All 

provided written informed consent prior in accordance with the Declaration of Helsinki for 

experiments involving humans and joint EEG and MRI protocols approved by the University 

of Memphis IRB.

2.2. Speech stimuli & task

We recorded FFRs and ERPs simultaneously (Bidelman et al., 2013, 2019) during SIN-

listening tasks designed to evaluate attentional effects on the brain’s hierarchical encoding of 

speech. Three synthesized vowel tokens (e.g., /a/, /i/, /u/) were presented during the 

recording of EEGs. We chose vowels as sustained periodic sounds optimally evoke FFRs 

and ERPs (Bidelman et al., 2019; Skoe and Kraus, 2010a). Each vowel was 100 ms with a 

common voice fundamental frequency (F0 = 150 Hz). The first and second formants were 

730, 270, 300 Hz (F1) and 1090, 2290, 870 Hz (F2) for /a/, /i/, and /u/, respectively. Notably, 

the F0 of these stimuli is above the phase-locking limit of cortical neurons and observable 

FFRs in cortex (Bidelman, 2018; Brugge et al., 2009), ensuring our FFRs would be of 

brainstem origin (Bidelman, 2018; Coffey et al., 2016). Fig. S1 confirms FFRs to these high-

frequency stimuli were absent from PAC and occurred only in the BS source. Tokens were 

matched in average root mean square (r.m.s.) amplitude. We presented the vowels in clean 

(i.e., no background noise) and noise-degraded conditions. For the noise condition, vowel 

stimuli were mixed with 8 talker noise babble (cf. Killion et al., 2004) at a signal-to-noise 

ratio (SNR) of +5 dB (speech at 75 dBA SPL and noise at 70 dBA SPL).
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Attention was varied via active vs. passive listening blocks. During active blocks, 

participants detected infrequent tokens (/u/) via button press. We defined a “hit” as detection 

within 5 token presentations of a target. For passive blocks, participants watched a captioned 

movie and were instructed to ignore any sounds they heard. This passive “task” has been 

shown to maintain arousal without impeding auditory processing (Pettigrew et al., 2004). We 

included a control block (n = 8 of the 20 participants) of visual-only stimulation to rule out 

potential visual confounds inherent to the passive condition. In these runs, the headphone 

transducers were unplugged from the wall, and participants watched the captioned movie 

(i.e., as in passive block but muted audio). The success of these controls was confirmed by 

the absence of any time-locked response in the control condition indicating no visual 

artifacts in the recordings.

Each attentional block and noise condition (e.g., active clean, active noise, passive clean, 

passive noise) was divided into 2 runs allowing for breaks as needed. A single run lasted 

approximately 7.75 minutes and contained 1000 trials of each frequent token (/a/, /i/) and 70 

trials of the infrequent /u/ token resulting in a total of 2070 trials per run (random order; 

jittered interstimulus = 95–155 ms, 5 ms steps, uniform distribution; rarefaction polarity) (cf. 

Shiga et al., 2015). Participants completed two runs of each attentional block and noise 

condition (e.g., active clean, active noise, passive clean, passive noise). The conrol block 

consisted of a single run of clean and noise conditions (e.g., control clean, control noise). 

Block (active/passive/control) and condition (clean/noisy speech) presentation was 

counterbalanced across participants to minimize order and fatigue effects. During breaks, 

participants were encouraged to stretch and rest. No additional cognitive tasks were 

performed during breaks. Stimulus presentation was controlled by MATLAB (The 

Mathworks, Inc.; Natick, MA) routed to a TDT RP2 interface (Tucker-Davis Technologies; 

Alachua, FL) and delivered binaurally through electromagnetically shielded (Campbell et 

al., 2012) insert earphones (ER-2; Etymotic Research; Elk Grove Village, IL). Phantom 

bench tests confirmed this shielding fully eliminated stimulus electromagnetic artifact from 

EEG recordings (Fig. S2).

2.3. QuickSIN test

The Quick Speech-in-Noise (QuickSIN) test assessed listeners’ speech reception thresholds 

in noise (Killion et al., 2004). Listeners heard lists of 6 sentences, each with 5 target 

keywords spoken by a female talker embedded in four-talker babble noise. We presented 

target sentences at 70 dB SPL (binaurally) at SNRs decreasing in 5 dB steps from 25 dB 

(very easy) to 0 dB (very difficult). SNR-loss scores reflect the difference between a 

participant’s SNR-50 (i.e., SNR required for 50% keyword recall) and the average SNR 

threshold for normal hearing adults (i.e., 2 dB) (Killion et al., 2004). Higher scores indicate 

poorer SIN performance. We averaged scores from two lists per listener.

2.4. EEG acquisition and preprocessing

We recorded EEGs from 64-channels at 10-10 electrode locations across the scalp 

(Oostenveld and Praamstra, 2001). During EEG acquisition, the ground electrode was placed 

~1 cm anterior to Fz, and the reference electrode was located just posterior to Cz. Electrodes 

on the outer canthi and superior/inferior orbit monitored ocular artifacts. Impedances were ≤ 
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5 kΩ. EEGs were digitized at a high sample rate (5 kHz; DC—2000 Hz online filters; 

SynAmps RT amplifiers; Compumedics Neuroscan; Charlotte, NC) to recover both fast 

(FFR) and slow (ERP) frequency components of the compound speech-evoked potential 

(Bidelman et al., 2013; Musacchia et al., 2008).

We processed EEG data in Curry 7 (Compumedics Neuroscan) and BESA Research v7.0 

(BESA, GmbH). Ocular artifacts (saccades and blinks) were corrected in continuous EEGs 

using principal component analysis (PCA) (Picton et al., 2000). Cleaned EEGs were 

epoched (−10–200 ms), pre-stimulus baselined, and ensemble averaged to obtain compound 

speech-evoked potentials (Bidelman et al., 2013). We bandpass filtered full-band responses 

from 130 to 1500 Hz and 1 to 30 Hz (zero-phase Butterworth filters; slope = 48 dB/octave) 

to isolate FFRs and ERPs, respectively (Bidelman et al., 2013; Musacchia et al., 2008). 

Unless otherwise noted (cf. scalp FFR analysis), data were re-referenced to the common 

average of all electrodes. We excluded infrequent /u/ tokens from the analyses due to their 

limited number of trials and to avoid mismatch negativities in the data. We co-registered the 

functional EEG data to each individual’s MRI anatomy to perform source analysis (detailed 

in Sections 2.5 and 2.6).

2.5. MRI scans and EEG co-registration

3D T1-weighted anatomical volumes were obtained on a Siemens 1.5T Symphony TIM 

scanner (tfl3d1 GR/IR sequence; TR = 2000 ms, TE = 3.26 ms, inversion time = 900 ms, 

phase encoding steps = 341, flip angle = 8°, FOV = 256 × 256 acquisition matrix, 1.0 mm 

axial slices). Scanning was conducted at the Semmes Murphey Neurology Clinic (Memphis, 

TN). Scans were segmented in BESA MRI 2.0. Following inhomogeneity correction (Scherg 

et al., 2002), images were automatically partitioned into scalp, skull, CSF, and brain 

compartments (Chan and Vese, 2001) and the cortical surface was reconstructed to allow 

optional inflation of the brain volume (Fischl et al., 1999). MRI volumes were rendered in 

both ACPC and Talairach and Tournoux (1988) spaces using 3D spline interpolation.

Following MRI segmentation, electrode locations were warped to the scalp surface 

(anchored to the nasion and preauricular fiducials) to co-register sensor locations to each 

individual’s anatomy. Electrode positions were mapped with a quad sensor Polhemus 

Fastrak digitizer (Polhemus, Colchester, VT). We then generated a 4-layer finite element 

head model (FEM) based on the MRI segmentation (Wolters et al., 2007) to construct each 

individual’s leadfield (forward volume conductor). We used relative conductivities (S/m) of 

0.33, 0.0042, 1.79, 0.33 (defaults for adult brain; BESA MRI 2.0) for the scalp, skull, 

cerebrospinal fluid, and brain tissue compartments, respectively (Baumann et al., 1997). The 

FEM leadfield described the magnitude each source signal contributed at each sensor 

(Scherg, 1990) and is less prone to spatial errors than other head models (e.g., concentric 

spherical conductor) (Fuchs et al., 2002). Collectively, this approach allowed us to source 

localize each participant’s cortical ERPs and brainstem FFRs with high precision, 

constrained to their individual brain anatomy. MRIs were not available for 4 participants. In 

these cases, we used a 4-shell spherical volume conductor head model and an adult template 

brain (Berg and Scherg, 1994).
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2.6. Source analysis

We transformed listeners’ scalp potentials to source space using BESA which allowed for 

connectivity analysis between BS and PAC. We used a virtual source montage (Adapted 

from Bidelman, 2018) comprised of regional dipoles (i.e., current flow in x, y, z planes) 

positioned in the brainstem midbrain (i.e., inferior colliculus) and bilateral PAC based on 

template brain atlases (Bidelman, 2018).2 This applied an optimized spatial filter to all 

electrodes that calculated their weighted contribution to the scalp-recorded FFRs/ERPs in 

order to estimate activity within each source location within the head (Scherg and Ebersole, 

1994; Scherg et al., 2002).3 For each cortical dipole source, we combined activity from the 

three orientations—computed as the L2-norm of x, y, z time waveforms—to yield an 

unbiased measure of the aggregate response within each ROI. For source FFRs, following 

Coffey et al, (2016). We summed the three orientations in the frequency domain since FFRs 

are most readily analyzed spectrally (Coffey et al., 2016, 2017). Across stimulus conditions, 

average goodness of fit (GoF) for our 3-dipole model was 90.6% [residual variance (RV) = 

9.4 ± 1.6%], indicating excellent fit to the scalp data.

2.7. FFR and ERP quantification

2.7.1. Brainstem FFRs—We analyzed the steady-state portion (10–100 ms) of FFR 

waveforms using a Fast Fourier transform (FFT; Gaussian window; 11 Hz frequency 

resolution) which captured the spectral composition of the response. F0 amplitude was 

quantified as the maximum FFT amplitude within a 10 Hz bin centered around 150 Hz (i.e., 

F0 of the stimuli). FFR F0 indexes voice pitch coding and predicts successful SIN 

perception (Mankel and Bidelman, 2018; Parbery-Clark et al., 2009). We analyzed FFRs at 

both the electrode (Fpz; linked mastoid reference; Bidelman, 2015; Bidelman and Momtaz, 

2021; Krishnan, 2002) and source level to compare our findings to previous literature 

investigating attentional effects on FFRs.

2.7.2. Cortical ERPs—We quantified source-level ERP wave (i.e., P1, N1, P2) 

amplitude and latency using automated peak analysis. Latency windows were determined 

following visual inspection of grand average traces. P1 was identified as the maximum 

positive deflection occurring within 40–80 ms; N1 as the greatest negative deflection 

between 90 and 145 ms; and P2 as the maximum positive deflection within 145–175 ms 

(Hall, 1992).

2The dipole model used by Bidelman (2018) was adapted by extracting the BS and PAC dipoles from the original 6 source solution 
and applied to our data. That original model was fit to template brains so anatomical locations reflect normalized (i.e., atlas) locations. 
Identical dipole locations were utilized in this study so no “fitting” was performed, per se. The main difference is that we improved the 
approach by (i) using each individual’s MRI (rather than a template brain) to construct their own FEM leadfield and thereby improve 
source reconstruction accuracy and (ii) converting each single dipole to a regional source to consider activity in all three (x, y, z) 
dipole orientations from each ROI. This approach provided more accurate source estimates because it exploited each individual’s brain 
anatomy and considered all possible activity from each source (i.e., current flow in all directions).
3The process is essentially an inverse spatial filter which computes the source waveforms (currents) at each dipole location as SWF = 
L−1 × ERP, where ERP is the scalp voltage data [64 (electrodes) × 1051 (samples)] and L is the leadfield matrix [64 (weights) × 9 (3 
dipoles per x, y, z orientation)] describing the weights of how each source location contributes to each scalp electrode. L is defined by 
the dipole model (anatomical locations + orientations and conductivities of each brain compartment layer).
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2.8. Functional connectivity

We measured functional connectivity between PAC and BS source waveforms using phase 

transfer entropy (PTE), a measure of non-linear, directed (causal) signal dependency 

(Bidelman et al., 2018, 2019; Price et al., 2019).4 For details, see Lobier et al., 2014 and 

Bidelman et al., 2019. PTE was calculated using a Matlab function distributed in the 

Brainstorm package (Tadel et al., 2011).5 PTE was computed in both directions to quantify 

differences in the strength of bottom-up afferent (BS→PAC) vs. top-down efferent 

(PAC→BS) connectivity within the auditory brainstem-cortical pathway. This allowed us to 

evaluate how attending to auditory signals and listening in more adverse conditions 

influenced bidirectional signaling including critical corticofugal (PAC→BS) function.

2.9. Statistical analyses

We performed 2 × 2 × 2 (vowel × attention × SNR) mixed model (subjects = random factor) 

ANOVAs (GLIMMIX, SAS® 9.4, SAS Institute; Cary, NC). Tukey-Kramer adjustments 

corrected multiple comparisons. Initial diagnostics were performed using residual and Q-Q 

plots to assess heteroscedasticity and normality of data. Unless otherwise noted, data were 

log-transformed to improve normality and homogeneity of variance assumptions. Effect 

sizes are reported as ηp
2. Paired samples t-tests (two-tailed) were used to compare 

behavioral performance between conditions. Generalized linear models (GLM) evaluated 

brain-behavior relationships. Neural measures from each ROI (FFRBS: F0 amplitude; 

ERPPAC: P2 magnitude), connectivity (afferent, efferent), behavioral [QuickSIN, pure-tone 

average (PTA) hearing thresholds], and stimulus factors (SNR) were included as predictors 

of (i) target detection accuracy and (ii) reaction time (RT) for the active SIN detection task. 

Two models were analyzed, one for each outcome variable (i.e., accuracy, RT). Variance 

inflation factors (VIFs) ranged from 1.01 to 1.32 for accuracy and 1.0–1.6 for RT indicating 

negligible multicollinearity among the predictors (Lüdecke, 2020).

3. Results

3.1. Behavioral data

Noise expectedly reduced listeners’ target speech detection accuracy (t19 = 7.32, p < 0.001) 

and slowed response speeds (t19 = −4.23, p < 0.001), confirming poorer SNRs were 

detrimental to speech perception (Fig. 1A, B). False alarm rates were low for both clean and 

noise conditions (clean: 11.9 ± 1.1%, noise: 10.2 ± 2.8%). Moreover, pooling SNRs, both 

accuracy (t19 = 0.54, p = 0.59) and RTs (t19 = −1.87, p = 0.08) showed no difference when 

comparing performance between the first and second halves of the active trials. This 

suggests that listeners maintained vigilance throughout the experiment.

4PTE results in scalars (given in unit bits) describing the strength of connectivity between each pair of ROIs in the A→B and B→A 
directions (i.e., 2 × 2 matrix). Pertinent to the present study, the bi-directionality of the metric enabled us to evaluate strength of neural 
signaling in both afferent (BS→PAC) and efferent (PAC→BS) directions. Similar to a correlation, PTE of 0 indicates completely 
random activity and negligible connectivity between given ROIs. However, unlike correlations, PTE cannot be negative and has no 
upper bound. The asymmetry of the metric (i.e., A→B ≠ B→A) allows testing of directed signal dependencies. Larger PTE values 
indicate stronger connectivity between ROIs.
5Available at https://github.com/brainstormtools/brainstorm3/blob/master/external/fraschini/PhaseTE_MF.m

Price and Bidelman Page 8

Neuroimage. Author manuscript; available in PMC 2021 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/brainstormtools/brainstorm3/blob/master/external/fraschini/PhaseTE_MF.m


3.2. Electrophysiological data

Source-level FFRs and ERPs reflecting brainstem and cortical activity contrast the effects of 

attentional state (Fig. 2A, C) and noise (Fig. 2B, D) on the neural encoding of speech during 

the perceptual task.

3.2.1. Brainstem FFRs—To determine if attention modulates brainstem SIN 

processing, we measured FFR F0 amplitudes, a neural proxy of voice pitch encoding that 

serves as an important cue for tracking speech in background noise (Assmann, 1996; Mankel 

and Bidelman, 2018). We analyzed FFRs at both electrode and source levels to replicate 

previous literature (cf. Galbraith and Kane, 1993; Galbraith et al., 2003; Holmes et al., 2018; 

Lehmann and Schonwiesner, 2014; Varghese et al., 2015). Noise weakened scalp FFRs (Fig. 

S3; F1, 136 = 8.15, p = 0.01, ηp
2 = 0.06) as in previous studies. Critically, we found no 

evidence for attentional effects in scalp (electrode-level) data (Fig. 2F; F1, 136 = 1.68, p = 

0.20), corroborating prior null attention effects on FFRs (Picton and Hillyard, 1974; Picton 

et al., 1971; Woods and Hillyard, 1978). Contrastively, source-level FFRs were enhanced 

during active listening (Fig 2G, H; F1, 136 = 5.39, p = 0.02, ηp
2 = 0.04) and were invariant to 

noise (Fig. S3; F1, 136 = 2.22, p = 0.14). These findings reveal attention modulates brainstem 

speech encoding but only when viewed at the source level.

3.2.2. Cortical ERPs—For cortical source ERPs (i.e., activity from PAC), pooling 

hemispheres, P1 and P2 magnitudes decreased with noise (P1: F1, 136 = 77.33, p < 0.0001, 

ηp
2 = 0.36; P2: F1, 136 = 6.21, p = 0.01, ηp

2 = 0.04), whereas N1 differences were negligible 

(F1, 136 = 0.04, p = 0.84) (Fig. 2I). Critically, attention enhanced P2 (F1, 136 = 4.97, p = 0.03, 

ηp
2 = 0.04), confirming its role in active listening (Naatanen, 1975; Picton and Hillyard, 

1974) and a biomarker of SIN perception (Bidelman et al., 2019). Although attentional 

enhancements appear most evident in the clean condition, we found no significant attention 

× SNR interaction (F1, 136 = 0.28, p = 0.60). Thus, we cannot conclude that attentional 

enhancement differed across noise conditions. No other significant effects or interactions 

were found.

3.3. Brainstem-cortical functional connectivity

We used phase-transfer entropy (PTE) to quantify directional functional connectivity and 

evaluate effects of attention and task demands on bottom-up (i.e., afferent) and top-down 

(i.e., efferent) neural signaling within the brainstem-cortical pathway (see Section 2.8). This 

analysis was conducted on untransformed data since initial diagnostics for parametric tests 

were satisfied. However, results were qualitatively similar with and without transformation. 

All PTE values differed from zero (i.e., were greater than random noise) indicating 

significant connectivity strength between ROIs (all p < 0.0001). Connectivity was stronger 

during active vs. passive listening overall (Fig. 3A, C; attention main effect: F1, 295 = 7.92, p 
= 0.01, ηp

2 = 0.03). More critically, we found a direction × SNR interaction on connectivity 

strength (Fig. 3B, C; F1, 295 = 11.59, p < 0.001, ηp
2 = 0.04). Efferent (PAC→BS) 

connectivity was more robust for clean speech and weakened in noise (t295 = 3.32, p = 0.01), 

whereas afferent (BS→PAC) connectivity was invariant to noise (t295 = −1.50, p = 0.44). 

Additional planned contrasts revealed noise decreased efferent connectivity during passive 

(t292 = 3.12, p = 0.04) but not active SIN perception (t292 = 1.57, p = 0.77). These findings 
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reveal corticofugal transmission remained stable during active SIN perception but 

disengaged while passively coding otherwise identical speech stimuli. No significant 

difference was noted between active and passive noise conditions for efferent connectivity 

(t292 = 2.51, p = 0.20).

3.4. Brain-behavior correlations

Having established attentional gain effects within and between BS and PAC, we next used 

GLM regression to evaluate relations between neural, behavioral, and stimulus factors that 

drive behavioral SIN processing. For accuracy, the overall multivariate model was highly 

significant (F7,32 = 11.15, p < 0.0001; r2 = 0.86, ηp
2 = 0.71). Evaluating individual terms 

(see Supplementary Table S1) revealed significant predictors in QuickSIN scores (t32 = 

−2.37, p = 0.02) and SNR (t32 = −6.53, p < 0.0001). For reaction time, the overall 

multivariate model was highly significant (F7,32 = 5.04, p = 0.001; r2 = 0.89, ηp
2 = 0.52). 

Evaluating individual terms (Table S2) revealed significant predictors in afferent (t32 = 2.34, 

p = 0.03) and efferent connectivity (t32 = −2.11, p = 0.04) and SNR (t32 = 3.43, p = 0.002). 

These results confirm the behavioral relevance of BS-PAC connectivity in predicting the 

speed of listeners’ behavioral decisions during our SIN perception task.

4. Discussion

By simultaneously recording speech-evoked brainstem and cortical EEGs and manipulating 

attentional engagement and task difficulty during active SIN perception, our findings show 

(i) attention actively modulates SIN processing across the auditory neuroaxis, exerting 

influences on speech representations as early as the midbrain; and (ii) attention maintains 

top-down neural communication from PAC to BS in adverse listening conditions. Our 

neuroimaging results establish a direct role of the human corticofugal feedback system as an 

aid to cocktail party speech perception.

At the cortical level, we found source ERPs were diminished in noise, confirming acoustic 

degradation weakens neural representations of speech in PAC (Bidelman et al., 2019; Du et 

al., 2014). Contrasting cortex, brainstem FFR-F0 was surprisingly resistant to noise. The 

resilience of FFR voice pitch encoding in low-level noise is attributable to a reinforcement 

of neural activity as midbrain neurons phase-lock to both F0 and upper harmonics of vowel 

stimuli (Bidelman and Krishnan, 2010; Bidelman and Momtaz, 2021; Parbery-Clark et al., 

2009; Smith et al., 1978). Collectively, our concurrent subcortical-cortical recordings expose 

a differential pattern in how noise challenges the brain’s speech processing with stronger 

changes in cortex relative to brainstem levels.

Our findings corroborate previous neuroimaging studies suggesting both FFRs and the 

cortical P2 are strong predictors of perceptual accuracy for SIN in both younger (Bidelman 

et al., 2018; Bidelman and Momtaz, 2021; Coffey et al., 2017) and older (Bidelman et al., 

2019) adults. That P2 is more strongly related to SIN perception than earlier ERP waves 

(e.g., P1, N1) is consistent with prior neuroimaging studies linking P2 to auditory perceptual 

object formation (Bidelman et al., 2013) and P1/N1 to exogenous acoustic properties 

(Bidelman et al., 2018; Parbery-Clark et al., 2011). A potential explanation for our cross-

level differences is that cortical ERPs reflect aggregate coding of multiple and integrated 
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acoustic features (e.g., pitch, timbre, etc.), whereas FFR-F0 reflects primary voice pitch 

encoding (Bidelman and Krishnan, 2010; Skoe and Kraus, 2010a). Collectively, our 

electrophysiological data coupled with prior studies provide converging evidence that noise 

differentially influences speech coding at brainstem and cortical levels.

We found pervasive enhancements in neural coding with active listening at both subcortical 

and cortical levels. Our ERP data replicate well-known attentional effects in auditory cortex 

and its links to complex speech processing (Bidelman et al., 2019; Parbery-Clark et al., 

2011). ERP amplitudes typically show attention-driven enhancement of the sensory-

perceptual N1 response with associated reductions in P2 (Naatanen, 1975). Even larger 

attentional gains are observed in late cortical activity indexing post-perceptual processing 

and response selection (Picton and Hillyard, 1974; Picton et al., 1971). Our ERP data reveal 

larger P2 magnitudes but invariant N1 across attentional states. These findings are consistent 

with notions that N1 reflects changes in arousal and acoustic feature coding (Bidelman et al., 

2013; Coull, 1998; Naatanen and Picton, 1987), whereas P2 indexes active perceptual 

processes including stimulus classification, speech identity, and auditory object formation 

(Bidelman et al., 2013). The lack of attentional effects on N1 might also be attributable to 

heavier neural adaptation given the rapid delivery of our speech stimuli. Indeed, PAC 

attention effects are particularly susceptible to stimulus presentation rate in the timeframe of 

N1 (~100 ms) (Neelon et al., 2006).

Critically, our data expose strong attentional enhancements in brainstem speech-FFRs when 

viewed at the source level. Attention effects on FFRs have been highly controversial 

(Dunlop et al., 1965; Galbraith and Kane, 1993; Picton et al., 1971; Varghese et al., 2015); 

brainstem responses recorded during speech perception tasks typically fail to vary with 

listening state (Varghese et al., 2015), despite concomitant changes in cortical ERPs. Our 

data help reconcile equivocal findings by revealing top-down influences in source but not 

channel-level (i.e., scalp electrode) FFR data. Previous failures to consistently observe 

attentional changes in FFRs might rest in the overwhelming analysis of scalp-level data 

which blur activity of multiple generators underlying the FFR including BS and PAC 

(Bidelman, 2018; Coffey et al., 2016), but also cochlear sources (Bidelman, 2018) that may 

be too peripheral for the purview of attention. Moreover, the high voice pitch (F0 = 150 Hz) 

of our stimuli rules out cortical contributions to our FFRs, which were recorded above the 

phase-locking limit of PAC neurons (< 100 Hz) (Fig. S1; Bidelman, 2018). Consequently, 

our source analysis reveals that “purer” FFRs localized to brainstem (cf. Hartmann and 

Weisz, 2019) are highly sensitive to attention-dependent reshaping. Our results provide 

convincing evidence that attention enhances speech coding online as early as the midbrain 

and suggest subcortical structures may function as an early filtering mechanism as posited 

by early attention theories (Broadbent, 1971; Treisman, 1960).

Beyond local enhancements, our data further show attention strengthens neural signaling in 

both feedforward (afferent) and feedback (efferent) directions within the primary auditory 

pathways. In the visual system, attention increases inter-regional connectivity involved in 

sensory processing (Buchel and Friston, 1997) with attentional selection being driven by 

interactions between feedforward and feedback mechanisms (Khorsand et al., 2015). In 

audition, we found top-down feedback is stronger than its feedforward counterpart, 
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surprisingly, regardless of attentional state or task difficulty (low-level noise). Yet, attention 

enhanced BS-PAC neural communication bidirectionally. Higher engagement of the efferent 

system regardless of attention may explain why some FFR studies have observed response 

enhancements even in passive speech listening tasks (Chandrasekaran et al., 2009; Skoe and 

Kraus, 2010b).

Animal studies show corticofugal efferents tune subcortical auditory signal processing 

during short-term auditory learning suggesting cortically-guided feedback shapes earlier 

sensory coding (Bajo et al., 2010; Suga, 2008). Analogous corticofugal modulation is 

speculated to account for signal enhancements observed in human FFRs among listeners 

with long-term experience and training (Chandrasekaran et al., 2009; Galbraith et al., 2003; 

Lukas, 1980; Skoe and Kraus, 2010b; Tzounopoulos and Kraus, 2009; Wong et al., 2007). 

Furthermore, predictive coding models suggest that enhanced top-down modulation 

optimizes early neural encoding thus reducing the strain on feedforward signaling (Carbajal 

and Malmierca, 2018). For instance, more challenging conditions result in the recruitment of 

additional top-down resources. As top-down influences fine-tune early neural 

representations, the afferent signaling strength between subcortical and cortical levels 

required to transmit an enhanced signal with equivalent fidelity would lessen. This implies 

that afferent connectivity may weaken in more challenging listening conditions (cf. Carter 

and Bidelman, 2021). To date, evidence for direct corticofugal involvement in human 

hearing has been unverified. Theoretically, increased top-down contributions are expected in 

more challenging scenarios (e.g., during learning, degraded listening environments, 

increased attentional demands) to sharpen earlier sensory processing and facilitate 

transmission of faithful neural representations of the acoustic input. Using direct measures 

of brainstem-cortical connectivity, we find attention reinforces not only brainstem speech 

coding but also corticofugal signaling in more difficult (noisy) conditions as evidenced by 

weakened efferent connectivity for passive listening in noise yet sustained connectivity for 

active listening. We also find that afferent connectivity, although increased with attention, is 

invariant to noise. This suggests that afferent signaling might serve to provide the most 

robust, clean signal to subsequent levels of processing regardless of SNR. Together, our 

findings suggest attention maintains top-down (and bottom-up) neural signaling in noise to 

tune and enhance early speech encoding which is associated with improved behavioral 

performance.

While our data show clear attentional modulation of brainstem speech processing, they 

cannot adjudicate the domain generality of these effects. It remains possible that similar 

attentional benefits in the cortico-collicular system exist for non-speech sounds, as suggested 

in animal data (Suga et al., 2000; Suga and Ma, 2003). Furthermore, varying the required 

engagement and thus difficulty of the task may reveal additional attentional changes in 

hierarchical speech processing. Load theories of attention suggest that attention is only truly 

engaged and necessary for selection when tasks are sufficiently difficult (Lavie, 1995; 

Woldorff et al., 1987). This may explain contradictory findings of studies investigating 

attentional effects on subcortical auditory encoding (Dittmann-Balcar et al., 1999; Galbraith 

and Kane, 1993; Galbraith et al., 2003). Additionally, our analyses were restricted to early 

portions of the auditory-speech network (i.e., BS↔PAC) that reflect high-fidelity sensory 

coding but do not encompass the later neural networks implicated in semantic, lexical, and 
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other post-perceptual processing necessary for spoken word recognition (e.g., frontoparietal 

cortices). Interhemispheric connections contribute to auditory attention (Bamiou et al., 2007; 

Petersen and Posner, 2012), and activation within secondary auditory and prefrontal regions 

(i.e., posterior superior temporal gyrus, inferior frontal gyrus, prefrontal cortex) strengthens 

during demanding speech perception tasks (Hickok and Poeppel, 2000). Importantly, we do 

not deny the very necessary contributions of higher-order brain structures and related 

attentional networks that engage in challenging listening conditions to decode speech (Alain 

et al., 2018; Du et al., 2014). Rather, our data argue these processes commence much earlier 

in the speech hierarchy with attention tuning the representation and formation of speech 

percepts prior to cortex. To further assess these brainstem-cortical functions during online 

speech processing, neural decoding analyses at both subcortical and cortical levels could be 

used to evaluate how cognitive processes and early auditory encoding contribute to 

successful speech perception in noise (e.g., Al-Fahad et al., 2020; Etard et al., 2019).

5. Conclusions

In sum, our results emphasize the complex interaction between attention and hierarchical 

auditory processing during SIN perception. Our findings resolve ongoing debates regarding 

attentional influences on early brainstem encoding and corticofugal engagement during 

active listening in humans. We show attention enhances neural encoding in cortex but also in 

brainstem, a surprisingly early stage of auditory processing. Furthermore, using functional 

connectivity, we demonstrate attentional enhancement in two-way communication between 

subcortical and cortical levels with stronger communication occurring in the corticofugal 

direction. Thus, our results suggest attention serves as a mechanism to overcome detrimental 

noise effects and maintain efficient top-down signaling in challenging listening conditions. 

Overall, our findings provide novel measurements of corticofugal function in human hearing 

and establish its involvement as an attention-dependent gain control in speech perception.
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Fig. 1. 
Behavioral target speech detection is hindered by noise. (A) Behavioral accuracy and (B) 

reaction times for detecting infrequent /u/ tokens in clean and noise-degraded conditions. 

Noise hinders speech perception by reducing perceptual accuracy and slowing decision 

speeds. (C) Average QuickSIN scores across participants. errorbars = ± s.e.m., * * * p < 
0.001.
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Fig. 2. 
Attention enhances brainstem (FFR) and cortical (ERP) encoding of noise-degraded speech. 

(A-B) Cortical ERPs and (C-D) brainstem FFRs extracted from dipoles located in midbrain 

and bilateral PAC (E, inset brain). For clarity, only one dipole orientation is shown per ROI 

(collapsing tokens). Noise exerts larger effects on cortical vs. brainstem speech coding. 

Attention enhances both ERPs (P2; 150 ms) and FFRs. (F-G) FFR spectra (collapsing 

tokens/SNRs) illustrating attentional enhancements of speech-FFRs in source (but not 

channel-level) data. (H) Source FFR-F0 amplitudes are stronger during active listening but 

are resistant to noise. (I) Source ERP magnitudes. Attention increases only P2 magnitudes. 

errorbars = ± s.e.m, * p < 0.05. BS, brainstem; PAC, primary auditory cortex.
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Fig. 3. 
Attention and noise modulate afferent and efferent connectivity between brainstem and 

cortex during speech perception. Functional connectivity measured via phase-transfer 

entropy between BS and PAC source waveforms. Main effect of (A) attention and (B) SNR 

on connectivity strength. (C) Attention increases bidirectional communication between BS 

and PAC. Corticofugal efferent connectivity decreases in noise, but only during passive 

listening. Attention maintains efferent signaling in more challenging listening conditions. 

errorbars = ± s.e.m, * p < 0.05.

Price and Bidelman Page 21

Neuroimage. Author manuscript; available in PMC 2021 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Materials and methods
	Participants
	Speech stimuli & task
	QuickSIN test
	EEG acquisition and preprocessing
	MRI scans and EEG co-registration
	Source analysis
	FFR and ERP quantification
	Brainstem FFRs
	Cortical ERPs

	Functional connectivity
	Statistical analyses

	Results
	Behavioral data
	Electrophysiological data
	Brainstem FFRs
	Cortical ERPs

	Brainstem-cortical functional connectivity
	Brain-behavior correlations

	Discussion
	Conclusions
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.

