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Abstract
P-Type ATPases are part of the regulatory system of the cell where they are responsible for

transporting ions and lipids through the cell membrane. These pumps are found in all

eukaryotes and their malfunction has been found to cause several severe diseases. Know-

ing which substrate is pumped by a certain P-Type ATPase is therefore vital. The P-Type

ATPases can be divided into 11 subtypes based on their specificity, that is, the substrate

that they pump. Determining the subtype experimentally is time-consuming. Thus it is of

great interest to be able to accurately predict the subtype based on the amino acid

sequence only. We present an approach to P-Type ATPase sequence classification based

on the k-nearest neighbors, similar to a homology search, and show that this method pro-

vides performs very well and, to the best of our knowledge, better than any existing method

despite its simplicity. The classifier is made available as a web service at http://services.

birc.au.dk/patbox/ which also provides access to a database of potential P-Type ATPases

and their predicted subtypes.

Introduction
P-Type ATPases are a large group of transmembrane transporters which pump ions and lipids
as part of the regulatory system of the cell. It has been found that the malfunction of some
P-Type ATPases cause several severe diseases in humans such as dystonia parkinsonism and
Wilson disease [1].

The first P-Type ATPase, the sodium-potassium pump, was discovered in the 1950s and
since then over 500 P-Type ATPases have been sequenced, their specificity experimentally veri-
fied, and several structures determined [1]. Phylogenetic analysis has shown that the P-Type
ATPases can be divided into 5 major and 11 minor subtypes (1A, 1B, 2A, 2B, 2C, 2D, 3A, 3B, 4,
5A and 5B) based on the substrate transported by the pump [2].

Experimentally determining the subtype of a P-Type ATPase is a slow and expensive pro-
cess, but computational methods for predicting the subtype can aid this analysis significantly.
After evaluating several methods for subtype prediction we found that the method presented in
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this paper provides surprisingly good results and in fact, to the best of our knowledge, performs
better than all existing methods despite its simplicity.

Materials and Methods
We present a machine learning approach for accurately predicting the subtype of a P-Type
ATPase from the amino acid sequence by applying the k-nearest neighbors (k-NN) method [3]
to a curated dataset of 515 P-Type ATPase sequences annotated with experimentally verified
subtypes. The dataset (S1 Dataset) has been gathered from [2, 4]. The sequences were obtained
by mapping the accession identifiers to UniProtKB [5]. Sequences with invalid characters and
duplicates were removed. This resulted in 515 sequences with known subtype.

The classifier is made available as a web service. Sequences in FASTA format can be
uploaded and the results are available as a web page or can be downloaded in comma-separated
values (CSV) format. The web service also provides access to an automatically constructed
database of all sequences from UniProtKB containing PROSITE motif D-K-T-G-T-[LIVM]-
[TI] (PS00154) characteristic for P-Type ATPases annotated with their classification obtained
by our k-NN method and a classifier based on the Sequence Learner (SeqL) method [6, 7],
which is also made available through the web service. The latter method has previously been
applied to P-Type ATPase classification in [8]. This database is thus a valuable resource for
exploring P-Type ATPases.

The PATBox web service is implemented in Python using Flask as a web framework, Celery
as a job queue, and SQLite as the database. The service is packaged using Docker for reproduc-
ability and maintainability.

Method
The prediction method presented here is based on the k-NN method. Given a labeled dataset
with data points (x1, y1), . . ., (xn, yn) and a query with unknown label x, the k-NN method
looks at the k nearest neighbors to x by applying some distance function d to each data point in
the labeled dataset. The label y of x is then decided by majority vote. The distance function
used in our approach is that of a BLAST [9] search. Thus, for some sequence x a search is per-
formed via BLAST and the top k results are then used to perform a majority vote. For k = 1 this
corresponds to a homology search on the curated dataset. Formulating the method in terms of
nearest neighbor classification enables us to evaluate it using well-known machine learning
evaluation methods.

Additionally we have implemented weighed majority vote such that the weight of a class is
given by the sum of the E-values of results belonging to that class divided by the number of
results belonging to that class. The class with the minimum weight is chosen as the predicted
subtype.

Results
The overall performance of the k-NN classifier has been evaluated by non-stratified 5-fold
cross-validation. The dataset is shuffled and split into five parts. A fold is then carried out by
training on four parts and predicting on the remaining part. This is repeated five times. We
denote this as a run. To obtain an estimate of the variance of the accuracy the run is repeated
20 times, shuffling the sequences every time, for a total of 100 parts per k and the standard
deviation and average accuracy is reported.

We evaluated both unweighed and weighed k-NN for 1� k� 50 to determine the best k for
each method.
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The results are summarized in Fig 1 as a box plot. The average accuracy of the shuffled and
repeated folds for each majority vote method is shown on the vertical axis with error bars
showing the standard deviation. As we expect the accuracy of the two methods for k = 1 is the
same. For both weighed and unweighed majority vote we see that as k increases as the accuracy
decreases and the standard deviation increases. We obtain the best result when k = 1 for which
the accuracy is 100%. Similar results are obtained for 2-fold cross-validation, where only half of
the data is available for training, suggesting that the classifier is not prone to over-fitting (data
not shown).

The high accuracy is not a surprise. The average area-under-curve (AUC) over all classes of
the Structured Logistic Regression (SLR) classifier in [8] is 97.7%. An advanced prediction
method presented in [10] based on neural networks also yields a very high accuracy of 99.1%
based on a 10-fold cross-validation on 5/6 of the dataset.

Fig 1. The results of 20 runs of 5-fold cross-validation for 1� k� 50. The weighed and unweighed approaches both perform well for small k. For k = 1 we
obtain an accuracy of 100%. Dots are outliers. Lines show accuracy for reduced datasets.

doi:10.1371/journal.pone.0139571.g001
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The consistently good results obtained through a variety of independent methods also sug-
gests that the methods are not over-fitting and should generalize well.

To further investigate the predictive power of the k-NN method we used the CD-HIT [11]
web server to cluster the dataset at similarity thresholds of 30%, 50%, 75% and 90%, and
extracted the representative sequences of each cluster. The cross-validation was repeated with
weighed k-NN on the four reduced datasets and the results are shown as lines in Fig 1 (error
bars omitted to reduce complexity of the plot). We find that the method is very robust, obtain-
ing 100% accuracy for k = 1 for similarity thresholds as low as 50%.

Discussion
We present a method for accurate classification of P-Type ATPases into 11 subtypes based on
the k-NN method using BLAST as a distance measure. We show experimentally that the opti-
mal k = 1 for which we obtain an accuracy of 100%. More advanced methods have previously
provided similar results which leads us to believe that the representative sequences for each
subtype in the dataset cluster well based on sequence similarity. The results obtained by the k-
NN method confirms this observation.

The contribution of this paper is twofold. Firstly, we show that k-NN performs extremely
well on P-Type ATPases, despite the simplicity of the method, and that homology searches
therefore can be used to determine the subtype of P-Type ATPase sequence. Secondly, the
method presented here performs better than a multitude of more complicated methods,
emphasising that simple methods should not be forgotten, even in the presence of more com-
plicated methods.

The classifier is made available through a new web service for researchers in the field of
P-Type ATPases, the P-Type ATPase Toolbox (PATBox), which also gives access to a database
of predicted P-Type ATPases and their predicted subtype, based on UniProtKB [5].

Supporting Information
S1 Dataset. Dataset of annotated P-Type ATPase sequences. The dataset used for cross-vali-
dation and final training of the classifier described in this manuscript.
(FASTA)
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