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Abstract
Locus Coeruleus (LC) is the main noradrenergic nucleus of the brain, which is involved in many physiological functions 
including cognition; its impairment may be crucial in the neurobiology of a variety of brain diseases. Locus Coeruleus-
Magnetic Resonance Imaging (LC-MRI) allows to identify in vivo LC in humans. Thus, a variety of research teams have 
been using LC-MRI to estimate LC integrity in normal aging and in patients affected by neurodegenerative disorders, where 
LC integrity my work as a biomarker. A number of variations between LC-MRI studies exist, concerning post-acquisition 
analysis and whether this had been performed within MRI native space or in ad hoc-built MRI template space. Moreover, 
the reproducibility and reliability of this tool is still to be explored. Therefore, in the present study, we analyzed a group of 
neurologically healthy, cognitively intact elderly subjects, using both a native space- and a template space-based LC-MRI 
analysis. We found a good inter-method agreement, particularly considering the LC Contrast Ratio. The template space-based 
approach provided a higher spatial resolution, lower operator-dependency, and allowed the analysis of LC topography. Our 
ad hoc-developed LC template showed LC morphological data that were in line with templates published very recently. 
Remarkably, present data significantly overlapped with a recently published LC “metaMask”, that had been obtained by 
averaging the results of a variety of previous LC-MRI studies. Thus, such a template space-based approach may pave the 
way to a standardized LC-MRI analysis and to be used in future clinic–anatomical correlations.
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Introduction

Locus Coeruleus (LC) is the main noradrenergic (NA) 
nucleus of the brain and provides the NA innervation 
for the whole cortical mantle and subcortical structures 
(Counts and Mufson 2012). LC belongs to the brainstem 
isodendritic core and is a key element of the so-called F. S. Giorgi and N. Martini have equally contributed to the 
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reticular ascending activating system (Moruzzi and 
Magoun 1949; Theofilas et al. 2015). LC contributes to 
a variety of brain functions, mainly by regulating neu-
ronal homeostasis and modulating neural network activity 
(Poe et al. 2020). In particular, the LC-NA system plays a 
pivotal role in neurovascular coupling, blood–brain bar-
rier homeostasis, and microglia modulation (Giorgi et al. 
2020a, b); moreover, NA is crucial in wake/sleep cycle, 
attention and alert systems, and strongly contributes to 
learning and memory (Poe et al. 2020). This is due to 
a strong effect on modulating synaptic plasticity (e.g., 
Giorgi et al. 2006, 2008; Hansen 2017).

In the last decade, several studies have addressed the 
potential involvement of LC in the pathogenesis of neuro-
degenerative disorders (Gesi et al. 2000; Kelly et al. 2017). 
In particular, the development of MRI-based approaches 
aimed to visualize LC has allowed evaluating its integrity 
in vivo (see the reviews by Galgani et al. 2020; Beardmore 
et al. 2021). LC Magnetic Resonance Imaging (LC-MRI) 
has been already used to explore LC involvement in healthy 
aging (Dahl et al. 2019; Liu et al. 2020; Giorgi et al. 2021), 
Alzheimer’s Disease (Betts et al. 2019a; Jacobs et al. 2021), 
Parkinson’s Disease (Sommerauer et al. 2018; Li et al. 2019) 
and other pathological conditions (reviewed in Galgani et al. 
2020). Thus, LC-MRI might add to the large variety of 
promising novel biomarkers that have been proposed in the 
last decade to improve diagnostic accuracy in neurodegen-
erative disorders (Frisoni et al. 2017; Baldacci et al. 2020).

Post-acquisition analysis often represents a major differ-
ence among LC-MRI studies; in particular, some authors 
have profited from data analysis performed in native-space 
(NS) (Olivieri et al. 2019; Jacobs et al. 2021), while others 
took advantage of an MRI template-space (TS) ad hoc built 
from their study sample itself (Dahl et al. 2019; Liu et al. 
2020).

In a very recent study, Dahl et al. (2021) used a TS-based 
approach (which requires the construction of an LC mask—
see Methods paragraph—identifying the region of interest of 
the LC in the MRI images), and developed an LC “MetaM-
ask” taking into account a number of previously published 
LC masks (cited in Dahl et al. 2021). This metaMask was 
made freely available, thus giving the opportunity also to 
other groups to test the reliability of their study-specific LC 
mask and of the MetaMask itself.

In a previous study, we explored the association of LC-
MRI features with aging in a group of healthy and cogni-
tively intact elderly subjects, using an NS-based post-pro-
cessing protocol (Giorgi et al. 2021). Then, in line with the 
most recent studies on LC-MRI (Dahl et al. 2019), we spe-
cifically developed a post-acquisition analysis, building a 
study-specific LC template, by profiting of those MRI scans 
acquired in the context of the previous study (Giorgi et al. 
2021).

In the present paper, we aimed to assess and discuss the 
degree of inter-method agreement between the NS- and the 
TS-based approach. Finally, the LC mask we developed in 
the present study was compared with the above-described 
LC metaMask (Dahl et al. 2021).

Methods

Characteristics of the study sample

The demographic characteristics and the recruitment pro-
tocol of the study sample are reported in detail in Giorgi 
et  al. (2021). Briefly, 53 healthy and cognitively intact 
elderly subjects (mean age 71.70 ± 4.69 years, 20 males; 
mean Mini Mental State Examination 27.04 ± 1.27) were 
recruited at the Pisa University Hospital and Fondazione 
“G. Monasterio”- CNR/Tuscany Region. Exclusion crite-
ria were: severe medical/cardiological and/or psychiatric 
comorbidities; neurological disease potentially associated 
with cognitive decline; history of drugs/alcohol abuse; MRI 
signs of moderate-severe chronic vascular encephalopathy, 
according to Fazekas et al. (1987), or other significant altera-
tions. Cognitive and neurological integrity had been evalu-
ated at baseline (T0) and confirmed after 1-year follow-up 
(T1). Brain MRI was performed within 30 days from T0.

LC‑MRI protocols

MRI scans were performed using a 3T MR-Unit (GE Excite 
HDx, GE, USA) with an 8-channel phased-array head coil.

The LC-sensitive sequence was acquired along the 
oblique axial plane (Fig. 1A), perpendicular to the fourth 
ventricle floor, covering an area from the inferior border of 
the pons to the posterior commissure. We used a 2D-FSE 
T1-weighted sequence with the following parameters: TR 
600 ms; TE 14 ms; flip angle 90°; echo train length 2; 
NEX 5; matrix size 512 × 384; FOV 200 × 200 mm; pixel 
size 0.39 × 0.52 mm; 12 contiguous slices, slice thickness 
2.2 mm, slice gap 0; acquisition time 14.29 min.

The complete Brain MRI protocol also included 
2D-FLAIR, T2* GRE, Spin EchoT1- and FSE T2-weighted 
with fat saturation and diffusion-weighted imaging 
sequences. In addition, 3D-Fast-SPGR T1-weighted images 
were obtained: TR 10.7 ms; TE 4.9 ms; FOV 256 × 256 mm; 
matrix size 256 × 256; isotropic voxel 1 mm; NEX 1; acqui-
sition time: 5.50 min.

The post-processing imaging analysis provided the quan-
tification of two LC-MRI parameters: LC Contrast Ratio 
 (LCCR), which represents the signal intensity of the LC, and 
the total amount of voxels considered as belonging to the LC 
 (LCVOX), which was considered as an indirect estimation of 
LC volume.
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Native space‑based approach

The semi-automatic NS protocol was already described in 
Giorgi et al. (2021). Briefly, the analysis was performed 
by two independent trained operators, using a software 
developed in-house in Java language. LC region of interest 
(ROI) was manually placed at the level of the fourth ven-
tricle floor, while two reference ROIs were positioned on 
the ventral pons (Ref), bilaterally. Once it had been placed 
in the first slice showing detectable LC-related hyperinten-
sity, the software automatically dragged the ROIs across 
the contiguous slices. At this stage, the intensity threshold 
was automatically calculated as the lowest intensity value 
within the 10 spatially interconnected voxels with maximum 
intensity (Giorgi et al. 2021). All the voxels exceeding this 
threshold were highlighted and considered as the first pool 

of candidate LC-related voxels. The operators evaluated 
this pool and excluded voxels in anatomically incongru-
ent positions; then, the software re-calculated the threshold 
and re-screened voxels in the LC-ROI, highlighting possi-
ble new candidate voxels. This round was repeated until all 
suitable voxels were identified. Finally, once the selection 
stage had been completed, the software computed  LCCR-NS 
[LC(intensity)/Ref(intensity)] and  LCVOX-NS. This method 
has been set up to provide the values related to both right 
and left LC combined.

Template space‑based approach

Our templates for the 3D and the LC-MRI scans were built 
according to the same procedure proposed by other authors 
(Dahl et al. 2019), with minor modifications. The workflow 
steps are detailed below.

Whole brain 3D template creation As the first step, a com-
mon space for the 3D anatomical MRI  (template3D) was cre-
ated using MRI images of the recruited cognitively intact 
healthy subjects. These were interpolated to an isotropic 
resolution of 0.5 mm and a nonuniform intensity correction 
was applied (N4 bias field correction) and then submitted to 
multi-resolution iterative registration of 3D scans (antsMul-
tivariateTemplateConstruction2 of the Advanced Normali-
zation Tools v.2.3.4 software (Avants et al. 2011). Registra-
tion parameters used were: number of iterations 30 × 90 × 
20, cross-correlation similarity metric, Greedy SyN trans-
formation model. Once the registration process had been 
completed, the aligned 3D volumes were averaged in order 
to obtain the group whole-brain  template3D. We also saved 
the transformation matrices and warping fields that warped 
the 3D from the individual subject's space to the  template3D 
space (see below).

Brainstem template creation The second step was the crea-
tion of a common brainstem space for the acquisition of LC-
sensitive sequence. Using the transformations calculated 
during the whole-brain  template3D creation procedure, each 
scan obtained with LC-sensitive sequence was warped from 
the native 2D space to the space of the  template3D itself. A 
second multi-resolution iterative registration was run with 
the same parameters (iterations, similarity metric, transfor-
mation model) described above. This spatial registration 
took into account the anatomical variability between sub-
jects in the LC acquisitions, as well as the possible intra-
subject misalignment between the LC and the 3D scans. As 
a result, we obtained the brainstem template, whose iso-
tropic resolution was 0.5 mm.

LC mask creation In the brainstem template, we found 
increased intensity and higher signal-to-noise ratio com-

Fig. 1  Locus Coeruleus re-construction in MRI space. In panel A, it 
is shown the template-based developed LC mask in the MNI space, 
reconstructed in 3D. LC extends perpendicularly to the fourth ven-
tricle floor, from the inferior border of the pons to the posterior com-
missure. In panel B, it is reported the probabilistic map of LC-MRI; 
voxels with a probability higher than 10% to carry LC signal among 
included subjects are distributed in consecutive MRI slices with a 
pattern strongly suggestive of LC anatomical counterpart
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pared to the ventral pons, in a symmetrical bilateral region 
below the floor of the fourth ventricle. Considering the 
anatomical location of the signal, the LC/sub-coeruleus 
complex was considered the main signal source candidate 
(Betts et  al. 2019a; Dahl et  al. 2019). To identify those 
voxels more likely belonging to the LC and, thus, to cre-
ate the LC mask, a semi-automatic thresholding procedure 
was performed. An expert operator placed two square 
8.5  mm × 8.5  mm reference ROIs bilaterally in the ven-
tral pons in each slice, using ITKsnap (www. itksn ap. org) 
(Yushkevich et al. 2006). The threshold was computed fol-
lowing this formula: μROI + 4*σROI, where μROI and σROI 
are the mean value and the standard deviation in the refer-
ence ROIs, respectively. Then, a custom program written 
in Python selected all the voxels exceeding the threshold 
in the brainstem template, for both hemispheres. These 
represent the candidate LC-belonging voxels of the brain-
stem template. The segmentation mask was further refined 
by an expert neuroradiologist (FL) to exclude voxels that 
were anatomically incongruent with the LC (e.g., within 
the fourth ventricle).

LC‑MRI parameters extraction Once the LC mask was 
obtained, LC-sensitive scans of each subject were warped 
from the native space to the brainstem template space 
for data analysis, and the parameters  LCCR developed 
by TS-based approach  (LCCR-TS) and  LCVOX developed 
by TS-based approach  (LCVOX-TS) were extracted. The 
parameter  LCCR-TS was calculated using the following 
formula:  LCCR = [max(LC)—max(Ref)] / max(Ref), where 
max(Ref) and max(LC) are the maximum signal intensi-
ties in the left and right reference regions, and LC regions 
derived from the LC template segmentation, respectively.

LCVOX-TS was calculated as follows. First, the LC mask 
in the brainstem template was considered as the search 
space of the LC voxels. Then, reference ROIs were drawn 
on the LC scan warped to the brainstem template, and a 
subject-specific threshold was calculated using the same 
formula used for the LC mask. The number of voxels in 
the search space that exceed the subject-specific threshold 
constituted  LCVOX-TS parameter value.

For each subject, the two LC-MRI parameters  (LCCR 
and  LCVOX) were calculated for left and right hemisphere 
separately (“left LC” and “right LC”, respectively), or for 
left and right LC combined (“combined LC”).

In order to maximally reduce any potential side-related 
intensity artifacts which might affect the results, we 
applied to LC scans a field correction algorithm (Tustison 
et al. 2010), and LC-related parameters were standard-
ized using bilateral ROIs as reference regions, placed sym-
metrically in the left and right ventral pons (see above).

Comparison with previously published metaMask

Recently, an LC mask obtained by pooling a variety of study-
specific LC masks (“metaMask”), was released and made 
freely available (https:// osf. io/ sf2ky/) (Dahl et al. 2021). To 
assess the compatibility between our TS-based approach and 
the published metaMask, we evaluated the overlap in the 
MNI space between our LC mask and the metaMask. To 
warp our LC mask into the MNI space, we first co-registered 
the brainstem template to the 0.5-mm iso-voxel MNI tem-
plate using linear (rigid, then affine), followed by nonlinear 
(SyN) registration (Avants et al. 2011). Then, these trans-
formations were applied to the LC mask using a nearest-
neighbor interpolation to warp the LC mask into the MNI 
space. The degree of compatibility between our LC mask 
and the metaMask was expressed using the same parameters 
that Dahl et al. themselves described in their study, namely 
specificity and sensitivity (Dahl et al. 2021). These were 
calculated as the ratio between the number of voxels the 
study-specific LC mask and the LC metaMask have in com-
mon and the total number of voxels of the former and the 
latter, respectively. We calculated also the “accuracy” which 
was defined as the mean between sensitivity and specificity 
of the mask (Dahl et al. 2021). For comparison, we also 
warped the metaMask into the brainstem template through 
inverse transformation, and we additionally calculated the 
LC parameters using the metaMask in the TS approach.

Statistical analysis

Data normality was assessed through Shapiro–Wilk test 
and visual checking of heteroskedasticity. Since they did 
not show a Gaussian distribution, variables were Z-stand-
ardized. Pearson’s correlation was used to evaluate inter-
method agreement (van Stralen et al. 2008) and age effect 
on TS-based LC parameters. A Paired-sample t-test was 
used to assess side-related differences within TS-based LC 
variables. Multiple comparisons were adjusted with False 
Discovery Rate (FDR) correction to rule out type I error. 
The level of significance was set at p < 0.05. All statistical 
analyses were performed using SPSS Version 25. GraphPad 
Prism 8.0 was used for graphical representations.

Results

Template space‑based LC reconstruction

The spatial co-registration of each LC-sensitive scan to the 
brainstem template was carefully visually inspected. The 
obtained brainstem template showed marked hyperinten-
sities bilaterally in the LC region, while the region of the 
ventral pons showed a rather homogeneous distribution. The 

http://www.itksnap.org
https://osf.io/sf2ky/


391Locus Coeruleus magnetic resonance imaging: a comparison between native‑space and…

1 3

final LC mask included a total number of 234 voxels across 
17 axial slices. Figure 1B shows the 3D visualization of the 
LC probabilistic map, reflecting the coordinates of the maxi-
mum value of the left and right LC for each slice.

Template space‑based LC features

We did not find any effect of age on TS-based LC param-
eters, neither considering the combined LC  (LCCR-TS, 
r = -0.291, p = 0.07,  LCVOX-TS, r = -0.254, p = 0.066), nor 
analyzing the two LC separately  (LCCR-TS, r = − 0.213, 
p = 0.167,  LCVOX-TS, r = − 0.273, p = 0.096 for the left LC; 
 LCCR-TS, r = − 0.322, p = 0.076,  LCVOX-TS, r = − 0.254, 
p = 0.152, for the right LC).

A side-related difference was observed between the 
two LCs.  LCCR-TS and  LCVOX-TS values of the left LC 
were higher than those of the right LC (t = 5.556, df = 52, 
p < 0.001; t = 4.434, df = 52, p < 0.001, respectively) (Fig. 2). 
Remarkably, there was no significant difference between 
left and right reference regions intensity values (t = 0.518, 
df = 52, p = 0.607).

Inter‑method agreement

There was a good agreement between the signal intensity 
measures obtained by the two methods.  LCCR-NS showed 
a direct correlation with  LCCR-TS values obtained from 
two LC combined (r = 0.413, p = 0.004) (Fig. 3A). It was 

Fig. 2  Side-related LC differences. The figure reports the results of 
LC analysis of the two LC separately, with the TS-based approach. 
The left LC showed higher values of  LCCR (B) and  LCVOX (D) when 
compared to the right one. Such a characteristic was homogeneously 
present through the whole LC rostral–caudal extension (A, C).  LCCR 
and  LCVOX are plotted as mean values ± SEM

Fig. 3  Inter-method agreement. The figure shows the scatterplots of 
LC-MRI parameters computed either with the template-space method 
(Y-axis) or the native-space one (X-axis). The Pearson’s correla-
tions coefficient (r) was calculated for both  LCCR (panels A, B, C) 

and  LCVOX (D, E, F) of the combined LC (A, D) and the left (B, E) 
and right (C, F) LC separated. Shaded colors represent the 95% con-
fidence intervals. Reported p-values were adjusted for multiple com-
parisons with FDR correction
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evaluated also the correlation of left and right LC values, 
separately assessed with the TS-based approach, with 
the single (i.e., including the values from left and right 
LC) parameters extracted with the NS-based approach, in 
order to assess whether the latter ones were more related 
to the LC signal of one side or the other one. We found 
that the same trend described above for the combined 
LC was observed when left and right LC were analyzed 
separately (r = 0.383, p = 0.010 and r = 0.371, p = 0.006, 
respectively) (Fig. 3B and C).

The NS- and TS-based methods showed a significant 
agreement with each other also concerning volume-
related measures (although the inter-method agreement 
was lower compared to the  LCCR ones), when considering 
either the combined LC (r = 0.340, p = 0.013) (Fig. 3D) 
or the two LC separately (r = 0.330, p 0.032 for the left 
 LCVOX, r = 0.305, p = 0.026 for the right  LCVOX) (Fig. 3E 
and F).

Compatibility of the template‑based approach 
with LC metaMask

We found a high degree of compatibility between our LC 
mask and the LC metaMask (specificity 69.8%, sensibil-
ity 49.5% and accuracy 59.6%; Fig. 4). Moreover, the LC-
MRI parameters calculated using our LC mask showed 
very strong direct correlation coefficients with those cal-
culated using the LC metaMask (Supplementary Table 1).

Discussion

In vivo LC analysis by MRI has been performed by several 
authors and it will likely be a matter of interest also in future 
years, as LC degeneration represents a promising marker in 
a number of neurodegenerative disorders (Betts et al. 2019a; 
Galgani et al. 2020). In this study, we presented the results 
of an LC-MRI analysis performed using both an NS- and a 
TS-based approach in a group of cognitively healthy sub-
jects. We successfully built an LC-MRI template and used 
it to extract LC imaging parameters. Then, we compared 
the results obtained with both approaches, and we showed 
a good inter-method agreement for  LCVOX, and mostly for 
 LCCR.

LCCR appears to be more directly related to LC features, 
since it simply represents the ratio between the MRI signal 
intensity of LC and the reference regions. This might explain 
why  LCCR showed a higher correlation coefficient between 
the two methods. Nonetheless, there was not a complete con-
cordance between NS- and TS-based approaches regarding 
this parameter. This may depend on the higher spatial resolu-
tion of the TS-based approach, which allows the identifica-
tion of many voxels that were potentially excluded from the 
NS-based analysis, thereby affecting  LCCR values.

Such a higher spatial resolution may also explain the 
lower concordance between NS- and TS-based approaches 
concerning the parameter  LCVOX. Thus,  LCVOX may be use-
ful for LC-MRI analysis studies, since it provides the estima-
tion of authentic LC volume. Even though we have already 
tried to extrapolate this parameter also using the NS-based 
approach (Giorgi et al. 2021),  LCVOX computed with the 
TS-based method might be more appropriate to calculate the 
LC anatomical volume. In fact, as shown in present paper, 
and in line with what already shown by the groups that used 
a similar approach (e.g., Betts et al. 2017; Dahl et al. 2019), 
the spatial distribution of LC voxels closely followed LC 
anatomy. Concerning this aspect, it is also worth emphasiz-
ing that the distribution of  LCVOX showed a higher value 
in the middle part of the LC mask and a lower one in its 
rostral and caudal parts; this is in line with anatomical data, 
which repeatedly showed that LC neurons are more abun-
dant and densely packed in the middle part of the nucleus, 
while they are scattered towards LC rostral and caudal poles 
(Schwarz and Luo 2015). Also, the length and the volume of 
the nucleus estimated from the LC mask were close to what 
measured in histological studies (Fernandes et al. 2012) 
(Fig. 1A).

In a previous paper, in which we profited from the NS-
based approach only (Giorgi et al. 2021), we did not find 
any association between LC features and age in this group 
of subjects. Here, we confirmed this observation also with 
the TS-based approach, both when merging data from right 
and left LC, and when considering the left and right LC 

Fig. 4  Compatibility of our LC mask and the LC metaMask. Panel A 
shows the 3D rendering of our LC mask and published LC metaM-
ask (Dahl et al. 2021) in the MNI space. Panel B  reports pie charts 
representing sensitivity and specificity of our LC mask (sensitivity: 
number of voxels the LC mask and the LC metaMask share with each 
other/total number of voxels of the metaMask; specificity: number of 
voxels the LC mask and the LC metaMask share with each other/total 
number of voxels of the LC mask—according to definitions provided 
in Dahl et al. 2021)
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separately. These findings are in line with recent post-mor-
tem data, which, by profiting from unbiased stereology, did 
not show any significant LC involvement during physiologi-
cal aging (Theofilas et al. 2017).

The left/right side-related difference we observed in 
the distribution of LC-MRI parameters deserves a special 
emphasis. Left LC showed higher  LCCR and  LCVOX values 
compared to the right one. To our knowledge, this has never 
been specifically addressed  in post-mortem studies of LC. 
MRI studies of LC carried out by other authors (Betts et al. 
2017; Liu et al. 2019) are compatible with the present find-
ing in spite of different MRI scanners and LC post-acquisi-
tion methods. In the present study, all efforts were made to 
avoid any potential machine-related influence on LC signal 
(as witnessed also by the lack of differences between left 
and right ventral pons reference ROIs intensity), nonetheless 
side-related difference may still be partly due to uncommon 
artifacts (see also Betts et al. 2017). Such an asymmetry 
needs to be validated and, when confirmed, it should be spe-
cifically analyzed to better understand the role of LC in brain 
activities and brain disorders.

So far, all research teams that profited from a TS-based 
approach developed specific LC mask based on their own 
subjects’ sample (e.g., Betts et al. 2017; Dahl et al. 2019). 
However, in a very recent study Dahl et al. (2021) devel-
oped a so-called LC metaMask. This was built-up by pool-
ing together the LC masks developed by various research 
groups. Concordance of the metaMask with each specific 
study-dependent mask was assessed in the same study 
(Dahl et al. 2021). The fact that our LC mask remarkably 
overlaps with Dahl’s group’s metaMask, even though it 
was not used to build it, lends further substance to the reli-
ability of the TS-based approach for LC imaging studies.

In conclusion, our study showed a good agreement 
between NS- and TS-based approaches, with the lat-
ter method offering more advantages in terms of spatial 
resolution and regional analysis of LC. Furthermore, 
since the TS-based approach drastically reduces opera-
tor-dependency, it would pave the way to a standardized 
methodological protocol for LC-MRI analysis and, thus, 
to its possible clinical application. As already mentioned, 
LC has been receiving growing attention in recent years 
for its possible role both in the pathogenesis and patho-
physiology of Alzheimer’s Disease (Rorabaugh et al. 2017; 
Weinshenker et al., 2018), and thus it might even become 
a target of potential disease-modifying drugs. In such a 
context, LC-MRI may be used in the future to identify the 
Alzheimer’s Disease patient phenotype with the highest 
burden of LC pathology and more likely to benefit from a 
LC-targeted therapy.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00702- 022- 02486-5.
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