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Abstract

Our ability to perceive a stable visual world in the presence of continuous movements of the

body, head, and eyes has puzzled researchers in the neuroscience field for a long time. We

reformulated this problem in the context of hierarchical convolutional neural networks

(CNNs)—whose architectures have been inspired by the hierarchical signal processing of

the mammalian visual system—and examined perceptual stability as an optimization pro-

cess that identifies image-defining features for accurate image classification in the presence

of movements. Movement signals, multiplexed with visual inputs along overlapping convolu-

tional layers, aided classification invariance of shifted images by making the classification

faster to learn and more robust relative to input noise. Classification invariance was reflected

in activity manifolds associated with image categories emerging in late CNN layers and with

network units acquiring movement-associated activity modulations as observed experimen-

tally during saccadic eye movements. Our findings provide a computational framework that

unifies a multitude of biological observations on perceptual stability under optimality princi-

ples for image classification in artificial neural networks.

Author summary

Stable visual perception during eye and body movements suggests neural algorithms that

convert location information—"where” type of signals—across multiple frames of refer-

ence, for instance, from retinocentric to craniocentric coordinates. Accordingly, numer-

ous theoretical studies have proposed biologically plausible computational processes to

achieve such transformations. However, how coordinate transformations can then be

used by the hierarchy of cortical visual areas to produce stable perception remains largely

unknown. Here, we explore the hypothesis that perception equates to the activity states of

networks trained to classify “features” (e.g., objects, salient components) in the visual

scene, and perceptual stability equates to robust classification of these features relative to

self-generated movements, that is, a “what” type of information processing. We demon-

strate in CNNs that neural signals related to eye and body movements support accurate

image classification by making “where” type of computations—localization invariances—

faster to learn and more robust relative to input perturbations. Therefore, by equating per-

ception to the activity states of classifier networks, we provide a simple unifying
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mechanistic framework to explain the role movement signals in support of stable percep-

tion in dynamic interactions with the environment.

Introduction

When reading this paper while sitting still at your desk, unperceived head and body adjust-

ments, along with continuous eye movements—fixational eye movements [1]—jitter the visual

image across arrays of photoreceptors in the retinas of the eyes. However, the visual scene is

perceived as still. Similarly, when making saccadic eye movements, the visual world does not

transiently become blurry; rather, our experience is characterized by a striking perceptual con-

tinuity [2]. Notably, when eye movements are counteracted, e.g., by stabilizing an image rela-

tive to retinal displacement, perception fades away [3], underscoring the necessity of

movements in visual perception. Over the decades, research on perceptual stability has

revealed a multiplicity of computational and physiological phenomena that operate across

multiple spatial-temporal scales and brain regions (reviewed, e.g., in [4–6]).

A branch of modeling works has linked the ability to accurately recognize objects during

movements—which could support perceptual stability—to invariances for translations, rota-

tions, and expansions learned directly from the statistics of the visual inputs. This class of mod-

els, e.g., unsupervised temporal learning models [7,8] and slow feature analysis models [9–14]

has found supporting evidence in psychophysical [15,16] and physiological studies [7,17,18]

and has inspired deep learning approaches for unsupervised rules to learn coherent visual rep-

resentations in the presence of moving stimuli e.g., contrastive embedding [19,20]. However,

these models are agnostic with respect to whether retinal activations are due to objects moving

in the environment or to movements of the organism, with the latter characteristically defining

the phenomenon of perceptual stability. Therefore, another branch of works has hypothesized

that extra-retinal signals produced during body movements, corollary discharges [21–24],

could be used by brain networks for perceptual stabilization specifically when retinal activa-

tions are due to the movements of the eyes, head, and body, without affecting the percept of

movements during changes in the environment.

Lacking a quantitative definition of what visual perception is, it has been challenging to

gain a mechanistic understanding of how corollary discharges could implement perceptual sta-

bility. A body of modeling studies has cleverly circumvented this problem by reasoning that,

aside from a quantitative definition, perceptual stability should implicate a transformation

between spatial reference frames, correcting localization errors and spatial distortions associ-

ated to peri-saccadic visual processing, proposing approaches that differ by how extra-retinal

information is combined with visual signals. Except for object reference theory, which does

not include extra-retinal signals in its formalism, relying instead on the concept of “trans-sac-

cadic memory” [25–28], other models implemented visuomotor integrations for spatial trans-

formations according to a broad diversity of algorithms. For instance, Bayesian models for

optimal (trans-saccadic) integration [29,30], remapping models [31,32], spatial re-entry mod-

els [33–35], inference models based on retinal-to-craniocentric coordinate transformations

[36–41], and gain-field models [42,43]. The latter have been proposed in different flavors: in

reference to multisensory integration [37,44,45], using gain fields as basis functions for the

encoding of the perceptual space [45–47], or without explicit reference frame transformation,

using eye position or velocity in retinocentric representation to achieve a desired motor error

[39,48,49]. Collectively, gain-field and other models have been successfully used to account for

a diversity of saccadic-related phenomena such as saccadic suppression of stimulus
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displacement [50], post-saccadic blanking [51], suppression of saccadic displacement [52],

receptive-field remapping [32,53–57], establishing tight links between eye movements, remap-

ping, and spatial attention [33–35]. However, without a quantitative definition of what visual

perception is, it remains unclear how these visual-localization computations can be mechanis-

tically used by cortical network to implement stable perception.

Here we used CNNs, intended as models of the hierarchically organized visual system

[58,59], and adopted an operational definition of visual perception as activity states of net-

works trained to classify features in the visual scene (e.g., objects or salient parts of objects)

while integrating corollary discharge signals; the latter point reflecting the necessity of self-

generated movements and sensorimotor integration for perception. Perceptual stability can

then be examined as an optimization problem that aims to maximize classification accuracy in

the presence of self-generated movements.

We demonstrated these concepts first in the context of fixational eye movements, using

CNNs trained to report feature locations of a single object (a luminance bar); we showed that

when the magnitude of eye movements is commensurate to location differences that need to

be discriminated, motor-related signals can resolve a critical degeneracy problem “posed” by

retinotopy. Further, we examined this degeneracy-solving principle in the context of larger eye

movements (saccades) and in the classification of natural images; we showed that CNNs can

use corollary discharge signals to accelerate the learning of classification invariance relative to

image translations reflecting self-generated movements, and to increase the robustness of

learned classification relative to input noise. We concluded by examining the representational

geometry defined by visual responses across layers in trained CNNs, thereby revealing that

CNNs can build an invariance to self-generated saccadic shifts by forming categorical repre-

sentations of natural images across layers that are aided by corollary discharge signals, and

with visuomotor integration linked to neural activations bearing close resemblance to biologi-

cal response modulations observed during saccadic eye movements.

Results

1. Fixational eye movements

Fixational eye movements, apart from being irrepressible and not consciously perceived, intro-

duce a critical “degeneracy problem” in the visual system. To demonstrate this concept, we

simulated a classical psychophysical experiment that exemplified the potential disruptive influ-

ence of fixational eye movements for visual perception. In this task, which was conducted in

darkness and akin to a delayed Vernier acuity task [60,61], a participant is asked to report

whether the location of a flashed luminance bar (test stimulus) is above or below a previously

seen—but currently not shown—reference location (reference stimulus, Fig 1A). If an involun-

tary eye movement occurs in darkness between the presentation of the reference stimulus and

test stimulus, the target location will often be misjudged with an error proportional to the reti-

nal displacement caused by the eye movement. This indicates that the perceived location

depends on the retinal offset in a cranio-centric reference frame (Fig 1A) [62] (reviewed by

[36]).

We trained a CNN in a simplified version of this task (Methods, S1 Table). The CNN was

required to classify the location of a test stimulus presented randomly at one of three possible

locations (Fig 1B). As inputs, we used image stimuli that mimicked retinotopically organized

responses in the visual cortex (e.g., in areas V1 and V2; Fig 1C). We also added an activity pat-

tern—dissimilar to the visual stimuli—representing a motor component associated with eye

movements [37] (corollary discharge signal; Fig 1B) and as observed experimentally [63–65].

The dissimilarity of the visuo-motor activations holds as a rule: visual stimuli activate posterior
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visual cortices according to retinotopic mapping, with characteristic mirror-image activations

across area borders [66] (e.g., V1–V2, Fig 1C). However, movement-related activations do not

abide by these principles [63,67–69]. This dissimilarity was here implemented with movement

activations having a different localization and shape relative to visual responses, as observed,

for example, in the rodent visual cortex [70]. Retinal displacements caused by eye movements

were implemented as shifts in retinotopic activations. Importantly, the size of the shifts was

within a range commensurate with the separation among the three locations (angle θ in Fig

Fig 1. Corollary discharge signals enable localization invariance relative to image displacements. (A) Simulated

psychophysical task. A participant is briefly shown a reference luminance bar (boxed “R” letter, and “S2” middle gray

bar) and, after a delay in darkness (ISI), a test stimulus (T) is briefly presented either at the same elevation or ±θ˚ from

it (broken-line rectangles). During the ISI, the participant can make involuntary eye movements in the average range

of ±θ˚ as well. Eye movements produce shifts in retinal and cortical—primary visual cortex (V1)—activations

associated with the stimuli (right, broken-line ovals; red spot for activations to the reference stimulus). (B) Example

input images used to train the CNN, with or without amplitude modulations (bottom and top rows, respectively). Two

leftmost panels show an example of stimulus and movement activity pattern in isolation (not used for training). The

vertical rectangle represents activations linked to eye movements; the horizontal rectangle represents retinotopic

activations to target stimuli presented at one of the three possible locations in visual space (s1, s2, s3, true labels, white

broken-line rectangles in retinotopic space). Corresponding retinotopic activations can occur in one of five possible

image (cortical) locations, depending on eye movements (Methods). In parentheses, discretized upward or downward

eye movements. Top row, s1(0) is identical to s2(+2); similarly, s1(-1) is identical to s2(+1), exemplifying the ambiguity

in location classification introduced by eye movements. Gray levels for bottom images in the [-1.3, +1.3] amplitude

range; amplitudes are modulated upward or downward (0.2 steps) from a reference 0.5 value depending on saccadic

direction. (C) Schematic of mirror-image activations at area borders in retinotopic regions, unique to visual

activations, not observed with movement signals. (D) Basic components of the CNN architecture (also see Methods

and S1 Fig). (E) The CNN fails to classify the location of the bar stimuli when the amplitude of the movement

activations is constant (three left-most panels and panel (B), top). True labels in the titles; predicted locations on the x-

axis labels. However, when movement activations are modulated by the magnitude of the eye movements, the CNN

can solve the task (three right-most panels and panel (B), bottom). (F) Classification probability for movement signals

added as a global scalar at different stages of the convolutional architecture (Methods; S1 Fig; error bars, s.d., n = 20

network initializations).

https://doi.org/10.1371/journal.pcbi.1009928.g001
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1B). This shift introduces a critical ambiguity in the task that makes it impossible to uniquely

determine the stimulus location from input activations. For example, an input activation asso-

ciated with the top-most elevation stimulus could also be elicited by a medium-elevation stim-

ulus after a downward ocular shift (Fig 1B, top panels). Consequently, when trained in this

task, the CNN could not discriminate target locations and performance was at chance level

(33% correct) (Fig 1D and 1E, left panels). “Failure to classify” occurred when the amplitude of

the corollary discharge signal was held constant for all eye movement magnitudes. However,

when the amplitude was proportional to the magnitude of the eye movement, as also observed

experimentally, the network was able to easily learn the task (Fig 1E, right panels). This is

because (1) movement signals carried information to break the ambiguity (degeneracy)

between stimulus location and eye movements, and (2) movement activations could not be

confused with activity induced by a visual stimulus (non-retinotopic activations). It must be

noted that, in the psychophysical experiment as well, when eye movements occurred during

the stimulus presentation (i.e., when movement information was made available concurrently

with visual signals), localization errors were negligible [61]. Therefore, although in the psycho-

physical experiment movement signals were always available to brain networks, it was the tem-

poral dissociation between movement and visual inputs during dark periods that led to

perceptual errors.

1.1 Classification performance depends on the target layer of eye movement signals.

Next, we determined whether the pattern dissimilarity between visual and movement inputs

was necessary for successful classification. Alternatively, a global (spatially unpatterned) signal

carrying movement information added deeper into the hierarchy might suffice. This approach

would be equivalent to corollary discharge signals activating higher visual areas (e.g., deeper

along the visual stream) in which retinotopy is largely lost and visual responses can still be

modulated by movement-related inputs [71]. As implemented earlier, we activated the retino-

topic input layer using bar stimuli (with locations degenerate relative to eye movements) and

added a global movement signal of amplitude that was proportional to the movement size,

either after the second or third convolutional layers (S1 Fig; Methods). To ensure that the net-

work performance was not affected by response saturation caused by the added input, we

included a normalization layer immediately after the convolutional one (Methods). With

movement inputs deeper in the convolutional architecture, the network could perform above

chance, but performance was lower than when movement activations were included in the

retinotopic input layer (Fig 1F). This result indicates that when movement information is pro-

vided as a global scalar to all neurons deep in the hierarchy, the network can use this informa-

tion to support a localization invariance relative to retinal displacements; however, the

classification can be even more accurate when the signal is provided as an activity pattern in

retinotopic visual areas. This result could relate to the experimental observation that motor-

related signals are observed also early in the hierarchy of visual areas [72].

1.2 Visual networks activations caused by movements do not induce percepts. We used

this computational framework to address a related well-known phenomenon linked to the

emergence of visual percepts, rather than to their stability. From the perspective of visual neu-

rons that are activated by movement signals, these cells agnostically propagate action potentials

down the visual stream, as they would typically do after visual stimulation. These activations

can be significant in terms of amplitude and the extent of the areas recruited, even in complete

darkness [73,74]. However, neural circuits do not interpret this activity as visual; therefore, no

sensory percept is elicited. On the contrary, a rather focal activation of a few visual neurons

induced by external stimulation (e.g., electrical stimulation) reliably produces visual percepts

(phosphenes) [75]. Although several mechanisms likely explain this difference, we show that

simple pattern classification can be a contributing factor. We trained a CNN to classify both
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visual stimuli and movement inputs implemented as activity patterns that are dissimilar from

each other and from visual stimuli (S3 Fig). Learning this task is trivial for CNN models such

as those used here (requiring expedients to avoid immediate overfitting issues, Methods). We

then tested the network with untrained patterns that mimic small focal cortical activations.

The network produced significant probabilities in all output channels, visual and motor,

thereby reflecting a large degree of classification uncertainty (S3 Fig). This result follows from

the focal activation being largely dissimilar from any trained pattern, either motor or visual.

This simple observation may link to phosphene induction: although the visual system is

trained (developmentally and/or evolutionarily) to accurately classify movement and visual

activations, untrained stimulations—such as those produced by an external electrical pulse—

can be partially misclassified as visual (see Discussion).

In sum, in CNN simulations, signals that represent corollary discharges during fixational

eye movements can help solving a localization-assignment problem associated with a critical

perceptual degeneracy that, in our operational definition, ensures perceptual stability.

2. Visual stability during saccadic eye movements

Can this stability principle—that is, a solution to a localization-assignment problem aided by

fixational eye movements—be extended to more general eye movements (e.g., saccades) and

for stimuli other than simple luminance bars? Answering this question in the context of natu-

ral objects implies examining whether corollary discharge signals support the extraction of

object-defining features for image classification, invariantly relative to eye movements.

2.1 A general CNN framework for image classification. We considered a similar CNN

architecture as earlier, and trained networks to classify a set of natural images from the

CIFAR-10 database [76]. This database consists of 10 classes of images with 6,000 examples

per class, which adds up to a total of 60,000 images. We modified this database in two ways:

first we used black-and-white (BW) images instead of colored ones. This reduced the informa-

tion available to the network and with that the maximum achievable classification accuracy.

Second, we introduced random image shifts to mimic saccadic eye movements—similar to a

“data augmentation” procedure [77]. These image shifts could artefactually break the spatial

coherence of objects or features in the images—for example, by cropping objects. Therefore,

we added a frame (random noise) around the images and implemented saccadic shifts as x-y

displacements of the entire image relative to the noisy frame (S4 Fig). For a given image and

saccadic shift, the noisy frame introduced an additional axis of variability that the network had

to factor-out for accurate classification. Before training with saccadic shifts, we verified that

the CNN could be trained with the novel BW framed, but unshifted, images (S5A Fig). Indeed,

the network could reach approximately 60% cross-validated classification accuracy (58% ± 1,

s.d., n = 5 networks), which is well above the 10% chance level.

2.2 Receptive field properties and responses to simple stimuli. We visualized the pre-

ferred features of neurons in CNNs trained with the modified database using the DeepDream

response-maximization approach [78]. This analysis indicated that neurons in early layers

developed circular receptive fields (RFs) reminiscent of retinal ganglion and LGN cells; in

deeper layers, they resembled oriented RFs akin to both simple and complex cells (S5 Fig), as

previously reported, e.g., [59,79–82]. Paralleling stimulation protocols typically used in experi-

mental recordings in visual areas, we then examined CNNs responses to oriented gratings.

Since CNNs primarily minimized the cost function for the classification of a set of natural

images (with <1% of grating stimuli in the training set for this group of simulations), their

overall ability to classify grating stimuli was poor and highly variable. However, when examin-

ing the neural responses across layers, we found that especially in early layers, neuronal
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populations could almost perfectly decode stimulus orientations (linear-discriminant analysis,

LDA; S5 Fig). This result indicated that while aiming to minimize a cost function for natural

images, neuron RFs evolved so that population-level neural decoding of simple grating stimuli

could attain accuracy levels far higher than those of the entire network. Notably, a similar

observation has been recently made in a study that compared neural decoding in mouse V1

with behavioral discriminability [83] (see also Discussion).

2.3 Eye movement signals improve classification. Having established that CNNs could

be trained with unshifted images from the modified CIFAR-10 database, we then introduced

saccadic eye movements. A CNN trained with no image shifts and tested with simulated sac-

cades, performed at a near-chance level (Fig 2A and 2B, 12% ± 0.5%, n = 5). However, biologi-

cal visual networks are not “developmentally trained” with still visual inputs, and corollary

discharge signals continuously activate visual networks likely playing a critical computational

Fig 2. Eye movements support classification accuracy of image categories and saccadic directions. (A) Schematic

of the network architecture. Noise-framed and shifted CIFAR-10 images were provided at the image-input layer. Value

pairs in parentheses indicate the numeric amplitudes used for horizontal and vertical image shifts, relative to the

center: negative values for top-left shifts, positive for bottom-right ones. Image amplitudes were in the [0,255] range.

Movement inputs were also provided as images (pixel noise) with amplitude values scaled to match (with sign) the

amplitude range of the images (congruent condition). In the incongruent condition, movement amplitudes were

randomly assigned to shifted images. A feature layer was added to the image layer before conv-2, or other

convolutional layers in control simulations. (B) Classification performance (accuracy) of CNNs trained with no

saccadic shifts and tested also with no saccadic shifts (“NS” label) or with saccadic shifts (“S” label). (C) Performance of

CNNs when trained with congruent and incongruent movement inputs (black boxes). Only networks that reached

above chance-level performance (10%) were compared. Blue boxes for quadrupled number of training epochs. (D)

Classification accuracy when training with saccadic shifts and varying amplitudes of incongruent movement inputs:

zero amplitude (NM, no movements), 10% and 25% of the input-image amplitude, with 25% being the typical scaling

value used in main simulations (Methods). (E) SVM classification accuracy of saccadic directions from channels’

activations in different layers; the SVM classifier was used to separate 3 conditions: 1st quadrant, 3rd quadrant, and

2nd or 4th quadrant (Methods, S2 Fig). Empty boxes for networks performing image classification above chance level

(n = 16); filled gray boxes for networks at chance level (n = 14); p = 0.01 and p = 0.006 (�, ��) Wilcoxon rank sum test.

https://doi.org/10.1371/journal.pcbi.1009928.g002
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role for perception during saccadic shifts. Therefore, we trained CNNs with saccadic shifts in

the input images as well as with movement signals, comparing two conditions: with movement

amplitudes that are informative about the eye movement vector [64] (hereafter referred to as

congruent condition) or having amplitude values unrelated to the shift vector (random assign-

ments, incongruent condition). Movement signals were added as a second input (feature) layer

(Figs 2A and S1) and implemented as spatially unstructured noisy images—thereby being

largely dissimilar from visual inputs—whose values either (partially) reflected the vector com-

ponents used for the saccadic shift or had random values (S2 Fig). Optimization parameters

were approximately set so that the network could (1) reach above-chance performance levels

and (2) have performance levels that could differentiate between the two training conditions

(congruent vs incongruent, Methods). We found that in congruent conditions CNNs classifi-

cation was more frequently above chance level—relative to different initial conditions—and

when above chance, the classification accuracy was, on average, higher than that in incongru-

ent conditions (53% and 36% of the networks, n = 30 networks, reached above-chance perfor-

mance in congruent and incongruent conditions, respectively, with classification accuracy

21% ± 2% and 17% ± 3%; p = 0.004, t-test, n = 16 and n = 11 networks; Fig 2C). An inspection

of the confusion matrices revealed that when the classification accuracy was approximately

20%, the network could, on average, accurately distinguish between the various image classes,

but with a fair degree of variability (S6 Fig). Instead, networks with above-chance classifica-

tion, but below 20%, typically overclassified a sub-set of classes. At chance level, the sub-set

could be as small as a single class. Further, injecting movement signals at later stages reduced

the probability of successful classification in all trained networks to chance level (10% for lay-

ers 2 and 3 in 10 out of 10 networks).

Congruent movement inputs improved classification by accelerating the training and mak-

ing the network more robust relative to input noise. Indeed, when quadrupling the training

epochs, performance reached similar levels in both congruent and incongruent conditions

(Fig 2C, blue boxes, 24.7% ± 0.5% and 23% ± 3%, for congruent and incongruent conditions,

n = 10), indicating that networks needed fewer examples to reach above-chance performance

levels with congruent movement inputs. Further, training CNNs with saccadic shifts but no

movement inputs allowed for large classification accuracy (48% ± 2%, n = 5, with and without

noisy image frame). The accuracy decreased, but remained well-above chance level, when

incongruent movements with smaller amplitude were added (60% smaller than in main simu-

lations, Fig 2D, 26% ± 3%, n = 5). This indicates that movement inputs, in general, decreased

network performance, affecting the network as pixel-level input “noise”, but performance deg-

radation was significantly reduced in congruent conditions (Fig 2C).

Finally, although the networks were trained to classify image categories, they could also

classify the direction of saccadic displacements. We binned saccadic movements into saccadic-

direction groups and used a linear SVM classifier trained on the channels activations. In all

layers, classification accuracy was above chance level, exceeding 80% accuracy in layer 2 and 3.

In deeper layers, networks with object-classification accuracy above chance level had signifi-

cantly higher decoding accuracy for saccadic directions (L1, n.s., p = 0.4; L2, p = 0.01; L3,

p = 0.006; Fig 2E).

Overall, these results indicated that movement signals—whose activity patterns were largely

dissimilar from those of visual inputs—when carrying information regarding the saccadic vec-

tor, enabled a more successful extraction of image-defining features for accurate classification,

invariantly relative to saccadic shifts, accelerating the learning process and making the net-

works more robust relative to input noise. Furthermore, movement information was better

encoded in networks with higher classification accuracy, possibly reflecting their key role in

building a classification invariance for saccadic displacements.
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2.4 The network architecture affects classification performance. Shallower and deeper

architectures significantly affected the CNN performance. When using AlexNet (with 5 convo-

lutional layers, hence deeper than our basic CNN with 3 convolutional layers, S1 Fig), trained

with unshifted CIFAR-10 images (BW and rescaled as in the main simulations) and with no

movement inputs, average performance was rather poor, 18% ± 3% (n = 3, and n = 2 at 10%

chance level). The network could not be trained above chance level when introducing image

shifts, regardless of movement inputs (n = 5 initializations with movement inputs and n = 5

without). This was observed even when relaxing the early stopping constraint, quadrupling the

number of training epochs. A shallower architecture was tested as well, using a CNN with two

convolutional layers. When trained with only unshifted CIFAR-10 images (BW and rescaled

as in the main simulations and with no movement inputs) average performance was 40% ± 2%

(n = 5). When trained with shifted CIFAR-10 images but no movements, performance was at

chance level (n = 5), but when trained with saccadic shifts of reduced size (50% smaller than in

main simulations) and still no movement inputs, performance could be above chance level

(out of n = 5 initializations, n = 2 at 30% ± 3%, and n = 3 at 10% chance level), indicating that

the amplitude of the saccadic shifts significantly affected network performance relative to its

architecture. Although the network was unable to perform above chance level when both

image shifts and movement inputs were introduced (n = 5 all at 10%), significantly reducing

both amplitudes (saccadic shifts by 75% and movement amplitudes by 80%) allowed the net-

work to partially learn (30% ± 1%, n = 2, and n = 3 at 10% chance level). In summary, saccadic

shifts combined with additive pixel “noise” (movement inputs) of amplitude commensurate to

that of the input images degraded the performance of both deeper and shallower architectures,

with the amplitude of both these parameters affecting overall performance.

2.5 Eye movement signals enable sharper classification boundaries. Next, we used a

representational analysis to examine how CNNs learned to use movement signals for shift-

invariant classification. We considered networks trained with congruent movement signals

that reached classification accuracy above chance level. Thereafter, for a given image, we com-

puted a mean response for each channel by averaging activity across its entire receptive field

(units). Thus, at each layer, we obtained population responses to example images from differ-

ent classes and for various saccadic shifts (and framing noise). We visualized the high-dimen-

sional population activity in a 2D manifold using a stochastic-neighbor embedding method (t-

SNE, Fig 3A) and then applied a support-vector machine model (SVM, Methods) to classify

the identity of the shifted images. We found that across all convolutional layers, SVM accuracy

was significantly above chance, with the greatest accuracy at the third convolutional layer

(13% ± 1%; 18% ± 1; 19% ± 2%, in layer 1–3, n = 16 networks; Fig 3B). As a control, an SVM

model on randomly shuffled labels performed at chance level (10%), as expected. Using an

SVM model on PCA representations yielded almost identical results (14% ± 2%; 18% ± 1; 19%

± 2%, in layer 1–3, n = 16 networks). Notably, the SVM model could perform above chance

even when the overall network performance was at chance level (Fig 3C), particularly in con-

volutional layers 2 and 3, with the SVM model on t-SNE representations performing approxi-

mately equally well as with PCA (e.g., in L3: 17% vs 16%, respectively). This might simply

reflect the early-stopping procedure used to reduce overfitting, with the trainable weights in

the fully connected layer not (yet) sufficiently optimized to take advantage of the representa-

tional clustering that emerges in deep layers. Further, confusion matrices indicated that a qua-

dratic SVM model trained on t-SNE data correctly distinguished—on average and mainly in

L3—among image classes, although with a fair degree of variability. Instead, a linear SVM

model trained on PCA data, despite reaching comparable overall performance, tended to over-

classify a few specific classes (S7 Fig), thereby suggesting a non-linear representational embed-

ding of the image classes.
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Fig 3. Eye-movement inputs support the clustering of object-class representations. (A) Representative example of t-SNE embedding for visual

inputs only, and for a network that attained above chance-level classification performance with saccadic visual shifts and congruent movement

inputs. Color hue indicated a spatial gradient for object classes (legend) in layers 2 and 3. Top-right plots, representative networks trained with

incongruent movements (IC) and end-stopped at 15 or 55 epochs. (B) Accuracy of SVM models trained on t-SNE representations as a function of
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Experimental observations made at the local-circuits level [84] and at the multi-area level

[70], have shown that visual and motor signals, concurrently activating visual areas, can be

represented by distinct low-dimensional activity manifolds, that, at the mesoscale level, are

near orthogonal to each other [85]. Therefore, we next examined the propagation of visual and

motor signals across layers and the separation of the representations. In networks that did not

classify above chance levels movement responses were progressively “gated-away”, almost

zeroing movement amplitudes at the last convolutional layer (Fig 3D). This was also reflected

in the angular separation of activity axes (modes) [86] for movement and visual responses: in

layer 3, the angle between activity axes was larger when the network did not learn and this fol-

lowed from most units being unresponsive to movement inputs, thereby increasing the dissim-

ilarity between movement and visual activity patterns (51˚ ± 16˚ and 38˚ ± 11˚, p = 0.01,

n = 16, wo/w learning, respectively; Fig 3E).

In sum, a representational analysis of the high-dimensional space of CNN activations,

revealed that training with informative saccadic movements supported the non-linear cluster-

ing of population responses into sub-spaces associated with image classes, more prominently

at the intermediate and late convolutional layers [87]. The presence of these categorical sub-

spaces likely reflected a learned invariance for saccadic shifts.

Results from the t-SNE analysis suggest that in networks successfully trained with corollary

discharge signals (congruent condition), movement signals might support a more “clustered”

stimulus representation than with (untrained) external motion, simulated as incongruent

movement signals. That is, in the absence of external motion but in the presence of eye move-

ments, a shift of a stimulus across the retina would cause a “small” representational shift (Fig

3F) supported by congruent corollary discharge signals. Instead, if the same retinal activation

was caused by external motion—still in the presence of irrepressible eye movements (e.g., fixa-

tional movements)—corollary discharge signals would be incongruent relative to the retinal

shift vector and, not being part of the training set, they should produce a “larger” shift of the

stimulus in the same representational space (Fig 3F). We tested networks trained in the con-

gruent condition with image shifts and movement inputs that were either congruent (self-

motion) or incongruent (untrained external motion; note that in the t-SNE analysis of Fig 3A

and 3B only visual inputs were provided to the network). As expected, when tested with incon-

gruent movements, overall classification accuracy decreased (14% ± 4%, n = 30). We then

examined CNN activations in different layers in a reduced PCA representational space (20

dimensions) and used an SVM decoder to estimate the clustering, or mixing of the representa-

tions in these two conditions. We found that in the deep layer L3 the decoder could more accu-

rately separate the image classes when movement inputs were congruent than in incongruent

the accuracies and layers of CNNs (CNN performance values are constant and defined as the overall output classification). Each point represents a

network with a different weight initialization. Only in L3 do the data points cluster near the diagonal, with SVM performance values approximately

matching overall CNN performance values. (C) Accuracy of SVM models trained on t-SNE representations across layers (x-axis) for networks that

did not exceed 10% chance-level performance. (D) Representative examples of probability distribution amplitudes for channels in different layers

in networks that attained above chance-level classification accuracy, with saccadic shifts and congruent movement inputs. Amplitude distributions

are computed when testing networks with movement inputs only. Movement inputs have significant non-zero amplitudes at all layers. Rightmost

panel (Mov L3 (10%)) for an example network with chance level performance, showing larger zero-amplitude probability in L3 (“gated-away”

movement responses). (E) Angular distance between activity axes (modes) across layers in low- (top) and high-performance (bottom) networks.

(F) Left, schematic of self- vs external-movement stimulus representations. The movement of a stimulus (blue dog) across the retina (red arrow

inside the circle, with black arrows representing continuous fixational eye movements), is caused by a self-generated eye movement (left, long red

arrow near the eye), or by the stimulus moving—still in the presence of fixational eye movement (right, medium length red arrow near the dog,

and short empty arrow near the eye). Stimulus representations are more clustered during self-generated eye movement with congruent motor-

related signals: top-left, blue dots with red contour lines for the example saccadic shift. Gray dots for other stimuli possibly present in the scene.

Top right, external movement is linked to less clustered representations. (G) SVM decoding accuracy of L3 activations in networks trained with

congruent movements and tested with saccadic image shifts and congruent or incongruent movement inputs (n = 10).

https://doi.org/10.1371/journal.pcbi.1009928.g003
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conditions (Fig 3G, p = 0.001, Wilcoxon test, n = 10), with no significant differences in earlier

layers. Therefore, in networks trained with congruent corollary discharges, not only visual

inputs, but also co-propagating visual and motor signals produced more stable (clustered) net-

work activations for different image categories during self-motion than in the presence of

(untrained) external motion (see Discussion for the interpretation of external motion

simulations).

2.6 Saccadic modulations of neural responses. Finally, we examined whether we could

identify response signatures that reflected the network’s ability to utilize movement signals for

shift-invariant classification at the level of individual channels. As typically done in

electrophysiological studies of response modulations by eye movements [4], we tested trained

networks with a luminance stimulus (Fig 4A) and measured responses across layers, first with-

out saccadic inputs and then with saccadic inputs of different amplitudes. Since these CNN

simulations did not explicitly include time, computed activations could be viewed as analogous

to taking peri-saccadic time averages of neural responses. By comparing responses across the

two conditions, we found a variety of modulations of the stimulus-evoked response, which are

reminiscent of similar effects reported in biological neurons (e.g., [64,88]) (Fig 4B). Specifi-

cally, as observed during saccadic suppression of the visual percept [89,90], we found that sev-

eral CNN responses were suppressed in the presence of saccadic signals, approximately equally

across saccade magnitudes. In contrast, other channels enhanced their response amplitude, as

also observed experimentally in (post) saccadic response enhancement [91,92]. Further, several

responses were modulated by the amplitude of the saccade, with larger amplitudes amplifying

the suppressive or enhancing effects (Fig 4B). This phenomenon also has a biological counter-

part, which is referred to as “gain fields” [42,65,93,94], where the same retinotopic stimulation

elicits responses of different amplitudes depending on the angle of gaze. Although the type of

modulation was largely layer-independent, the across-channel variability in saccadic modula-

tions was layer-dependent, with a sharp decrease in variability from the input to the output lay-

ers (Fig 4C). Notably, this feature was characteristic of trained networks; although networks

with chance-level classification accuracy also exhibited similar saccadic modulations, the

across-channels response variability did not decrease in deeper layers (Fig 4D). The decrease

in variability in late layers may be related to the emergence of categorical representations

revealed by t-SNE analysis of networks performing above chance level.

In summary, in successfully trained networks, saccadic inputs affected the stimulus-evoked

response with response suppression, enhancement, and amplification of these effects depend-

ing on saccade size, as similarly observed in biological visual neurons. The hallmark of trained

networks was a decrease in the across-channels variability of these modulations along the con-

volutional architecture, accompanied by the significant image-feature clustering highlighted in

the t-SNE-SVM analysis.

Discussion

In this study, we adopted an operational definition for perceptual stability as the activity state

of a computational system that classifies features in a visual scene, invariantly relative to image

displacements resulting from eye movements, while integrating motor-related signals infor-

mative of retinal shifts. In this operational definition, the categorical classification output

might relate to perception-related decision processes, such as action selection and execution;

however, perception is rather associated with activity states distributed across network layers,

and therefore continuous and variable, reflecting the great diversity between exemplars of the

same category. This operational definition of visual perception blurs the boundaries between

sensation and perception [95], with early sensory (retinal) layers being as much “perceptual”
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Fig 4. Saccadic modulation of single cell activations. (A) Test stimulus used to measure cell activations in the

presence or absence of saccadic shifts. (B) Neurons showed diverse response modulations by saccadic inputs—that is,

response change w/wo movement inputs (representative examples). For some neurons, responses were either overall

suppressed or enhanced, largely independently from the amplitude of movement inputs (first two columns). For other

neurons (third column), the response change was proportional to the movement amplitude; “gain” is used in reference

to gain fields. Smallest to largest saccades grouped into six linearly spaced amplitude bins (Methods). (C), Variability in

saccadic modulation across cells (s.d.) as a function of saccade size (x-axis) in different layers (rows) and for networks

performing at chance level (left column) or above (right column). The solid line indicates the mean; gray band

indicates the 5th-95th confidence interval (CI). (D) Scatter plot of maximum variability values (CI width, Methods)

between networks at and above chance-level performance. Each dot refers to an example movement input.

https://doi.org/10.1371/journal.pcbi.1009928.g004
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as the deep ones. By adopting this framework, we related the stability of visual perception to an

optimization problem with the aim of acquiring a classification invariance relative to retinal

displacements. We discussed this invariance in relation to fixational and saccadic eye move-

ments. For fixational eye movements, we considered a similar task to that of [61], which clev-

erly demonstrated the disruptive perceptual effects of small ocular movements. When visual

and movement-related neural signals are temporally decoupled (in darkness), subjects misper-

ceived the location of probes having angular separations commensurate to the ocular shifts, as

predicted by retinotopy. However, movement-related activations, when coupled with the stim-

ulus can be used for an accurate cranio-centric localization of the probe during fixational eye

movements, thereby breaking a degeneracy in the stimulus localization, as shown behaviorally

by [61] as well as here in CNN simulations. Generalizing from small luminance bars to objects,

these results suggested that corollary discharge signals may support the correct identification

of object-defining features in the presence of unperceived fixational ocular movements, and,

according to our operational definition, achieve stable perception. We directly tested for this

corollary, and extended its scope to larger eye movements, by examining CNNs classification

accuracy for natural images in the presence of image shifts that mimicked saccadic eye move-

ments. We found that movement signals, informative of the saccadic shifts, improved classifi-

cation by speeding up the training, by making the network more robust relative to input noise,

and by supporting the representational clustering of object categories, more significantly in

deeper layers.

Limitations of CNN as mechanistic models of the visual system

CNNs are increasingly popular representational and quantitative models of the hierarchically

organized visual system for core object recognition [58,59,96], with pioneering studies explicitly

inspired by biological visual architectures [97]. As implementation-level, mechanistic models,

some of their characteristic features are often considered at odd with biology [59,98], such as

weight sharing and convolutional operations. However, these differences are hardly unreconcil-

able with biology. Weight sharing, for example, is computationally convenient but not indispens-

able, with the key network operation on input images grounded on the filtering operations of

neurons across channel, constraining feature maps. In biology, considering, for example, the pro-

cessing of stimulus orientations, neurons with localized receptive fields “pool” from localized

synaptic patterns, possibly based on random connectivity weights [99] to create filters having

similar characteristics that cluster in cortical domains, and collectively processing image features

across the entire visual field. In response to a localized oriented stimulus a “feature map” is acti-

vated, described as a standing wave of activity [100], which recruits neurons in orientation

domains tuned to the stimulus orientation. Concerning the convolution operation, CNNs imple-

ment it by moving filters along the input and computing the dot product of the weights and the

input. In biology, neurons that take a dot product of the incoming firing rates with the receiving

synaptic weights to obtain the output activation have been described in the context of “dot prod-

uct decoding”, introduced as a biologically plausible code in neuronal circuits [101].

Novelty relative to previous modeling works

CNNs can easily learn translational invariances without the need of any additional input signal

(as briefly reviewed in the Introduction). Indeed, when training CNNs with no saccadic shifts

and without movement inputs, performance was largely above chance level, with the CIFAR-

10 exemplars representing a given object-class under various translations, rotations, and size

changes. However, these intrinsic invariances (often built-in in the training process using data

augmentation methods), are not explicitly representative of the perceptual stability
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phenomenon; as exemplified by fixational eye movements, the same retinal activation (image

shift) would elicit a percept of movement when the activation is due to a movement in the

environment, or an unchanged visual percept when the activation is due to a self-generated

movement. Intrinsic invariances do not distinguish between these two conditions. Instead,

corollary discharge signals play a critical role in this distinction: they continuously activate

visual network (e.g., fixational eye movements cannot be voluntarily suppressed) and the

information they carry is used to suppress only the percept of self-generated movements. In

our simulations, despite learning intrinsic translational invariance from the CIFAR-10 exem-

plars, networks without movement inputs, trained with no saccadic shifts, and tested with sac-

cadic shifts performed near chance level. This is not surprising when considering that the

statistical properties of the simulated saccadic shifts (e.g., large translations with noisy fitted

frames) were largely dissimilar from those of the exemplars in the CIFAR database. This sce-

nario as well can be linked to biological networks, where the statistics of retinal activations

induced by saccadic eye movements do not necessarily match those induced by movements in

the external world [102]. In the latter condition, stable object recognition in the presence of

external movements may be achieved directly from the movement statistics, without the need

of corollary discharge signals, as suggested, for example, in unsupervised temporal learning

models and slow feature analysis models. This observation helps interpreting results in Fig 3,

in which SVM classification accuracy in L3 decreased when networks trained with congruent

movement inputs were tested with saccadic shifts and incongruent movements to simulate

external motion. This result support the interpretation that corollary discharge signals aid rep-

resentational clustering in deep layers and it does not imply than external motion leads to

poorer classification. Indeed, CNNs were not trained with incongruent movements, and when

networks were trained with such movements they could learn above chance level but it took

longer, with the learning relying on mechanisms other than the corollary discharges, for exam-

ple those learned directly from the movement statistics, both intrinsic and saccadic related.

It should also be noted that besides their role in perceptual stability, corollary discharges

activate visual networks possibly for several other computational goals in sensorimotor pro-

cessing, such as predictive inference computations in dynamic agent-environment interactions

[24,103–105]. Therefore, in our simulations we considered corollary discharges always activat-

ing the network and contrasted two conditions: when they were informative of the self-gener-

ated movement and when they were not.

As briefly reviewed in the Introduction, several previous modeling works have focused on

peri-saccadic phenomena related to how spatial information is updated, retained, or inferred

during eye movements, including peri-saccadic perceptual distortions and errors. What all

these studies have in common is the primary focus on peri-saccadic localization phenomena,

with the underlying assumption that by learning localization computations during eye move-

ments it will then be possible to gain a better understanding of how brain networks use those

computations to achieve stable perception. Here, we adopted a different conceptual and

computational framework. Instead of having a primary focus on a localization (“where”) ques-

tion, we focused on a classification (“what”) problem in the presence of eye movements. The

cost function used in our simulations with natural images minimized a classification error for

object identity, and not for its location, with “how” this minimization was achieved relating to

the acquisition of invariances for spatial transformations.

Dorsal and ventral streams

Computationally, we adopted CNNs as models of the cortical visual hierarchy. Indeed, CNNs

represent state-of-the-art quantitative models of the mammalian visual system, most
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prominently of the ventral (“what”) visual stream [58,59,96,106,107]. However, the dorsal

(“where”) visual stream is also characterized by a hierarchical architecture and has been tradi-

tionally associated with perceptual stabilization during movements [108,109]. The architec-

tural design and optimization process adopted in our simulations has “hybridized” dorsal and

ventral streams of information processing [110,111]. Indeed, we used an image classifier (i.e., a

“what” type network) that also processed movement inputs (“where” information) to extract

image-defining features, invariantly relative to saccadic shifts. Biologically, this can be inter-

preted as “what” type of information processing along the ventral visual stream with the inte-

gration of movement information from the dorsal stream to achieve movement-invariant

classification [64]. Alternatively (or concurrently), the dorsal stream might also integrate

“what” information from the ventral stream to support movement-invariant classification.

How distinctively these streams process and share information and whether they might even-

tually “merge” information onto a perceptual output stage remains a matter of debate [112].

Our mechanistic framework provides a convenient testbed for these investigations, and future

research could examine the representational similarity between neurons along the dorsal and

ventral streams during saccadic eye movements and networks trained with corollary discharge

signals to localize features in visual scenes, invariantly relative to image displacements [113].

The geometry of visuomotor representations

By using CNNs as representation-level models, it is possible to analyze the geometry of the

neural representations in artificial and biological networks and their similarities at various

stages along the visual hierarchy [114]. Here, we performed some simple analyses in this direc-

tion. Together, results based on t-SNE-SVM classification and decoding analysis, the angular

distances between activity axes, and the decoding of saccadic directions, suggest a simple rep-

resentational framework: in networks that successfully used movement information for image

classification, movement and visual activations defined disjoint activity sub-spaces with also

shared dimensions that could lead to increases in neural activity in response to both visual and

movement inputs. During training, the shared dimensions allowed movement information to

aid the representational clustering of natural images in the visual subspace (t-SNE analysis)

and were reflected in the mixed visuomotor selectivity typical of most neurons. Representa-

tional clustering in t-SNE space is reminiscent of the concept of object manifold [87], where

various transformations of the same object are represented by activity states (here t-SNE

points) that are clustered together in low-dimensional activation sub-spaces. Experimental evi-

dence supporting disjoint activity sub-spaces with also shared dimensions comes from works

on the integration of visual and motor signals using high-resolution videography combined

with neural recordings from cortical visual areas [84], and from a recent study examining eye

movements and their integration with visual inputs, finding indeed separate activity manifolds

associated with visual and motor variables together with shared low-dimensional co-variability

subspaces [70].

Shift-vector information in movement signals

In our simulations we made two assumptions related to the properties of movement signals:

(1) that movement inputs carried (approximate) information related to the saccadic shift-vec-

tor and (2) that movement inputs could potentially propagate “ungated” along the visual

stream. Indeed, experimental work has shown that even as early as in the V1 “eye tracker”

information can be extracted from neural signals to accurately reconstruct the direction and

gaze and, therefore, the location of objects in a craniocentric reference frame [64]. Further,

psychophysical experiments have confirmed that visual information is not gated away at
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specific layers in visual streams but remains available to perceptually relevant visual circuits,

for example, permitting learning-mediated improvements of perceptual judgements during

saccades [102,115].

The spatial structure of movement signals was implemented either as a coherent pattern in

fixational eye movement simulations or as scaled salt-and-pepper noise in simulations with

saccades. The first choice was motivated by the need to classify movement patterns as well,

which was not required in the latter case. Irrespective of the specific implementation, in both

cases, the key requirement was that movement signals had spatially distinct signatures from

image inputs; under this constraint, movement inputs were able to aid the output

classification.

Layer specificity and architecture

In simulations with luminance bars and natural images, adding movement signals at later

stages (layers) along the convolutional architecture lowered the overall network performance.

This observation suggests that, in the context of the architectures explored here, it might be

advantageous for visual stability to process movement signals early in the hierarchy, as also

observed experimentally [64,116]. This observation may not be simply explained by a stronger

computational machinery (i.e., more downstream convolutional layers) when adding move-

ment inputs in early layers; indeed, depending on the task at hand, and aside from overfitting

issues, simply adding layers does not necessarily correlate with improved network perfor-

mance [96,117]. We have also partially explored the importance of the network architecture by

considering deeper and shallower architectures. Indeed, we found that deeper is not necessar-

ily “better”, and that network depth, saccadic shift size, and amplitude of the motor inputs syn-

ergistically modify classification performance. These results suggest that a more extensive

approach should be adopted to explore the layer dependence, evolving architectures and per-

forming an architectural search constrained by the objective function described above [118].

This approach is likely to produce more stable and significant results than simply attempting

“by hand” a few modifications of the current architecture. This approach might also allow us

to separately explore the contributions to classification of pattern similarity between visual and

movement activations and the “injection layer” for movement signals along the visual hierar-

chy. Exploring these and other hyper-parameters would be best achieved with automatic

hyper-parameter optimization methods [119].

Phosphenes and “off-manifold” activations

In simulations with fixational eye movements, we examined the implications of pattern separa-

bility in visuomotor integration in the context of phosphene perception. Externally induced

activations of rather small neuronal ensembles can produce a visual percept (phosphene); how-

ever, large-scale activations of millions of neurons along visual streams induced by body move-

ments (extra-retinal inputs) do not elicit percepts. We reproduced a much-simplified version

of this result based on the simple consideration that electrical stimulation induces “untrained”

activity patterns, which, in the manifold terminology, would correspond to off-manifold activ-

ity states [87,120]. The underlying assumption for this observation is that biological visual net-

works have been developmentally (and evolutionarily) trained to distinctively classify self-

body-movement signals from retinal inputs along sensory streams. This simple “classification-

based” interpretation agrees with the reported separation of visual and movement representa-

tions in CNNs, and observed in multi-area activations in biological cortical networks [70].

This interpretational framework may also explain why responses evoked by electrical stimula-

tion of the retina are instead interpreted by the visual system as natural stimuli; indeed, these
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stimuli induce phosphenes that are subjected to saccadic suppression, similar to what occurs

with natural stimuli [121], which is not the case for cortical-induced phosphenes. According

to our interpretation, this is because artificial activations of retinal ganglion cells is barely dis-

tinguishable from “trained” natural luminance patterns that activate the retina (i.e., in-mani-

fold patterns). For example, during natural viewing, it is not uncommon that only a small,

localized group of photoreceptors is activated in dark conditions by a few pinhole lights in the

environment (the stars in the night sky being an obvious example), and both pinhole light and

ganglion cells electrical stimulation activate the primary visual cortex according to topographic

principles. However, phosphenes induced by electrical stimulation further down the visual

stream (e.g., in the occipital lobe) are largely dissimilar from any trained activity pattern—for

example, by being associated to non-retinotopic activations (i.e., off-manifold); therefore, they

are “misinterpreted” by the visual system and, for example, although perceptually salient, they

become immune to saccadic suppression [121]. Together, these observations explain phos-

phene phenomena in a unified computational framework, where the separate encoding of

visuomotor variables is associated to correct output “classification” of these variables [70,84].

Orientation-discrimination hyperacuity

In basics characterizations of networks trained with natural images we found a near-perfect

discrimination of grating orientations from neural activations in convolutional layers, associ-

ated with an overall poor classification performance by the network. Computationally, the

overall poor classification simply resulted from gratings being a very small sample in the train-

ing group; classification obviously improves with a larger proportion in the training set. How-

ever, this analysis focused on the link between a network’s objective function and the

encoding/decoding properties of its channels at various layers. In optimizing the objective

function, channels in a given layer can evolve to possessing receptive fields features such that

their classification performance for a specific class of stimuli becomes largely superior to that

of the network. We exemplified this aspect in the context of grating stimuli; however, in all

generality, using, for example, a DeepDream approach [78], it is possible to select a vast set of

complex images that maximally and differentially activate units in a given layer, thereby result-

ing in high classification accuracy provided by that layer, but with rather poor performance by

the network, see also [122–124]. It is likely that a biological counterpart of this phenomenon

has already been demonstrated. In mice, for example, behavioral orientation discrimination

thresholds have been shown to range around a few degrees [125], but cortical recordings in

visual areas have revealed a sub-degree precision [83]. In this context, trial-to-trial internal

(downstream) “noise” hypothesized to corrupt signal processing and behavioral accuracy

might rather simply reflect appropriate signal transformation according to an objective func-

tion optimized for natural image statistics.

Suppression, enhancement, gain fields: Limitations of our approach

The effect of saccadic inputs on the stimulus-evoked response was suggestive of biological phe-

nomena, such as saccadic suppression (and its neural correlates), post-saccadic response

enhancement, and gain fields. These qualitative parallels must be carefully examined in view of

the obvious limitations of our simulation environment. For example, saccadic suppression—

behaviorally defined (e.g., [126])—has a suppressive neural signature that precedes the saccade

by several tens of milliseconds, with a spatial localization in dorsal motion-sensitive areas,

such as areas MT, MST, and VIP [71,89,102,127] as well as in the superior colliculus [128].

Instead, post-saccadic response enhancement is observed at a short latency after the suppres-

sion and across similar regions [91]. Further, gain fields reflect a neural modulation by gaze
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angle to a retinotopic stimulation [42,43]; hence, saccadic movements per-se are not “dynami-

cally” involved in this phenomenon. However, it must be noted that the position of rest of the

eyes is divergent (exotropic) [129,130]; thus, to maintain an angle of gaze, stabilizing and

accommodative muscular responses are necessary [130], with corollary discharge signals

linked to these muscle activations likely to vary with gaze-angle size (distance from resting

position) and broadcasted along sensory streams, just as any other corollary discharge signal

[24]. The temporal characteristics of these phenomena indicate the differential recruitment of

circuits and mechanisms over time, which cannot be simulated in the context of CNN archi-

tectures, critically missing dynamic components. The importance of the temporal dynamics is

apparent also from strong peri-saccadic psychophysical phenomena; for instance, brief flashed

stimuli are mislocalized starting from before the saccade onset [32,36,38] and, in regions such

as LIP, eye movement information can be updated quite late after saccade execution [131]. For

this, recurrent neural networks (RNNs) might be a more apt modeling framework. However,

qualitatively, the observation of these phenomena in CNN simulations suggests that these

response features can naturally emerge in architectures that integrate visual and motor signals.

At a more general level, this reflects the rather unsurprising observation that when CNNs inte-

grate two input signals, these signals, to a first approximation, can influence each other in the

form of signal enhancement, suppression, and amplitude-dependent modulations of the two.

RNNs might add to this simple observation by revealing that a peri-saccadic modulation of

these phenomena can contribute to the network classification accuracy in a shift-invariant

manner. In addition, what was less expected was the finding that when the network learned to

use movement signals to extract image-defining features, the neuron-to-neuron variability

decreased along the hierarchy, along with increased clustering of t-SNE representations and

SVM classification accuracy. These are experimentally testable predictions for future studies

that focus on the representational encoding of natural images by neuronal populations along

the visual stream in the presence of saccadic eye movements.

In conclusion, our results mechanistically explain the computational advantage of having

corollary discharge signals for sharing neural circuits with visual inputs along the visual hierar-

chy in order to achieve perceptual stability. Because movement-related activations have also

been observed extensively in non-sensory regions [132] this study provides a more general

computational framework to examine fundamental integration principles of movement signals

with local computations during complex animal-environment interactions.

Methods

All simulations were performed using MATLAB Deep Learning and Neural Network tool-

boxes (The Mathworks, Inc., 2020).

Network architectures

CNN architectures are presented in S1 Fig and S1 Table. All four main architectures had three

convolutional layers with 3 × 3 filter sizes—with weight sharing—and 16, 32, and 64 channels

(feature maps), respectively. Stride and padding were assigned a value of 1. ReLu and max-

pooling layers were inserted between convolutional layers. The classification output was pre-

ceded by a SoftMax and fully connected (FC) layer. Convolutional and FC layers had trainable

parameters. These parameters were used also in simulations with the 2-conv shallow network.

For simulations with movement signals added as a global scalar before the second or third con-

volutional layers, we inserted an “addition layer” with a feature input tensor of a size commen-

surate with the convolutional layer. For simulations with modulations in movement patterns

overlapping with visual inputs, we also added a feature tensor right after the input layer but
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set all input values to zero. In all four main architectures, we added a trainable batch-normali-

zation layer after the convolution layer that received movement inputs. AlexNet was down-

loaded as a Matlab implementation (Deep Neural Networks Toolbox).

Input stimuli

Input stimuli in simulations with fixational eye movements were grayscale images (28×28 px,

[0,1] amplitude range) representing simplified V1 retinotopic activity patterns elicited by hori-

zontal luminance bars with changing elevations (7 px H, 20px W, no overlap). Simplified

movement-related activations were simulated as rectangular activity patterns (21 px H, 20 px

W). We used one movement pattern for simulations with eye movements only and two pat-

terns (14 px overlap) for simulations of S2 Fig. In the latter simulations, we used four stimuli

corrupted by random pixel noise and their amplitude was modulated to mimic 10 contrast lev-

els ([0,1] with 0.1 step size) to help minimize overfitting during training. In the simulations

with eye movements, we used three vertically separated visual stimuli. Movement patterns had

a significant spatial overlap with visual stimuli (12 px) and differed from each other (and from

the visual stimuli) as also observed in neural data [70].

Eye movements with luminance bars

We simulated eye movements by shifting upward or downward the (cortical) activations asso-

ciated with the three luminance bars in visual space, thereby allowing for five possible ocular

shifts. We divided the input image into five (equally high and nonoverlapping) horizontal

bands, with default locations (for no eye movements) in bands 1, 3, and 5. When the central

stimulus was displayed in the visual space and the eyes had not moved, the evoked response

was in band 3. In the absence of eye movements, bands 1 and 5 were activated by the top and

bottom stimuli in visual space, respectively. Instead, if the eyes had moved, depending on the

movement size (randomized), a stimulus in visual space could activate any of the five bands.

For example, the central bar (vertical band 3) could shift by [0, ±1, ±2] locations; a shift of +1

would correspond to band 2, whereas a shift of +2 would correspond to the top band 1, that is,

the same band of the top stimulus with no eye movements (Fig 1C). The top and bottom sti-

muli could only be shifted downward or upward, respectively, with a location degeneracy rela-

tive to the other stimuli. For simulations in which the amplitude of the motor activations

could change, the amplitude varied between five levels from a reference value of 0.5, with

increments and decrements (including zero amplitude) depending on movement size and

direction: downward movements, negative amplitude decrements and upward movements

positive increments. Amplitude changes in [-0.8, +0.8] range, with a step size of 0.2. Therefore,

composite images with visual and movement stimuli were in the [-1.3, +1.3] amplitude range.

In pixels where visual and motor inputs overlapped, summation was sub-linear, as found

experimentally [70]—here implemented as a clipping to the max value between the two signals

for simplicity.

Optimization

The optimization of trainable parameters was based on categorical cross-entropy loss, regular-

ized with early-stopping to avoid overfitting. Optimization was stopped at approximately 80%

accurate classification for fixational eye movement simulation (chance level 33%) and approxi-

mately at 20% for saccadic eye movement simulations (chance level 10%). Optimization

parameters (e.g., learning rate and batch size) were set to be equal for all simulations to enable

interpretable relative comparisons. All results focused on relative accuracy changes, which

were not qualitatively affected by the asymptotic performance of the trained network. Training
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was run on a GPU server with 8 Nvidia RTX2080-Ti GPUs (ASRok motherboard 3U8G

+/C621) using MATLAB Parallel Computing Toolbox with Slurm plugin.

Network training and testing

For fixational eye movement simulations, training and testing sets had 800 samples with a 50%

partition. Reported error bars are standard deviations across test sets, except in Fig 1F, in

which the variability is estimated across 20 random initializations of the network. For simula-

tions with the modified CIFAR-10 database, we used 50,000 training examples and 10,000 vali-

dation examples. Early stopping was implemented by limiting the training epochs to 15; the

number of epochs was set to 55 when allowing congruent and incongruent simulations to

reach plateau performance. We typically ran 10 training interactions of the same network to

account for the variability caused by the randomization of the initial weights. The mini-batch

size was set to 64 and the validation frequency to 700. Optimization typically terminated with

matching training and validation performance, thereby suggesting no significant overfitting.

Performance was always evaluated on held-out trials.

Electrical stimulation

Simulations of focal external stimulations (electrical stimulation, S3 Fig) were done using a

network trained with two movement patterns and four visual stimuli, while testing it with a

small activity pattern (3×3 px) with high contrast values (level 10, see “Input stimuli”). The

results were qualitatively stable relative to small changes in activity locations, sizes, and con-

trast levels of the luminance spot.

Modified CIFAR-10

The CIFAR-10 database was downloaded from https://www.cs.toronto.edu/~kriz/cifar.html.

Each image was first converted to BW, the edges (3 px wide) were replaced by random noise

([0, 255] amplitude range) and a frame or random noise was added around each side of the

image (5 px wide). Image shifts were implemented as circular x-y shifts of random amplitudes

in the range [-8, +8] px. In simulations with the shallow 2-conv layer network smaller saccadic

shifts were in the range [-4, +4], and [-2, +2].

Receptive field analysis

We analyzed networks trained with modified BW CIFAR-10 images, but with no saccadic

shifts (shift range = [0, 0]). We then used the MATLAB function deepDreamImage.m (Deep

Learning Toolbox, R2021a) with 2 iteration levels and 2 pyramid levels. Because this function

does not accept networks with multiple inputs, after training we disassembled and reassembled

the network and excluded the movement-input layer; this procedure preserved learned weights

across all other layers. For the plots in S5 Fig, we handpicked the representative examples.

Hyper-orientation–discrimination acuity

Oriented sinusoidal grating had the same size and amplitude range as the modified CIFAR-10

images, with six different angles in the [0, pi] range. Example gratings with the same orienta-

tion differed from each other due to the randomization of the grating spatial phase and the

random noise in the surrounding frame (see methods to modify CIFAR-10 images). Networks

(n = 10) were trained with a very small proportion of grating stimuli, with as little as 0.05%

resulting in just a handful of examples for each orientation. With higher proportions, networks

would quickly achieve near-optimal classification accuracy. The network output was modified
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in view of the larger classification set (16 output classes). We then tested these trained net-

works with new datastores constructed primarily of grating stimuli (90%). For the PCA analy-

sis, in each layer, we computed activations for each channel and averaged across pixel space

(receptive field) using a balanced data set relative to the representative angles. On the first

three PCs, we fitted a linear discriminant model (fitcdiscr.m Matlab function) with five-fold

cross validation. For the tuning curves, we computed mean and 5%-95% confidence interval

across examples of gratings with the same orientation. Responses were computed as pixel-

average across the entire receptive field. Proportional changes in responsive neurons across

layers were computed as the proportion of channels whose maximum amplitude in the tuning

curve exceeded an arbitrary threshold of 0.1.

Congruent and incongruent movement inputs

Movement inputs were added as a “feature” layer, immediately before a target convolutional

layer (conv-layer 1, and in controls for layer dependence of classification accuracy also conv-

layer 2 and 3). Their matrix/tensorial dimensions varied to match the dimension of each target

layer. In most simulations, they were added before conv-1 and had the same dimensions as the

input images; 20% of pixel values were set to zero, while the remaining pixels were assigned

either saccadic-vector values ðSi
1
; Si

2
; Þ used to saccadic-shift image Ii or a pair of random values

within the saccadic range. This was done via a 40%-40% pixel split, with random assignment

relative to pixel indices. Movement images were first generated with amplitude values in an

interval [-8, +8] px—that is, the range of saccadic shifts. Then, depending on the layer where

they were added, amplitudes were rescaled to match those of visual inputs. For example, when

added to the first convolutional layer, movement amplitudes were rescaled to be 25% of the

image amplitudes in conv-1. To determine the range of amplitudes of CIFAR-10 images at var-

ious layers, we initialized the network using only one training epoch and computed minimum

and maximum amplitudes at each layer. In simulations with the main CNN architecture but

smaller movement amplitudes, the downscaling was 10%, and 5% for smaller amplitudes in

shallow-network simulations. Saccadic amplitudes were allowed to assume negative values,

while visual inputs only positive ones. Pixel values in movement images reflected the (x,y) sca-

lar values used to shift the CIFAR-10 images, but did not carry information on which scalar

corresponded to the x- or y-shift. Missing this information, the network could only access

“quadrants” information (as in Cartesian quadrants): for example, two positive scalars indicate

shifts in the 1st quadrant, while two negative scalars indicate shifts in the 3rd quadrant. Scalars

with different sign indicate shifts in either the 2nd or 4th quadrant, which overall provides

above chance-level information for quadrant assignments, with 75% maximum achievable per-

formance. In Fig 2E, an SVM classifier was used to separate 3 conditions: 1st quadrant, 3rd

quadrant, and 2nd or 4th quadrant, hence with 100% maximum achievable performance.

Decoding saccadic directions

As explained above, movement inputs were provided to the network as indexed images whose

values reflected saccadic-shift coordinates. Therefore, from movement images it was possible

to extract shift values, but not the information of which of the two scalars represented the hori-

zontal and vertical saccadic shift. Therefore, movement images could be used to define four

saccadic-direction groups: (i) cardinal shifts along the x or y axis, i.e. (0, s) or (s, 0), with ‘s’ a

non-zero, signed scalar; (ii) 1st quadrant shifts, i.e. (s1, s2), with s1 and s2 both positive scalars;

(iii) 3rd quadrant shifts, i.e. (s1, s2), with s1 and s2 both negative scalars; (iv) 2nd and 4th quad-

rants shifts, i.e. (s1, s2), with s1 and s2 scalars with different sign; To examine the network’s

classification accuracy for direction groups, we considered channels’ activations to movement
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inputs only, we reduced their dimensionality using PCA (n = 3), and used a 5-fold, cross-vali-

dated SVM linear classifier. We did so at each layer and separately for networks that did and

did not exceed chance-level performance in image classification. Significance values reported

are p-value of a two-sided Wilcoxon rank sum test.

Activity modes and angular separation between stimulus-movement patterns

We tested networks trained with congruent movement input using either visual stimuli or

movement stimuli. We did so using n = 1000 example images separately in networks that did

and did not exceed chance-level performance. For each example image, network, and layer, we

obtained two vectors of activations across channels (A,B), one vector for movement inputs

and one for visual inputs, and computed the angle between them as acos(abs(A’�B)). For each

network and layer, we then averaged angles across examples. Statistical testing (unpaired t-

test) was conducted between networks (at or above chance level performance) on example-

averaged angles.

t-SNE and SVM classifier

We considered networks trained with congruent movement conditions and computed channel

activations at each layer using a datastore with only visual inputs, zeroing movement inputs.

For each channel, we computed a mean activation value to each sample image as the mean

across channel RF pixels (units). On this [channels x image samples] response matrix, we

applied t-SNE (Euclidean distance, perplexity = 30). Finally, on this reduced dimensionality

data set, we trained a quadratic SVM model using the CIFAR-10 categorical labels and five-

fold cross-validation. In simulations with networks trained with congruent movements and

tested with saccadic image shifts and either congruent or incongruent movements, instead of

t-SNE we used PCA to reduce the dimensionality to 20 components.

Saccadic suppression, enhancement, and gain fields

The test stimulus was an image with a luminance square in the center, 5 px in size. The lumi-

nance value was set to be the median amplitude value across all images in the training set. We

then grouped movement inputs from the validation set based on the vector length for the cor-

responding saccadic shift:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

1
þ S2

2

p
and assigned the movement input to one of six saccadic-

amplitude groups, linearly spaced from zero to max vector length; each group was populated

with the same number of example movements (n = 20). Movement + visual input datastores

were then used to measure neuron activations in each layer. A single activation value was com-

puted for each channel by averaging across pixels in the portion of the receptive field covering

the luminance square, which changed in size from layer to layer. The response change was

computed as the difference between the average response with movement + visual input and

the response with only the visual input. In Fig 4 variability was computed as the standard devi-

ation across channels of the response change, thus with a variability value associated with each

saccadic input. In the summary plot of Fig 4D, for each network and saccadic interval, we

computed variability values as the amplitude of the 5th–95th confidence interval for the associ-

ated s.d. values. Thereafter, we made a scatter plot of these values for networks at and above

chance-level performance and repeated this procedure for each layer.

Supporting information

S1 Table. Basic CNN architecture and parameters. This template architecture was modified

for different simulations with movement-related inputs added before either the conv-2 or
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conv-3 layers. Similarly, only one “batchnorm” layer was utilized in simulations with move-

ment inputs in deep layers, as detailed in S1 Fig.

(DOCX)

S1 Fig. Network architectures used in simulations. The six architectures used in simulations

with titles referring to the corresponding sections in the main text. Details of the parameters

used for each layer are in S1 Table. The features input is the movement-related input imple-

mented as a tensor of size commensurate with the following convolutional layer. The ‘add_1’

layer is an addition layer (additionLayer function, Deep Learning Toolbox, Matlab R2020b).

(EPS)

S2 Fig. Generation of movement images. a) Example of a modified CIFAR-10 image, BW,

with a noisy frame and a bottom-left shift (red arrows and vector in the 3rd quadrant) accord-

ing to (x,y) = (-7,+3) shift scalars in red. b) Shift values are multiplied by the scaling factor

“SCL” and randomly assigned to an equally sized image having 20% of its pixels set to zero,

40% set to the scaled x-shift value, and 40% to the scaled y-shift value. The movement image

does not retain information about which scalar was used for the x or y shift, only that the shift

vector was in the 3rd quadrant (2nd and 4th quadrant vectors are therefore indistinguishable

from the pixel values in the movement image).

(TIF)

S3 Fig. Classification invariance and phosphenes. a) Example of visual and movement-

evoked activations used to train the CNN (s, stimuli; m, movements). Random pixel noise and

amplitude changes simulate neural variability, changes in visual contrast, and amplitude mod-

ulations linked to different movement sizes (introduced to reduce overfitting; Methods). b)

The CNN can easily learn to distinctively classify visual and motor inputs (error bars, s.d.

across test stimuli, with early stopping during training at approximately 80% performance;

Methods). c) Testing the trained network with a small luminance spot (dissimilar from all

trained patterns) at various image (cortical) locations produces output probabilities across all

channels reflecting overall classification uncertainty and a significant probability of reporting a

visual input (integral across all visual channels).

(EPS)

S4 Fig. Modified CIFAR-10 database. a) Original CIFAR-10 database, 10 randomly selected

images. b) Modified CIFAR-10 database used in this study. Briefly, images were converted to

BW, framed with random noise, and shifted to mimic saccadic eye movements. Titles show

the x and y shifts in the range [-8, +8] px. Images were not “circularly shifted” to void breaking

the overall spatial coherence of the represented elements.

(EPS)

S5 Fig. Discrimination of oriented stimuli. a) Example of CIFAR-10 images with a random-

noise frame and with no saccadic shift (compare with S3 Fig). b) Representative examples of

receptive fields (DeepDream activations, Methods) for cells at different layers. c) An example

of a grating stimulus used to train and test the network. As implemented with CIFAR-10

images, framing noise changed across examples of the same orientation as well as the spatial

phase of the grating. d) Performance of CNNs (n = 30) trained with a large proportion of

CIFAR-10 example images and a small proportion of grating stimuli (filled blue bars, error

bars, s.e.). Empty bar represents the performance of the LDA classifier on PCA representa-

tions; dotted horizontal line represents the chance-level performance. e) Top three PCs of pop-

ulation responses to oriented gratings in different layers. Color code for the six presented

orientations. LDA performance for these clustered representations is optimal at all layers (as
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shown in panel d, empty bar). Good decoding also in L1 suggests that even subtle amplitude dif-

ferences in largely circular RFs are sufficient to achieve optimal decoding accuracy, as shown in

the next panel. f) Example orientation tuning curves (columns) for cells in different CNN layers

(rows); note the smaller y-scale for two example cells in layer 3. g) Proportion of cells with a sig-

nificant orientation tuning in each layer. The proportion collapses in L3, which is in agreement

with the poor overall classification performance of the network for grating stimuli (panel d).

(EPS)

S6 Fig. Confusion matrices at different performance levels. Confusion matrices detail the

classification performance of a trained network showing true vs predicted classes. Red vertical

“stripes” indicate the network is overclassifying a specific class (bottom example, airplane). A

uniformly red-ish matrix (top example) indicates a network that on average correctly classifies

the various classes but with a fair degree of variability. Marginals for diagonal and off-diagonal

classifications are color coded at the bottom and right side of each matrix. As the performance

degrades, the tendency for single-class overclassification increases.

(EPS)

S7 Fig. Confusion matrices of SVM classifiers. Left column, confusion matrices for a qua-

dratic SVM classifier trained on t-SNE representations across layers (rows, and titles). This

example network reached an overall accuracy of 25%. Right column, similar confusion matri-

ces for a linear SVM trained on PCA representations. In this representative example, PCA had

a tendency to over-classifying a reduced set of classes across all layers, which was less obvious

in t-SNE representations, especially for L3 (bottom-left matrix).

(EPS)
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