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Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the 
loss of adaptive immune tolerance to nucleic acid-containing antigens. The resulting 
autoantibodies form immune complexes that promote inflammation and tissue damage. 
Defining the signals that drive pathogenic autoantibody production is an important step 
in the development of more targeted therapeutic approaches for lupus, which is currently 
treated primarily with non-specific immunosuppression. Here, we review the contribution 
of Bruton’s tyrosine kinase (Btk), a component of B and myeloid cell signaling pathways, 
to disease in murine lupus models. Both gain- and loss-of-function genetic studies 
have revealed that Btk plays multiple roles in the production of autoantibodies. These 
include promoting the activation, plasma cell differentiation, and class switching of auto-
reactive B cells. Small molecule inhibitors of Btk are effective at reducing autoantibody 
levels, B  cell activation, and kidney damage in several lupus models. These studies 
suggest that Btk may promote end-organ damage both by facilitating the production 
of autoantibodies and by mediating the inflammatory response of myeloid cells to these 
immune complexes. While Btk has not been associated with SLE in GWAS studies, 
SLE B cells display signaling defects in components both upstream and downstream 
of Btk consistent with enhanced activation of Btk signaling pathways. Taken together, 
these observations indicate that limiting Btk activity is critical for maintaining B cell toler-
ance and preventing the development of autoimmune disease. Btk inhibitors, generally 
well-tolerated and approved to treat B cell malignancy, may thus be a useful therapeutic 
approach for SLE.
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inTRODUCTiOn

The development of a B cell repertoire capable of secreting antibodies against a wide range of foreign 
antigens is crucial for effective immune responses. However, the processes that generate this diversity 
also result in the production of self-reactive B cells that, if not kept in check, can be pathogenic 
and lead to autoimmune disease. Systemic lupus erythematosus (SLE) is an autoimmune disease 
characterized by autoantibodies against nuclear antigens. These autoantibodies promote disease 
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pathogenesis by forming immune complexes that deposit in and 
damage tissues and synergize with innate immune defects to sus-
tain pro-inflammatory feed-forward loops (1). Autoantibodies 
arise prior to the development of overt clinical symptoms (2), 
suggesting that loss of B cell tolerance is an important initiating 
event in lupus. Understanding the signaling pathways that medi-
ate autoantibody production may reveal new therapeutic targets 
for SLE, currently treated primarily by non-specific immunosup-
pression. Here, we review the contribution of Bruton’s tyrosine 
kinase (Btk) to lupus, with a focus on its role in B cells.

Btk in B CeLL DeveLOPMenT  
AnD ACTivATiOn

Bruton’s tyrosine kinase is a Tec family tyrosine kinase expressed 
in B and myeloid cells. It was first identified as the genetic defect in 
the primary immunodeficiency X-linked agammaglobulinemia 
(XLA) (3, 4). XLA patients have a block in B cell development at 
the pre-B stage and a paucity of circulating B cells and immuno-
globulin (5). A mutation in the pleckstrin homology (PH) domain 
of Btk was subsequently found in X-linked immunodeficient (xid) 
mice (6, 7), which also have a B cell immunodeficiency, although 
milder than that of XLA patients. Btk-deficient mice phenocopy 
xid mice, with a block in B  cell development at the immature 
stage, reduced peritoneal B1a cells, and impaired response to 
T-independent type II antigens (8–10).

Bruton’s tyrosine kinase is an important proximal component 
of B cell receptor (BCR) signaling pathways. Upon BCR engage-
ment, the Btk PH domain binds to PIP3, a signaling intermedi-
ate generated by PI3 kinase (PI3K), thus localizing Btk to the 
plasma membrane (11–14). This facilitates its phosphorylation 
and activation by Src kinases (12, 13, 15) and promotes access 
to its substrates. The most well described of these is PLCγ2, 
which is activated after phosphorylation by Btk (16, 17) lead-
ing to increased Ca++ flux (14, 16, 18) and activation of NF-κB 
(19–21). BCR-induced proliferation and survival are impaired in 
the absence of Btk (9, 22–24). Btk is also required for toll-like 
receptor (TLR)-induced IL-10 expression by B cells (25, 26), and 
for synergy between the BCR and TLRs in enhancing IL-6 expres-
sion (27). Integrin-mediated adhesion of B lineage cells (28) and 
their response to chemokines, such as SDF-1 (29, 30), are also 
controlled by Btk.

Btk AnD MOUSe LUPUS MODeLS

Btk is Required for Autoantibody 
Production and Pathogenesis in  
Many Lupus Models
The xid mutation has long been known to reduce autoantibody 
levels in several murine lupus models, including NZB × NZW 
(31), BXSB (32), MRL.lpr (33), motheaten (34), and Gld (35). 
Renal disease was also prevented and survival improved by the 
xid mutation in NZB × NZW (31), BXSB (32), and MRL.lpr (33) 
mice.

The subsequent finding that Btk is a B cell signaling molecule 
suggested that enhanced B cell activation through Btk underlies 

autoantibody production in lupus models. This was tested using 
mice lacking B cell inhibitory signaling molecules. BCR signal-
ing is normally limited by inhibitory receptors such as FcγRIIb, 
CD22, SiglecG, PIR-B, and CD72. The ITIMs of these receptors 
are phosphorylated by the tyrosine kinase Lyn, which results in 
the recruitment and activation of inhibitory phosphatases, such as 
SHIP and SHP-1 [reviewed in Ref. (36–38)]. B cell-specific dele-
tion of Lyn, SHIP, or SHP-1 leads to B cell hyper-responsiveness 
and lupus-like autoimmune disease in mice (39–41). Mutations 
in inhibitory receptors result in milder autoimmunity, likely due 
to some degree of redundancy among them (42–47). Several of 
these inhibitory pathways target activating signals mediated by 
Btk (14, 16, 48).

Either the xid mutation (49) or Btk-deficiency (50–52) ame-
liorates the autoimmune phenotype of Lyn−/− mice. Similarly, Btk 
is required for autoantibodies in FcγRIIb−/−.Yaa mice, which lack 
the inhibitory receptor FcγRIIb and also have enhanced TLR7 
signaling (53). One caveat to these studies is that the reduction in 
mature B cells in xid and Btk−/− mice is exacerbated in the absence 
of Lyn. To circumvent this defect, a transgene expressing a low 
level of Btk in B cells (Btklo) (22) was crossed to Lyn−/−Btk−/− mice 
(50–52). This normalized mature follicular B  cell numbers to 
that of Lyn−/− mice. However, Lyn−/−Btklo mice failed to produce 
autoantibodies or develop kidney damage, indicating that Btk 
signaling in mature B cells, rather than simply effects of Btk on 
B cell development, is critical for autoimmunity.

The autoimmunity caused by loss of Lyn-dependent inhibitory 
signaling is likely mediated by heightened Btk responses, as it is 
mitigated by reducing Btk dosage. This is supported by gain-of-
function studies in which either a constitutively active form of 
Btk [which carries a PH domain mutation that enhances Btk 
membrane localization (54)] or wild-type Btk were overexpressed 
in the B lineage (55–57). In both cases, autoimmunity ensued. 
Limiting Btk signal strength in B cells is thus critical to prevent 
the loss of B cell tolerance.

Multiple Functions of Btk Contribute to 
Autoantibody Production
Autoreactive B Cells Are Present in the Periphery in 
the Absence of Btk
Developing B  cells are subjected to a central tolerance check-
point at the immature B stage in the bone marrow. Those cells 
that express autoreactive receptors undergo receptor editing, 
rearranging a new Ig light chain to change their specificity. Cells 
that remain self-reactive after editing are deleted by apoptosis or 
rendered anergic. Autoreactive cells that escape are kept in check 
by peripheral tolerance mechanisms.

Taken together, the following observations suggest that Btk 
acts primarily in the periphery, rather than the bone marrow, to 
drive a loss of B cell tolerance. In Btk−/− mice carrying an anti-
DNA Ig transgene, anti-DNA B cells are present in the periphery 
but do not produce antibodies in vivo (26). Single cell repertoire 
analysis of new emigrant B cells (recently arrived in the periphery 
from the bone marrow) from XLA patients revealed a higher 
frequency of autoreactive B cells than in healthy controls (58). 
This indicates that Btk signaling may actually promote central 
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tolerance, and that Btk-deficiency does not abrogate autoim-
munity simply by preventing autoreactive B cells from reaching 
the periphery. Furthermore, immunoglobulin transgenic mouse 
models and analysis of XLA patient B cell repertoires have shown 
that receptor editing is independent of Btk (58–60). A role for Btk 
in the loss of peripheral B cell tolerance is highlighted by both 
loss-of-function and overexpression studies. Btk is required for 
autoimmunity in Lyn−/− mice (49–52), which have intact central 
tolerance but develop autoantibodies due to a breach of periph-
eral tolerance (61, 62). Mice overexpressing Btk in mature B cells 
and myeloid cells, but not at earlier stages of B cell development 
in the bone marrow, develop autoimmunity (56).

Btk Contributes to Autoantibody Production beyond 
Its Role in Initial B Cell Activation
How does Btk signaling in the periphery drive autoantibody 
production? The role of Btk in the initial activation of BCR signals 
likely contributes, as residual B cells in Lyn−/− xid and Lyn−/−Btk−/− 
mice proliferate poorly in response to anti-IgM (49, 50). However, 
Lyn−/−Btklo B cells, like Lyn−/− B cells, have increased proliferative 
response to BCR engagement (50, 52), suggesting that in the 
absence of Lyn-mediated inhibitory signaling, low levels of Btk 
are able to transmit some aspects of BCR signals efficiently. 
However, Lyn−/−Btklo mice do not develop autoantibodies or 
autoimmune disease (51, 52). Similarly, although Btk-deficient 
anti-DNA transgenic mice do not produce autoantibodies (26), 
Btk is not required for B cells from these mice or from AM14 
rheumatoid factor (RF) transgenic mice to proliferate in response 
to nucleic acid-containing antigens (26, 63). Such autoantigens, 
common in lupus, activate B cells via both the BCR and nucleic 
acid-sensing TLRs (1). Thus, Btk has additional functions beyond 
transmitting proliferative signals from the BCR and TLRs that 
promote the loss of B cell tolerance.

Btk Drives Plasma Cell (PC) Accumulation
Accumulation of antibody-secreting PCs in the periphery is 
characteristic of SLE patients (64, 65) and murine lupus models, 
including Lyn−/− mice (51, 66–74). A subset of inactive SLE 
patients demonstrate a PC-focused gene expression profile in 
their B cells, indicating that some patients may have an intrinsic 
predisposition to inappropriate B  cell terminal differentiation 
(75). Btk is required for PC accumulation, as the increased PC 
frequency observed in Lyn−/− mice is normalized in Lyn−/−Btklo 
mice (51). This is likely due to enhanced Btk signaling in B cells, 
since B cell-specific overexpression of either constitutively active 
or wild-type Btk also results in elevated splenic PCs (55, 56).

Activating signals by Btk and inhibitory signals by Lyn 
converge on the transcription factor Ets1 (76). Ets1 is expressed 
in resting B cells and limits PC differentiation by inhibiting the 
activity of Blimp1 (77), a master PC transcription factor. Ets1−/− 
mice accumulate PCs and develop lupus-like autoimmunity, 
similar to Lyn−/− mice (71). Ets1 levels are significantly reduced 
in B cells from mice deficient in Lyn or the inhibitory signaling 
components SHP-1 or CD22 plus SiglecG, but are normalized 
in Lyn−/−Btklo B  cells (76). Restoration of Ets1 expression to 
Lyn−/− or SHP-1−/− B cells prevents excessive B cell differentiation 

in vitro (76). These observations indicate that autoreactive PCs 
accumulate in Lyn−/− mice at least in part because of excessive 
downregulation of Ets1 by Btk. This is likely an exacerbation of 
a normal process, as BCR signaling downregulates Ets1 in wild-
type B cells in a Btk-dependent manner (76). TLR signaling also 
downregulates Ets1 in wild-type B cells, and synergizes with BCR 
signaling to do so (76). In contrast, failure to downregulate Ets1 in 
response to Btk signals results in decreased steady state PC levels, 
as demonstrated by the ability of Ets1-deficiency to rescue the 
reduction in IgM antibody-secreting cells that occurs in Btk−/− 
mice (78). Thus, a continuum of Btk signaling to Ets1 controls PC 
frequencies, and can result in autoimmunity, normal responses, 
or immunodeficiency depending on the signal strength (78).

Btk Promotes Class Switching of  
Autoreactive B Cells
Class switching to IgG is required for autoantibodies to be patho-
genic (79). In Btklo mice carrying the 56R anti-DNA immuno-
globulin transgene, anti-DNA IgM, but not IgG, is produced (26). 
Thus, Btk also promotes class switching of autoreactive B  cells 
separate from its role in their initial activation and terminal 
differentiation.

Several functions of Btk contribute to this process. Expression 
of the class switching factors AID and T-bet is reduced in TLR-
stimulated Btk−/− and Btklo B cells relative to wild-type cells (26). 
Btk likely also plays an indirect role in class switching. IL-6 is 
required for IgG autoantibodies and autoimmune disease in 
Lyn−/− mice (51, 70, 80). Lyn−/−Btklo mice have decreased serum 
IL-6 levels and a reduced frequency of myeloid cells expressing 
IL-6 in response to LPS compared to Lyn−/− mice (51). B  cell-
derived IL-6 is also increased in Lyn−/− mice (70), and is required 
in other models for the formation of autoreactive germinal 
centers, in which class switching occurs (81, 82). Btk is required 
for the upregulation of IL-6 in B cells in response to synergistic 
BCR and TLR9 signaling (27), and B  cells overexpressing Btk 
express more IL-6 (57). Btk also promotes expression of IL-21, a 
Tfh-derived cytokine, in Lyn−/− mice. This likely occurs via IL-6 
as splenocytes from both Lyn−/−Btklo and Lyn−/−IL6−/− mice have 
reduced expression of IL-21 mRNA compared to Lyn−/− mice (80). 
Furthermore, Btk overexpression in B cells results in increased 
Tfh cells and IFNγ-producing T cells (57), which are important 
for autoreactive germinal centers and pathogenic autoantibodies 
(83–86).

Btk and Innate-Like B Cells
Bruton’s tyrosine kinase is expressed in B1a and marginal zone 
(MZ) B cells. These innate-like B cells may have both pathogenic 
and protective roles in autoimmune disease. The relative impor-
tance of Btk in these specific roles is not clear.

B1a cells are found predominantly in the peritoneal cavity, 
have a repertoire enriched in polyreactivity (87, 88), and are 
increased in several lupus models (41, 42, 88–90). Whether 
they are elevated in Lyn−/− mice is controversial (52, 72, 91, 
92). They secrete protective IgM autoantibodies (93) and the 
anti-inflammatory cytokine IL-10 (94, 95). In some cases they 
do not contribute to pathogenic autoantibodies (96), but they 
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TABLe 1 | Effects of Bruton’s tyrosine kinase (Btk) inhibitors on B cell activation and end-organ damage in murine lupus models.

Model inhibitor Autoantibodies B cell activation end-organ damage Survival Reference

MRL.lpr PCI-32765 
(ibrutinib)

IgG reduced but not significantly Reduced (kidney) (110)

MRL.lpr HM71224 IgG reduced Reduced (CD69) Reduced (kidney, skin 
lesions)

(111)

NZBxNZW HM71224 IgG reduced but not significantly Reduced [CD69, plasma cells (PCs)] Reduced (kidney) Increased (111)

NZBxNZW RN486 IgM unchanged, IgG reduced Reduced (CD69, PCs) Reduced (kidney) (112)

NZBxNZW PF-06250112 IgG reduced Reduced (PCs, GCs) Reduced (kidney) (113)

NZBxNZW G-744 Total reduced Reduced (GCs) Reduced (kidney) Increased (114)

IFN-enhanced 
NZBxNZW

G-744 Total ANA reduced, anti-dsDNA 
unchanged

Reduced (proliferation, PCs, GCs) Reduced (kidney) Increased (114)

Sle1.Sle3 PCI-32765 
(ibrutinib)

IgM and IgG reduced Reduced (CD69, PCs) Reduced (kidney) (115)

BXSB.Yaa M7583 Total reduced Reduced (CD69, PCs) Reduced (kidney) Increased (116)

DBA/Pristane M7583 Total reduced except anti-SmRNP Reduced (PCs), increased (CD69) Reduced (arthritis) (116)

Anti-GBM PF-06250112 Reduced (kidney) (113)

Anti-GBM BI-BTK-1 Reduced (kidney) (117)
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can produce IgG autoantibodies and interact with T  cells in a 
pro-inflammatory manner in some lupus models (88, 97, 98). B1a 
cells are reduced in Lyn−/−Btklo mice (52) and increased in mice 
expressing constitutively active Btk (55), and Btk is required for 
their expression of IL-10 (25).

Marginal zone B cells are also enriched in autoreactivity (99–
101). Whether they contribute to pathogenic autoantibodies in 
lupus is model-dependent (71, 101–107), and may be modulated 
indirectly by alterations in splenic architecture in some strains. 
Btk is not required for MZ B  cell development, but it controls 
the positive selection of particular B cell specificities into the MZ 
compartment (108). How this affects autoimmunity is not clear. 
Skewing of autoreactive B cells to the MZ is promoted by Btk in 
the 56R anti-DNA immunoglobulin transgenic model (26) and 
in NOD mice (109), a model of type I diabetes, but RF B cells 
carrying the xid mutation are enriched in the MZ relative to their 
wild-type counterparts (63).

Btk inhibitors Are effective in Mouse 
Lupus Models
The genetic evidence described above suggests that small molecule 
inhibitors of Btk could be an effective therapy for SLE. Preclinical 
studies with several inhibitors in multiple mouse models suggest 
that this may indeed be the case (Table  1) (110–117). Kidney 
damage was ameliorated in all cases and survival increased when 
measured. Btk inhibitors diminished B cell activity, as measured 
by reduced CD69 expression, PC frequencies, and/or germinal 
center B  cell frequencies. Autoantibodies were also decreased, 
although in some cases not all specificities or isotypes were 
affected. Interestingly, kidney damage was prevented even in the 
few situations where IgG autoantibodies were not significantly 
reduced. This indicates that Btk has roles in lupus pathogen-
esis beyond its contribution to the loss of B cell tolerance. Btk 
inhibitors were effective in anti-GBM models of kidney disease, 
which measure only the effector phase of kidney inflammation 
and damage and do not depend on autoantibody production  

(113, 117). Btk inhibitors impair pro-inflammatory FcR responses 
of myeloid cells in vitro (111–113, 116–119), suggesting that Btk-
dependent effector functions of myeloid cells may contribute to 
end-organ damage in vivo. However, Btk-deficiency in myeloid 
cells can have pro- or anti-inflammatory effects dependent on 
cell type and stimulus (120–135), and off-target effects of inhibi-
tors cannot be ruled out (136). For instance, the Btk inhibitor 
ibrutinib also inhibits Itk (137), a related Tec kinase which has 
important functions in T  cells. Further studies of the relative 
roles of B and myeloid cell-expressed Btk in lupus pathogenesis 
would be facilitated by the development of cell type-specific Btk 
knockout mice.

Btk in HUMAn AUTOiMMUniTY

While polymorphisms in Btk have not been identified in GWAS 
studies of SLE or other autoimmune diseases, several lines of evi-
dence suggest that increased Btk activity may be associated with 
autoantibody production in humans. Increased Btk expression 
and phosphorylation was observed in B cells from rheumatoid 
arthritis patients (138, 139), correlating with RF antibodies among 
RF-positive patients (139) and enriched in anti-citrullinated 
protein antibody-positive patients (138). Similarly, increased Btk 
expression and phosphorylation correlated with RF antibodies in 
Sjogren’s syndrome patients (138). The frequency of Btk+ cells in 
the peripheral blood of SLE patients has been reported to correlate 
with disease activity, anti-dsDNA antibodies, proteinuria, and C3 
levels (140), but whether this reflects changes in Btk signaling or 
cell subset distribution is unclear.

Several SLE-associated signaling defects and polymorphisms 
likely result in increased activity of Btk signaling pathways in 
B cells. Reduced expression of PTEN, which counteracts PI3K, 
has been observed in human lupus B cells (141). Btk activation 
and function require the binding of its PH domain to the product 
of PI3K in the plasma membrane (11–14), and PTEN haploinsuf-
ficiency enhances the efficiency of Btk signaling in mice (142). 
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FigURe 1 | Model for the role of Bruton’s tyrosine kinase (Btk) in lupus pathogenesis. Btk acts in autoreactive B cells to promote proliferation, plasma cell (PC) 
differentiation, and class switching, resulting in the production of pathogenic IgG autoantibodies. IgG autoantibody production is also facilitated by the ability of Btk 
to enhance IL-6 expression from both B and myeloid cells. IL-6 then acts on T cells to promote differentiation of Tfh cells and IFNγ producing T cells, which in turn 
contribute to autoreactive B cell class switching via IL-21 and IFNγ. IgG autoantibodies produced in a Btk-dependent manner can then form immune complexes 
with autoantigen that deposit in tissues and induce inflammation and damage. These immune complexes can also activate myeloid cells, likely in a Btk-dependent 
manner, to produce inflammatory mediators that also damage tissues.
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The autoimmune phenotype in Lyn−/− mice is mediated by exces-
sive Btk activity in mice (49–52, 76, 80). Polymorphisms in Lyn 
are associated with SLE (143, 144), and reduced Lyn expression 
is observed in B cells from a subset of SLE patients (145–147). 
Expression of CSK, an inhibitor of Lyn, is increased by an SLE-
associated polymorphism in the CSK gene. B cells carrying this 
SNP have reduced Lyn activity and increased responses to BCR 
signaling (148). Finally, several polymorphisms in Ets1 are associ-
ated with SLE, and Ets1 expression is reduced in PBMCs from SLE 
patients [reviewed in Ref. (149)]. Btk promotes the accumulation 
of autoreactive PCs in Lyn−/− mice by downregulating Ets1 (76).

COnCLUSiOn

Genetic studies demonstrate multiple roles for Btk in the develop-
ment of murine lupus (Figure 1), including promoting the activa-
tion, differentiation, and class switching of autoreactive B cells. 
Btk inhibitors are effective at reducing autoantibodies and/or 
autoimmune symptoms in mouse lupus models and may act in 
both B and myeloid cells to exert these effects. In humans, several 
components of Btk signaling pathways are altered in B cells from 
lupus patients, and Btk expression and activation is elevated in 
B cells from other autoimmune diseases. Btk has dose-dependent 
effects on B  cell activation and autoantibody production as 

illustrated by the phenotypes of Btklo and Btk-overexpressing 
mice. Such a rheostat effect of Btk (150) is supported by recent 
structural analysis indicating that Btk has graded degrees of activ-
ity (151), and suggests that partial inhibition of Btk may have 
significant functional consequences. Btk may thus be a useful 
therapeutic target for SLE. The Btk inhibitor ibrutinib is well 
tolerated and approved for treatment of several B cell malignan-
cies (152, 153), and second generation, more specific inhibitors 
such as acalabrutinib are promising (154, 155). The use of these 
and other Btk inhibitors in B cell malignancy will be informative 
with respect to potential off-target and side effects (156, 157) that 
might be encountered in the context of autoimmune disease.
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