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Abstract
Crown rot (Phytophthora cactorum) causes significant economic losses in strawberry pro-

duction. The best control strategy would be to use resistant cultivars, but polygenically

inherited resistance makes the breeding of the garden strawberry (Fragaria × ananassa)
challenging. The diploid wild strawberry Fragaria vesca Hawaii 4 genotype was shown previ-

ously to have resistance against crown rot. To explore the resistance mechanisms, we inoc-

ulated the roots of Hawaii 4 with P. cactorum in a novel in vitro hydroponic system to

minimize interference caused by other microbes. Major reprogramming of the root transcrip-

tome occurred, involving 30% of the genes. The surveillance system of the plant shifted

from the development mode to the defense mode. Furthermore, the immune responses as

well as many genes involved in the biosynthesis of the defense hormones jasmonic acid,

ethylene and salicylic acid were up-regulated. Several major allergen-like genes encoding

PR-10 proteins were highly expressed in the inoculated plants, suggesting that they also

have a crucial role in the defense responses against P. cactorum. Additionally, flavonoids

and terpenoids may be of vital importance, as several genes involved in their biosynthesis

were up-regulated. The cell wall biosynthesis and developmental processes were down-

regulated, possibly as a result of the down-regulation of the key genes involved in the bio-

synthesis of growth-promoting hormones brassinosteroids and auxin. Of particular interest

was the expression of potential resistance genes in the recently identified P. cactorum
resistance locus RPc-1. These new findings help to target the breeding efforts aiming at

more resistant strawberry cultivars.

Introduction
Strawberry crown rot caused by the hemibiotrophic oomycete Phytophthora cactorum hampers
strawberry production in many parts of the world. It causes stunting and wilting of the plants
and spoils the fruits by causing leather rot [1]. The wilting symptoms first appear in the young
leaves and as the disease progresses the whole plant may collapse. The most characteristic
symptom is brown necrosis in the vascular tissue of the crown. As P. cactorum is a soil-borne
pathogen and forms sexual oospores that may survive many years in the soil, the removal of
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the disease from the infested fields is difficult. The cultivation practices promoting soil drainage
may help in managing the disease. In addition, fosetyl-Al, phosphite-based products or elicitors
could provide some protection against crown rot [2]. However, the most effective method to
control the disease is the use of resistant cultivars.

Strawberry displays resistance against most P. cactorum strains, and only specialized P. cac-
torum isolates have shown potential to cause crown rot [3,4]. On the other hand, many of the
widely used strawberry cultivars are susceptible to specialized P. cactorum crown rot isolates,
and only a few cultivars display resistance quite consistently [5,6]. Shaw et al. have suggested
that resistance against crown rot pathotype is a polygenic trait [7,8]. Besides the genetic back-
ground, the physiological status of the plant plays a role: cold-stored and/or wounded plants
are particularly prone to the disease, and young plants tend to be more susceptible than the
older ones [9]. Eikemo et al. tested 60 diploid Fragaria sp. accessions for their resistance/sus-
ceptibility to P. cactorum [10]. The accessions varied from resistant to highly susceptible, but a
majority was categorized as resistant or moderately resistant. Recently, Davik et al. analyzed
the F2 population of a cross between crown rot resistant and susceptible F. vesca genotypes
(Bukammen and Haugastøl 3, respectively) [11]. They were able to identify a single major gene
locus (named RPc-1, Resistance to Phytophthora cactorum 1), which explained 74.4% of the
phenotypic variance. The 3.3 Mb QTL region contained 801 predicted genes, of which 69 may
play a role in disease resistance. However, a major effort is still needed to identify those genes
actually conferring crown rot resistance.

The defense mechanisms against strawberry pathogens have been extensively reviewed [12].
As in other plants, a two-layered inducible defense system probably functions also in straw-
berry. Immunity is induced, if the plant recognizes a highly conserved pathogen- or microbe-
associated molecular pattern (PAMP or MAMP) with the help of a membrane-localized pat-
tern-recognition-receptor (PRR), or if it perceives a pathogen effector with the help of a resis-
tance (R) protein [13]. The recognition triggers a complex signaling network, leading to the
reprogramming of gene expression and to the activation of defense responses, including the
synthesis of antimicrobial secondary metabolites and the expression of pathogenesis-related
(PR) genes. The magnitude of the defense varies depending on the pathogen, the effector-trig-
gered immunity (ETI) being a stronger and faster response than the PAMP-triggered immu-
nity (PTI). Plant hormones play important roles in the modulation of defense responses. In
general, the salicylic acid (SA)-dependent signaling pathway is effective against biotrophic and
hemibiotrophic pathogens and is required for the activation of hypersensitive cell death
response, whereas the jasmonate (JA)- and ethylene (ET)-mediated defense responses act
against necrotrophs [14]. Crosstalk between these two signaling pathways is often antagonistic,
and defense responses can be modulated also by other plant hormones [15].

Until now, no large-scale transcriptome analyses on strawberry defense responses against P.
cactorum have been reported. To gain a better understanding of the defense mechanisms, we
inoculated F. vesca plantlets with P. cactorum zoospores, and sequenced the root transcrip-
tome. The diploid woodland strawberry, F. vesca, is the wild relative of the octoploid garden
strawberry. The accession Hawaii 4 (H4) was chosen as it is quite resistant against crown rot
[10], and is the reference accession used in the genomic sequencing project [16]. In order to
reduce biological variation between the replicates, micropropagated plant clones were used,
and a novel hydroponic in vitro culture system was exploited to eliminate interference
caused by other microbes (S1 Fig). The samples were collected two days post-inoculation,
representing the early infection stage according to Chen et al. [17]. The data provide compre-
hensive insight into the transcriptional reprogramming that occurs in the roots of F. vesca
upon inoculation.
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Materials and Methods

Plant material
Micropropagated plants of garden strawberry, Fragaria x ananassa cv. ‘Senga Sengana’, were pur-
chased from Agrifood Research FinlandMTT, Laukaa Research and Elite Plant Station. The seeds
of F. vesca, accession Hawaii 4, were provided by Dr. Timo Hytönen (Department of Agricultural
Sciences, University of Helsinki, Finland). The seeds were disinfected in 5% sodium hypochlorite
for 2 min, washed in sterile deionized water, and placed onMurashige-Skoog (MS) agar [18].
Two germinated seedlings, named H4.4 and H4.5, and the ‘Senga Sengana’ plants were micropro-
pagated onMS agar supplemented with 6-benzylaminopurine (2,2 mg/l) and indole-3-butyric acid
(0,4 mg/l). Temperature of the growth room was 20 ± 2°C and the light/dark cycle was 16/8 h.

To induce the root formation, the micropropagated plants were transplanted to MS agar
without hormones. After 4 weeks, when the roots were sufficiently developed, the plants were
transferred to aerated hydroponic culture in modified RITA1 containers (VITROPIC, Saint-
Mathieu-de-Tréviers, France) (S1 Fig). Two plants of each clone (H4.4, H4.5, ‘Senga Sengana’)
were placed in each container (six containers in total), and the roots were protected from light
by wrapping aluminum foil around the lower part of the container. The plants were grown in
modified half-strength Hoagland solution (3 mM KNO3, 2 mM Ca(NO3)2, 1 mMNH4H2PO4,
0.5 mMMgSO4, 1 μMKCl, 25 μMH3BO3, 2 μMZnSO4, 2 μMMnSO4, 0.1 μMCuSO4, 0.1 μM
(NH4)6Mo7O24, 20 μM Fe(Na)EDTA, 2 mMMES) for 20 days before the inoculation. The
growth room conditions were as described above.

Oomycete material
The P. cactorum isolate Pc407 originates from infected rhododendrons and is highly virulent
to garden strawberry [19]. The P. cactorum isolate was maintained on potato dextrose agar
(PDA) at the room temperature. To induce sporangia and zoospore production, the isolate was
cultured in pea broth and soil extract water. Pea broth was prepared as described by Zentmyer
and Chen [20]. Frozen green peas were mixed in a blender in deionized water (100 g/250 ml).
After centrifugation, the supernatant was filtered through Whatman1 qualitative filter paper
(GE Healthcare Bio-Sciences, Pittsburgh, PA, USA), deionized water was added to 500 ml, and
the preparation was autoclaved (121°C, 15 min). The soil extract water was prepared according
to Hamm &Hansen [21]. The soil (Puutarhamulta, Kekkilä Oy, Vantaa, Finland) was mixed in
deionized water (1:1) and kept overnight at room temperature. After centrifugation and filter-
ing through qualitative filter paper, the soil extract water was autoclaved.

The P. cactorum was grown in the pea broth (10 ml) in Petri dishes for three days at room
temperature. To induce sporangia development, the cultures were washed three times with
sterilized deionized water, and 10 ml of soil extract water was added. The plates were incubated
overnight at room temperature under fluorescent light. The soil extract water was removed
and the plates were kept under fluorescent light for another 24 h, after which plenty of sporan-
gia were visible. Sterile deionized water (25 ml, 4°C) was added, and the cultures were chilled
for 30 min at 4°C and then returned to room temperature. After 2 h, most of the zoospores
were liberated, and the suspensions were decanted to sterile Erlenmeyer flasks. The zoospores
were counted (Bürker chamber), and the concentration was adjusted to 5000 zoospores ml-1 by
adding sterile deionized water.

Inoculation with P. cactorum zoospores and sample collection
For the inoculation with P. cactorum zoospores, the scaffolds, each holding six plants (S1 Fig),
were transferred to RITA1-containers (modified for hydroponic growth) containing 390 ml
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of zoospore suspension or sterile deionized water (negative control). The roots were immersed
in the liquid for 30 min, and then returned to half-strength Hoagland solution. All treatments
were made in triplicate.

Samples for RNA extraction were collected 2 days after inoculation, as the hyphae were visi-
ble on the root surfaces of the inoculated plants (S6 Fig). Three biological replicates were col-
lected, all from different containers. Roots, crown and leaves were excised with scalpel,
weighed separately and snap frozen in liquid nitrogen. Samples were stored at—80°C.

RNA extraction
Roots of H4.4 plants were ground to fine powder in liquid nitrogen using a mortar and pestle,
each individual separately. During grinding, 1 ml of SE buffer (0,14 M NaCl, 2 mM KCl, 2 mM
KH2PO4, 8 mM Na2HPO4

�2 H2O, 0,05% v/v Tween-20, 2% w/v polyvinylpyrrolidone 40, 0,7%
w/v bovine serum albumin) was added to 100 mg of plant material [22,23]. The powder (~ 150
mg) was transferred to microcentrifuge tubes. RNA was extracted with RNeasy Mini Kit (Qia-
gen, Valencia, CA, USA) according to manufacturer´s instruction. To remove genomic DNA,
On-column DNase Digestion was made with RNase-Free DNase Set (Qiagen). The quality and
quantity of RNA was determined with Nanodrop1ND-1000 spectrophotometer (NanoDrop
Products, Wilmington, DE, USA), and samples with 260/280 and 260/230 absorbance ratios
of> 2.0 and> 1.75, respectively, were accepted for sequencing.

Library preparation and RNA sequencing
RNA sequencing was made to six root samples of Hawaii4.4 (three controls and three inocu-
lated root samples), each representing one individual and collected from a different container.
The library construction and sequencing of the samples were performed inWeill Cornell Medi-
cal College, Genomics Resources Core Facility (NY, USA). The RNA integrity was verified with
Bioanalyzer 2100 (Agilent Technologies, Palo Alto, CA, USA). The libraries were constructed
with Illumina Truseq RNA-seq Sample Prep Kit, and the sequencing was made using Illumina
HiSeq2000 (Illumina, San Diego, CA, USA). The raw reads are available at the NCBI SRA data-
base (accession numbers SRR3743193, SRR3743194, SRR3743195, SRR3743196, SRR3743197,
SRR3743198).

Data analysis
The raw reads were first trimmed using Trimmomatic (version 0.32) [24]. The adapter
sequences were removed, and low quality bases (phred quality score below 3) were deleted
from both ends of the reads. The reads were also scanned with 4-base sliding window and cut if
the average quality per base dropped below 15. Reads shorter than 36 bases were discarded.

The trimmed reads were mapped against F. vesca nuclear (version v1.0) and chloroplast
genome using STAR RNA-seq aligner (version 2.4.0) [16,25]. Maximum of ten mismatches
were allowed, and the minimum and maximum intron lengths were set to 20 and 6000, respec-
tively. Reads that were mapped to coding sequences (CDS) of annotated genes were counted
using featureCounts with default settings [26]. Chloroplast genome annotation was released on
12.05.2011 and genome annotation was last updated on 04.03.2015. The unmapped paired-end
reads were mapped against expressed sequence tag (EST) sequences of Phytophthora species
(330 482 sequences downloaded from NCBI EST database) using Bowtie (version 0.12.7) [27].

Differential expression analysis was made using EdgeR [28]. Only the genes with a mini-
mum expression level of one count per million (cpm) in at least three replicates were used. The
genes were considered differentially expressed, if the false discovery rate (FDR) was< 0.05 and
log2 fold change< -1 or> 1.
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Gene Ontology (GO) terms were searched for the longest protein sequence of each gene
using PANNZER with default settings [29]. GO term enrichment analysis was made using
BiNGO plugin in Cytoscape [30]. REVIGO was used to remove redundant terms [31]. Protein
domains for receptor-like kinases were searched with Interproscan in Geneious 8.1.5 (http://
www.geneious.com)[32]. Separate GO term enrichment analysis was also made for the up- and
down-regulated RLK gene sets, using the whole RLK gene set as a reference.

Results and Discussion
To understand the molecular events resulting from the interaction of P. cactorum with straw-
berry roots, we first needed to establish a suitable plant-pathogen pair. Of the P. cactorum iso-
late selection in our position, the isolate 407, originating from infected rhododendrons, was
known to be highly virulent to garden strawberry [19]. It killed or nearly killed 80% of the inoc-
ulated garden strawberry cv. Jonsok plants in pathogenicity tests. When we tested the isolate
on another strawberry cv. Senga Sengana known to be one of the most resistant cultivars
against crown rot [5,6], it caused severe stunting of the plants (S2 Fig). On the other hand, 407
did not cause significant decrease in the biomass of F. vescaHawaii 4.4 either in greenhouse
conditions (S2 Fig) or in hydroponic in vitro cultures (S3 Fig). We concluded that the P. cac-
torum isolate 407 together with F. vesca genotype Hawaii 4.4 served our purpose, as the isolate
was not pathogenic to Hawaii but was pathogenic at least to two garden strawberry cultivars.
The responses that would be seen were expected to indicate how F. vesca protects itself against
P. cactorum and crown rot disease.

Overview of RNA sequencing results
Illumina sequencing generated 47.36–54.28 million paired-end raw reads (101 bp) per sample
(Table 1). Of the read pairs, 94.3% passed the quality filtering, and 61.77–76.18% of those were
uniquely mapped to coding DNA sequences (CDS) of the nuclear or chloroplast genome of F.
vesca. In total, 104.79 and 97.24 million reads were uniquely assigned to CDS in water control
and inoculated plants, respectively. Of the filtered reads, 4.50%, 8.23% and 1.67% aligned to
Phytophthora EST sequences in the inoculated samples 1–3, respectively.

Genes expressed at a low level were filtered out, leaving 16 793 genes for further analysis (S1
Table). Of these genes, 4576 and 4243 were down- and up-regulated (false discovery rate
(FDR)< 0.05) in the inoculated plants compared to water controls, respectively, if no fold-
change cut-off values were applied. However, to improve the reliability of the results, more
stringent analysis was carried out with cut-off values of log2 fold-change< -1 or> 1, resulting
in 2993 significantly down-regulated and 2371 up-regulated genes (FDR< 0.05). These more
stringent cut-off values were used below. The differences between the groups were mainly

Table 1. Summary of RNA sequencing results. Controls 1 to 3 refer to water control replicates, inoculated 1 to 3 to replicate plants inoculated with P. cac-
torum 407; each replicate represents roots collected from one individual plant.

Control1 Control2 Control3 Inoculated1 Inoculated2 Inoculated3

Raw reads 47 362 397 53 857 982 52 650 989 51 095 961 54 281 780 48 268 982

Filtered reads 44 737 172 50 780 701 49 622 232 48 143 355 51 128 038 45 564 435

(% of all reads) 94.46 94.29 94.25 94.22 94.19 94.4

Uniquely mapped reads 41 431 462 45 406 557 45 624 736 36 599 168 36 557 345 39 548 772

(% of filtered reads) 92.61 89.42 91.94 76.02 71.5 86.8

Reads assigned to annotated genes 34 082 834 33 195 110 37 515 085 31 698 158 31 582 432 33 963 737

(% of filtered reads) 76.18 65.37 75.6 65.84 61.77 74.54

doi:10.1371/journal.pone.0161078.t001
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quantitative, since only 15 and 10 genes were expressed exclusively in the controls and inocu-
lated plants, respectively.

GO terms were assigned to 13 144 genes (78% of the genes) using PANNZER annotation
program (S1 Table). GO term enrichment analysis of the expressed genes revealed 656 and 475
biological processes, 252 and 84 molecular functions and 37 and 85 cellular components signif-
icantly enriched (adjusted p-value< 0.05) in the up- and down-regulated gene sets, respec-
tively (S2 Table). The most significantly (adjusted p-value< 1E-15) enriched biological
processes are shown in S4 Fig. As one might expect, “response to biotic stimulus” was the most
significantly enriched biological process among the gene set up-regulated in the inoculated
plants. This confirms that the experimental set-up was successful. Other up-regulated biologi-
cal processes included many GO terms associated with metabolic/biosynthetic processes, sig-
naling, transport, responses to various stimuli, defense responses and regulation of immune
processes (S2 Table). Salicylic acid, jasmonic acid and ethylene biosynthetic/metabolic pro-
cesses were up-regulated as well.

On the other hand, “cell wall organization or biogenesis” was the most significantly down-
regulated biological process. Several GO terms related to polysaccharide metabolism, morpho-
genesis, development and growth were also down-regulated (S2 Table). Of the hormonal pro-
cesses, auxin transport and brassinosteroid metabolic/biosynthetic processes were the most
significantly down-regulated ones. Down-regulation of growth and development is a well-known
phenomenon in pathogen-challenged plants [33]. When the resources are limited, the plant
needs to prioritize the defense over development and growth in order to survive. However, con-
stant, unnecessary activation of the defense responses at the expense of development is harmful
for the fitness of the plant. In this study, growth repression caused by P. cactorum inoculation
was apparently transient, as there were no significant differences in the biomass between the
inoculated and uninoculated plants in the long-term experiments (S2 and S3 Figs). This minus-
cule effect on growth may be associated to the tight regulation of defense responses. In the next
chapters, a closer look is taken to the genes related to the most significantly up- and down-regu-
lated biological processes and the genes that could play important roles in plant immunity.

Genes expressed in P. cactorum resistance locus RPc-1
Of particular interest was the expression of 69 defense related genes, located in the QTL region
associated with P. cactorum resistance in F. vesca [11]. Of these genes, 47 were expressed highly
enough (at least one cpm in three replicates) to be included in the differential expression analy-
sis (Table 2). Seven of these genes were significantly down-regulated, while 19 were up-regu-
lated upon P. cactorum inoculation. Many of the up-regulated genes, such as cyclic nucleotide-
gated ion channels, calcium-binding protein and kinases are probably involved in signaling
events, whereas WRKY transcription factors are important transcriptional regulators of plant
defense responses. Phenylalanine ammonia-lyase (PAL) catalyzes the first committed step in
the phenylpropanoid pathway, leading to the biosynthesis of various polyphenolic compounds,
and is arguably one of the central players in plant defense. However, the most interesting resis-
tance gene candidates are receptor-like protein, receptor kinases and nucleotide-binding site–
leucine-rich repeat (NBS-LRR) resistance proteins possibly functioning in pathogen percep-
tion. In total, four NBS-LRR protein-encoding genes (101306457, 101297569, 101300750,
101304699) were expressed in the RPc-1 locus, two of them being significantly down-regulated
in the inoculated plants. The most highly expressed NBS-LRR gene was 101297569, which had
much higher expression level compared to the other NBS-LRR genes, and can thus be consid-
ered as one of the resistance gene candidates in the RPc-1 locus. Receptor-like kinases (RLK)
are discussed in more detail in the next chapter.

Strawberry Transcriptome in P. cactorum Attack

PLOS ONE | DOI:10.1371/journal.pone.0161078 August 12, 2016 6 / 21



Table 2. Genes in P. cactorum resistance locus RPc-1 expressed in the roots of F. vesca.

Geneid Product Control (cpm) Inoc. (cpm) log2 FC FDR

101305393 putative receptor protein kinase ZmPK1 0.00 1.92 9.13 4E-24

101296502 probable WRKY transcription factor 70 0.17 28.30 7.39 8E-38

101297362 probable WRKY transcription factor 70 0.01 2.27 6.94 1E-18

101295534 calcium-binding protein CML42-like 1.49 130.21 6.46 2E-54

101313535 cyclic nucleotide-gated ion channel 1-like 0.17 3.14 4.26 4E-09

101290881 receptor-like protein 12 isoform X1 14.11 161.53 3.52 1E-18

101310048 L-type lectin-domain containing receptor kinase IV.1 25.25 286.54 3.50 6E-36

101311683 probable WRKY transcription factor 33 21.75 154.02 2.82 3E-17

101297653 probable WRKY transcription factor 70 0.36 2.52 2.79 4E-05

101315259 phenylalanine ammonia-lyase 1 89.99 539.49 2.58 7E-16

101305576 MLO-like protein 3 19.50 103.53 2.41 8E-13

101309756 L-type lectin-domain containing receptor kinase S.4-like 28.95 137.88 2.25 3E-20

101305865 MLO-like protein 6 60.25 286.25 2.25 4E-17

101305094 putative receptor protein kinase ZmPK1 0.13 0.56 2.08 6E-04

101292429 cyclic nucleotide-gated ion channel 1-like 47.66 137.03 1.52 2E-04

101312550 ser/thr-protein kinase AtPK2/AtPK19-like 24.89 68.13 1.45 4E-06

101294478 probable ser/thr-protein kinase NAK 52.08 142.24 1.45 1E-08

101309855 putative ser/thr-protein kinase 11.25 29.26 1.38 2E-09

101301595 non-specific lipid-transfer protein 1-like 61.21 142.12 1.22 3E-07

101307520 gamma-interferon-inducible-lysosomal thiol reductase 1.37 2.57 0.91 2E-02

101293913 probable LRR-RLK (At1g06840 ortholog) 4.41 7.62 0.79 1E-02

101291543 CBL-interacting protein kinase 2-like 94.73 160.18 0.76 3E-02

101312949 cyclic nucleotide-gated ion channel 1-like 13.74 22.94 0.74 8E-02

101315445 probable leucine-rich repeat RLK (At5g49770 ortholog) 196.92 292.18 0.57 4E-02

101297067 probable WRKY transcription factor 70 60.45 82.12 0.44 5E-01

101291163 probable LRR-RLK (At3g47570 ortholog) 1.38 1.77 0.36 4E-01

101315161 ser/thr-protein kinase HT1 28.58 36.46 0.35 1E-01

101293218 BTB/POZ domain-containing protein (At3g09030 ortholog) 18.06 22.59 0.32 2E-01

101308191 PHD finger-like domain-containing protein 5B 16.47 18.77 0.19 5E-01

101297170 ABC transporter B family member 1 170.99 183.62 0.10 7E-01

101292428 PHD finger protein ALFIN-LIKE 1-like 114.68 122.32 0.09 7E-01

101299684 BTB/POZ domain-containing protein (At3g08570 ortholog) 23.69 20.89 -0.18 5E-01

101308206 L-type lectin-domain containing receptor kinase VIII.1 21.26 18.03 -0.24 4E-01

101292033 L-type lectin-domain containing receptor kinase VIII.2-like 88.21 72.10 -0.29 2E-01

101306457 putative disease resistance protein RGA3 4.70 3.67 -0.36 3E-01

101297569 putative disease resistance protein RGA3 43.62 32.41 -0.43 5E-02

101293502 ser/thr-protein kinase (At5g01020 ortholog) 27.89 19.05 -0.55 2E-02

101307601 calcium-dependent protein kinase 13 69.97 43.43 -0.69 9E-04

101291255 CBL-interacting ser/thr-protein kinase 14-like 31.23 17.27 -0.86 1E-04

101291075 cyclic nucleotide-gated ion channel 1-like 2.37 1.23 -0.95 2E-02

101292039 probable LRR-RLK (At3g47570 ortholog) 1.73 0.77 -1.16 3E-03

101300750 putative disease resistance protein RGA3 2.33 0.92 -1.35 8E-04

101300640 probable ser/thr-protein kinase (At5g41260 ortholog) 54.90 19.23 -1.51 9E-13

101307025 probable ser/thr-protein kinase WNK5 127.90 32.87 -1.96 4E-13

101304699 putative disease resistance protein (At3g14460 ortholog) 3.22 0.72 -2.15 1E-05

101301793 probable WRKY transcription factor 49 2.09 0.41 -2.34 2E-07

(Continued)
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Receptor-like kinases
Membrane-bound receptor-like kinases are involved in pathogen recognition and activation of
immune responses as well as in the regulation of plant development. Protein domains for
annotated receptor-like kinases (RLKs) were searched, and 308 RLKs were classified in nine
groups based on their domain structures and similarity to known RLKs (Table 3, S5 Fig).
Approximately 66% of these RLKs were differentially expressed upon P. cactorum attack.
Among the up-regulated RLK gene set, several enriched GO terms were related to stress and
defense responses, the most significant term being “response to salicylic acid stimulus”. In con-
trast, most of the enriched GO terms in the down-regulated RLK set were related to the regula-
tion of development and growth, indicating that the surveillance system of the plant was
shifted from the development mode to the defense mode.

Interestingly, two L-type-lectin-RLKs (101310048, 101309756), two G-type-lectin-RLKs
(101305393, 101305094) and one receptor-like protein (RLP) (101290881), significantly up-
regulated in the inoculated plants in our study, are located in the QTL region associated with P.
cactorum resistance in F. vesca [11] (Table 2). Especially, two L-type-lectin-RLKs (101310048,
101309756) were highly expressed and markedly up-regulated in the inoculated plants
(Table 2); they were also the most highly expressed L-type-lectin-RLKs in the inoculated roots
of F. vesca. In addition, one gene (101292033) located in the RPc-1 locus, with typical L-type-
lectin receptor domain but lacking kinase domain, was constitutively highly expressed in the
roots (Table 2). As several studies have demonstrated the role of L-type-lectin-RLKs in Phy-
tophthora resistance [34–36], these genes can be considered as the strongest resistance gene
candidates in the RPc-1 locus. Some G-type-lectin-RLKs are involved in innate immunity as
well, although they are better known for their role in the control of self-incompatibility in Bras-
sicaceae [37]. For example, NgRLK1 is the interactor of Phytophthora capsici elicitin, capsicein,
that is able to trigger a hypersensitive response [38]. Up-regulated RLP in the RPc-1 locus con-
tains a leucine-rich repeat (LRR)-domain in the extracellular part but lacks a cytoplasmic
kinase domain. As this gene was highly expressed in the inoculated plants and LRR-RLPs have

Table 2. (Continued)

Geneid Product Control (cpm) Inoc. (cpm) log2 FC FDR

101306748 cyclic nucleotide-gated ion channel 1-like 6.40 0.86 -2.89 1E-12

Mean expression levels (cpm) in the controls and in the inoculated roots, log2 fold changes and false discovery rates (FDR).

doi:10.1371/journal.pone.0161078.t002

Table 3. Receptor-like kinases expressed in the wild strawberry F. vesca.

RLK group Total number of RLKs Up-regulated RLKs Down-regulated RLKs

CRK 10 6 1

CrRLK1L 13 2 4

G-type-LecRLK 61 34 7

L-type-LecRLK 16 12 0

LRR-MLD-RLK 17 8 2

LRR-RLK 147 36 58

MLD-LRR-RLK 9 2 4

PR5KL 17 15 0

WAK or WAKL 18 12 1

Total 308 127 77

doi:10.1371/journal.pone.0161078.t003

Strawberry Transcriptome in P. cactorum Attack

PLOS ONE | DOI:10.1371/journal.pone.0161078 August 12, 2016 8 / 21



been implicated in disease resistance in several plants [39], this gene is also a good resistance
gene candidate in F. vesca. To unravel the potential role of these RLKs in the crown rot resis-
tance, mechanistic studies should be carried out.

A closer look at the RLKs revealed a new group of proteins, which often contained wall-
associated receptor kinase galacturonan-binding domain (IPR025287) in their extracellular
part, although being otherwise more similar to pathogenesis-related 5 (PR5)-like receptor
kinase-related (PTHR24420:SF561) subfamily in the PANTHER database. Over 80% of the
members of this RLK group were up-regulated in F. vesca roots after P. cactorum inoculation
(Table 3), suggesting an important role in defense responses. Wall-associated kinases (WAK)/
WAK-like (WAKL) may serve as sensors monitoring cell wall integrity, since they are directly
cross-linked to cell wall pectins, but are also able to bind shorter pectin fragments released
from the cell wall in pathogen attacks and activate defense responses [40]. We also identified
an additional RLK group that contained LRR-domain followed by malectin-like carbohydrate-
binding domain (IPR024788). Some of the members of this group showed similarity to Arabi-
dopsis LysM RLK1-interacting kinase 1, which regulates negatively the innate immunity trig-
gered by chitin and flg22, and positively JA and ET signaling pathways [41]. Of the other RLK
groups, the members of which were most often up-regulated, cysteine-rich receptor kinases
(CRKs) may perceive extracellular ROS signals and activate intracellular signaling in response
to abiotic or biotic stress [42].

Three RLK groups, in which the members were more often down-regulated than up-regu-
lated, were LRR-RLKs, Catharanthus roseus RLK1-like kinases (CrRLK1Ls) and
MLD-LRR-RLKs (Table 3). CrRLK1Ls regulate cell elongation and developmental processes in
plants [43], and many of the down-regulated LRR-RLKs seem to control plant development as
well. These data are in line with the results of GO term enrichment analysis indicating the
down-regulation of developmental processes upon P. cactorum inoculation (S4 Fig). Examples
of MLD-LRR-RLKs include symbioses receptor-like kinase (SYMRK) required for symbiotic
plant-pathogen-interactions [44,45], and impaired oomycete susceptibility 1 (IOS1) that con-
tributes to downy mildew disease development in Arabidopsis [46]. As some of the
MLD-LRR-RLKs may function as susceptibility factors, it may be beneficial to down-regulate
their expression upon pathogen attack.

Phenylalanine ammonia-lyase genes and positive regulators of SA
signaling
The SA-related biological processes were up-regulated in F. vesca upon P. cactorum inocula-
tion. In SA-rich plants such as poplar, rice and potato, SA synthesis mainly takes place through
phenylalanine ammonia-lyase (PAL)-dependent phenylpropanoid pathway [47]. As straw-
berry leaves have high basal levels of SA [48], it seems probable that phenylpropanoid pathway
is the main SA biosynthesis pathway also in Fragaria spp. Of the two PAL-encoding genes
expressed in our transcriptome, one (101315259) is located in the P. cactorum resistance locus
in F. vesca genome [11].

In Arabidopsis, SA is mostly synthesized through isochorismate synthase 1 (ICS1) [49],
which has not been identified in F. vesca. However, some other gene homologs known to be
involved in SA signaling in Arabidopsis were up-regulated in inoculated F. vesca roots. These
included enhanced disease susceptibility 1 (EDS1) and phytoalexin-deficient 4 (PAD4) that
function upstream of SA synthesis and potentiate SA signaling in a positive feedback loop [50].
EDS1 is able to form heterodimers with PAD4 and also with senescence-associated gene101
(SAG101) that has been implicated in plant immunity [51]. In our study, three SAG101-genes
were up-regulated in the inoculated plants. In addition, two AGD2-like defense response
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protein 1 (ALD1) genes and two flavin-dependent monooxygenase 1 (FMO1) genes were up-
regulated. FMO1 is required for systemic accumulation of SA in systemic acquired resistance
(SAR) along with ALD1, which is responsible for the synthesis of pipecolic acid, a long distance
signal for SA [52]. The results suggest that systemic responses are activated in the inoculated F.
vesca roots.

JA and ET biosynthesis and metabolism
The biosynthetic and metabolic processes of JA and ET were significantly enriched among the
gene set up-regulated in the P. cactorum inoculated F. vesca roots. Two 1-aminocyclopropane-
1-carboxylate (ACC) synthase-like (ACS) genes and at least two ACC oxidase-like (ACO)
genes were up-regulated in the ET biosynthetic pathway. Also three ethylene response factor 1
(ERF1) genes were up-regulated. ERF1 is known to activate transcription of several PR genes in
response to ET and JA and is an important transcription factor in plant defense [53]. Also the
negative regulators of ET signaling were up-regulated upon P. cactorum attack: reversion-to-
ethylene sensitivity 1 (RTE1) and two ET receptors (ethylene receptor 2 (ETR2) and ethylene
response sensor 1 (ERS1)). These receptors serve as negative regulators of ET signaling, ensur-
ing that the responses are down-regulated as soon as the ET level is diminished [54]. As the
prolonged up-regulation of immune responses can be detrimental, this feedback regulation sys-
tem is probably crucial for the plant.

Most genes in key steps of JA biosynthesis were up-regulated upon P. cactorum attack: three
LOX-like genes, two allene oxide synthase-like (AOS) genes, two allene oxide cyclase-like
(AOC) genes, and three 12-oxophytodienoate reductase 3-like genes (OPR3). Activation of
negative regulation was also observed. Four negative regulators of JA-responsive genes, jasmo-
nate ZIM-domain (JAZ) genes, were significantly up-regulated, whereas the Coronatine-insen-
sitive protein 1 (COI1)–encoding transcripts were reduced (log2 FC -0.955, FDR 4.12E-05).
This could cause desensitization to JA-Ile, since COI1 functions as JA-Ile receptor, and forms
SCFCOI1 E3 ubiquitin ligase complexes with other proteins to recruit JAZ repressors for ubiqui-
tination and degradation [55]. Similar responses have been observed in potato cultivar Acker-
segen that displays quantitative resistance against Phytophthora infestans: concentrated P.
infestans culture filtrate caused up-regulation of genes implicated in SA-related defense
responses and JA biosynthesis, but also up-regulation of JAZ1 and down-regulation of COI1
[56]. This suggests that the seemingly contradictory responses could represent a highly func-
tional strategy against Phytophthora pathogens.

WRKY transcription factors potentially involved in SA/JA crosstalk
In total, 21 genes encoding WRKY transcription factors were significantly up-regulated in
response to P. cactorum inoculation. Four of these (101296502, 101297653, 101297362,
101311683) are located in the QTL region associated with P. cactorum resistance in F. vesca
[11]. In Arabidopsis, several of these up-regulated WRKY transcription factors, including
WRKY70, promote SA-related defense responses and suppress JA responses [57]. On the other
hand, two genes showing similarity to ArabidopsisWRKY33, and two probable WRKY40
genes that function as negative regulators of SA/EDS1-signaling pathway and positive regula-
tors of JA signaling were also up-regulated [58,59]. The results suggest that hormone crosstalk
in F. vesca is highly complex and the defense responses are under strict control.

PR-10 proteins and flavonoid biosynthesis
In total, 18 genes with similarity to Mal d 1, Pru ar 1 or Pru av 1, major allergens of the Rosa-
ceae family, were significantly up-regulated by P. cactorum. Four of these were among the 10
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most highly expressed genes in the P. cactorum inoculated F. vesca. All of these proteins belong
to the PR-10 pathogenesis-related protein family induced by various stresses [60]. Previous
studies have shown that levels of PR-10 transcripts/proteins are elevated in Fragaria species
challenged with pathogens such as Colletotrichum acutatum, Fusarium oxysporum f. sp. fragar-
iae, Botrytis cinerea and Podosphaera aphanis [61–65]. The importance of these proteins in dis-
ease resistance is supported by the fact that their expression patterns differ between resistant
and susceptible plants: some PR-10 proteins are expressed exclusively in the resistant genotype,
or their up-regulation is faster or stronger compared to the susceptible genotype.

The PR-10 proteins can bind biologically important ligands in their hydrophobic cavity,
including fatty acids, cytokinins, sterols and flavonoids [66]. For example, the strawberry Fra a
allergens bind metabolic intermediates of flavonoid biosynthesis and thereby control their bio-
synthesis [67,68]. Thus, it is possible that the up-regulation of the PR-10 proteins in P. cac-
torum inoculated F. vesca is related to the enhanced synthesis of secondary metabolites. In
accordance with this, the data suggest that the biosynthesis of phenylpropanoids and flavo-
noids were up-regulated (Fig 1). In particular, the biosynthesis of flavan-3-ols, such as catechin,
was probably increased, since leucoanthocyanidin reductase-like gene was up-regulated, but
flavanol synthase and anthocyanidin synthase were significantly and nearly significantly (log2
FC: -0.92, FDR: 0.008) down-regulated, respectively. Previous studies have shown that catechin
is one of the most abundant flavonoids in strawberry fruits and leaves [69–71]. Catechin seems
to be involved in resistance against Alternaria alternata and Botrytis cinerea in the leaves and

Fig 1. Several genes involved in flavonoid biosynthesis were up-regulated in F. vesca upon P.
cactorum inoculation. PAL, phenylalanine ammonia-lyase; C4H, cinnamic acid 4-hydroxylase; 4CL,
4-coumarate:coenzyme A ligase; CHS, chalcone synthase; CHI, chalcone isomerase; F3H, flavonoid
3-hydroxylase; F3’H, flavanone 3’-hydroxylase; DFR, dihydroflavanol 4-reductase; ANS, anthocyanidin
synthase; GT, glycosyltransferase; FLS, flavonol synthase; LAR, leucoanthocyanidin reductase. GT1 was
expressed at low level and it was excluded from the analysis in the filtering step. The expression level of ANR
is not known, since it is not included in the annotation version used in this study.

doi:10.1371/journal.pone.0161078.g001
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fruits of strawberry, respectively [72,73]. We thus suggest that catechin or other flavan-3-ol
derived compounds play a role in strawberry defense responses against P. cactorum.

Terpenoid biosynthesis
Several genes involved in terpenoid biosynthesis according to KEGG (Kyoto encyclopedia of
genes and genomes) PATHWAY database [74] were up-regulated in P. cactorum inoculated F.
vesca (Fig 2). This includes eight genes that catalyze the steps from acetyl-CoA to isopentenyl
pyrophosphate (IPP) in the mevalonate (MVA) pathway. In contrast, none of the genes involved
in the methylerythritol phosphate (MEP) pathway were up-regulated. The MVA pathway sup-
plies precursors for the biosynthesis of sesquiterpenoids and triterpenoids and functions in the
cytosol/endoplasmic reticulum/peroxisomes, whereas the MEP pathway is located in the plastids
and gives rise to monoterpenoids, diterpenoids and tetraterpenoids [75]. Even though the MEP
pathway was not up-regulated, there could be some changes in the monoterpenoid biosynthesis,
as an (-)-alpha-pinene synthase-like gene was strongly up-regulated.

Genes involved in sesquiterpenoid and triterpenoid synthesis were strongly up-regulated.
Indeed, the most highly expressed gene in the inoculated plants encodes (-)-germacrene D
synthase-like (GDS) protein included in sesquiterpenoid biosynthesis (S1 Table). Three other
GDS genes were also significantly up-regulated. Transcript levels of squalene synthase, five
squalene epoxidases and two beta-amyrin synthase-like genes were significantly higher in the
inoculated roots, suggesting that triterpenoid biosynthesis is increased upon P. cactorum inoc-
ulation. Alpha/beta-amyrin synthase gene, along with 3-hydroxy-3-methylglutaryl coenzyme-
A synthase gene, were induced also in the fruits of garden strawberry 24 h after Colletotrichum
acutatum inoculation [62]. Moreover, Hirai et al. have identified three antifungal triterpenoids
from the inoculated and wounded fruits of strawberry cultivar that displays resistance against
Colletotrichum fragariae [76]. These results suggest that terpenoid biosynthesis is part of the
general defense responses in strawberry.

Triterpenoids can be further processed to triterpenoid saponins that consist of triterpenoid
backbone with one or more covalently linked sugar moieties [77]. Prior to glycosylation, triter-
penoid backbones are often oxygenated by cytochrome P450 enzymes. In our study, ten of the
fifteen beta-amyrin 28-oxidase-like genes expressed in F. vesca were up-regulated, suggesting
that triterpenoid saponin biosynthesis is induced in the roots in response to P. cactorum attack.
In a non-targeted metabolite analysis, triterpenoid saponins and glycosylated sesquiterpenoid
derivatives have been identified in the strawberry flower [78]. They are enriched in the sepals
that protect floral buds from biotic and abiotic stresses, supporting an important role in
defense. The molecular mechanisms of antimicrobial and antiherbivorous activities of saponins
are not completely understood, but many of them are able to perturb the membranes [79].

Brassinosteroid biosynthesis
In contrast to terpenoid biosynthesis, some of the genes catalyzing the biosynthesis of steroids
and brassinosteroids (BR) were down-regulated in F. vesca upon P. cactorum inoculation.
This includes two genes encoding cycloartenol synthases (Fig 2), a gene encoding homolog of
Arabidopsis DWF1 (DWARF1) and a gene encoding CYP85A2/BR6OX2 (BRASSINOSTER
OID-6-OXIDASE 2). Cycloartenol synthases catalyze the first step in the pathway leading to
campesterol and BR, i.e. the conversion of (S)-2,3-oxidosqualene to cycloartenol. DWF1 cata-
lyzes the conversion of 24-methylenecholesterol to campesterol and CYP85A2/BR6OX2 cata-
lyzes the last, rate-limiting step [80] in BR biosynthesis. We suggest that upon P. cactorum
inoculation squalene is directed to triterpenoid biosynthesis rather than to BRs or other ste-
roids. Furthermore, a homologue of Arabidopsis BR receptor, BRI1 (BRASSINOSTEROID
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INSENSITIVE1), was significantly down-regulated, presumably causing desensitization to
BRs.

Fig 2. P. cactorum inoculation changes isoprenoidmetabolism in F. vesca roots. Several genes involved in MVA pathway were up-regulated,
whereas none of the MEP pathway genes were up-regulated. Products of the MVA pathway appear to be targeted to sesquiterpenoid and
triterpenoid biosynthesis rather than to sterol biosynthesis. AACT, acetoacetyl-CoA thiolase; HMGS, 3-hydroxy-3-methylglutaryl-CoA synthase;
HMGR, 3-hydroxy-3-methylglutaryl-CoA reductase; MVK, mevalonate kinase; PMK, phosphomevalonate kinase; MPDC, diphosphomevalonate
decarboxylase; IDI, isopentenyl-diphosphate Delta-isomerase; DXS, 1-deoxy-D-xylulose-5-phosphate synthase; DXR, 1-deoxy-D-xylulose
5-phosphate reductoisomerase; MCT, 2-C-methyl-D-erythritol 4-phosphate cytidyltransferase; CMK, 4-(cytidine 5’-diphospho)-2-C-methyl-D-
erythritol kinase; MDS, 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase; HDS, 1-hydroxy-2-methyl-2-butenyl 4-diphosphate synthase; HDR,
1-hydroxy-2-methyl-2-butenyl 4-diphosphate reductase; FPS, farnesyl diphosphate synthase; GPPS, geranyl diphosphate synthase; GGPPS,
geranylgeranyl diphosphate synthase; SQS, squalene synthase; SQE, squalene epoxidase; GDS, (-)-germacrene D synthase-like; BAS, beta-
amyrin synthase-like; CAS, cycloartenol synthase -like; APS, (-)-alpha-pinene synthase-like.

doi:10.1371/journal.pone.0161078.g002
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Down-regulation of BR biosynthesis and reduction of BR responsiveness is in agreement
with the regulatory role of BRs in growth-immunity tradeoffs [81]. Even though BRs can
enhance pathogen resistance in some cases, several reports indicate negative effects on immu-
nity, in particular on the activation of PAMP-triggered immunity [82,83]. BR treatment also
blocks benzothiadiazole (BTH)-induced resistance in rice [84]. It makes sense that BR synthe-
sis would be diminished and BR responsiveness reduced in resistant F. vesca when inoculated
with P. cactorum, as BR signaling could otherwise override defense signaling. In addition, it
would be beneficial for F. vesca to channel isoprenoid metabolites to terpenoid biosynthesis
rather than to BR synthesis.

Auxin biosynthesis and transport
The transcriptome results suggest a decrease in auxin biosynthesis in the inoculated plants. All
four YUCCA genes of F. vesca (YUC1, YUC3, YUC5, YUC7) [85] expressed in the roots of the
F. vescaH4.4 genotype, were significantly down-regulated. The YUC flavin monoxygenase-like
proteins catalyze the rate-limiting step in the indole-3-pyruvic acid (IPA) pathway, which has
been confirmed as the main auxin biosynthesis route in Arabidopsis [86,87]. According to GO
term enrichment analysis, auxin transport was apparently down-regulated as well, and the
expression levels of at least seven homologues of genes implicated in auxin transport in Arabi-
dopsis were reduced in the inoculated F. vesca roots.

Auxin is an important regulator of development, and its impact on immunity can be nega-
tive or positive [88]. In general, auxin signaling seems to improve resistance against necro-
trophs but enhance susceptibility against biotrophic pathogens, apparently because of the
antagonistic relationship between SA and auxin. It has been reported that a mutation in
WALLS ARE THIN1 (WAT1) gene, encoding a vacuolar auxin transporter, reduces auxin level
and increases SA level in Arabidopsis roots, which confers resistance to several vascular patho-
gens [89,90]. As WAT1 gene was down-regulated in the inoculated F. vesca, it could play a role
also in the defense responses against P. cactorum. Auxin may enhance the susceptibility also by
other mechanisms, e.g. by modulating cell wall properties [91,92]. On the other hand, it has
been shown that suppression of auxin response renders Arabidopsismore susceptible to Phy-
tophthora cinnamomi [93]. Because of these contradictory findings it is difficult to conclude
whether the changes in auxin-related processes promote or impede immunity in F. vesca.

Cell wall biosynthesis
Several GO terms related to cell wall biosynthesis, development and growth were enriched in
the gene set down-regulated upon P. cactorum inoculation. Of the transcription factors regulat-
ing cell wall biosynthesis, two MYB46, VASCULAR-RELATED NAC-DOMAIN 4 (VND4)
and SECONDARYWALL-ASSOCIATED NAC DOMAIN 2 (SND2) genes were down-regu-
lated in the P. cactorum inoculated plants. In Arabidopsis, MYB46 acts as a master switch
activating genes involved in the secondary cell wall synthesis [94], VNDs (VASCULAR-
RELATED NAC-DOMAIN) are central activators of the secondary wall synthesis in the vessels
[95], and SND2 regulates genes involved in cellulose and hemicellulose biosynthesis and lignin
polymerization in fibers [96].

Of the cell wall biosynthetic genes, six out of eight cellulose synthase A catalytic subunit-like
genes were down-regulated in the inoculated F. vesca (Table 4). Another group of genes sys-
tematically down-regulated was Fasciclin-like arabinogalactan proteins (FLAs) (Table 4),
which are suggested to have a role in cellulose deposition in the secondary cell wall [97]. Of the
genes encoding Trichome birefringence-like (TBL) proteins, over 50% were down-regulated
(Table 4). The functions of TBLs are not well known, but some of them appear to contribute to
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the acetylation of cell wall polymers [98]. The observed down-regulation of several cell wall
synthesis genes may promote the activation of defense responses, as mutant plants with defects
in the cell wall synthesis sometimes display changes in hormone homeostasis and enhanced
resistance to pathogens [99]. The only gene group involved in the cell wall synthesis that
showed strong up-regulation in the inoculated plants, was the lignin-forming anionic peroxi-
dase-like genes (Table 4), suggesting that the plant attempts to compensate reduced cellulose
synthesis by enhancing lignin deposition. This is in agreement with the finding that reduced
cellulose synthesis leads to ectopic lignin synthesis in Arabidopsis [100].

Conclusion
This RNA-seq analysis provides comprehensive insight into the molecular survival mecha-
nisms triggered in F. vesca roots upon P. cactorum attack, and emphasizes the balance between
development and defense. Accordingly, cell wall synthesis is down-regulated, RLK-based sur-
veillance system and biosynthesis pathways of hormones are reprogrammed and expression of
genes involved in the biosynthesis of potential defense compounds is enhanced. Interesting
changes were also seen in the recently identified P. cactorum resistance locus RPc-1. Particu-
larly, we want to highlight NBS-LRR resistance gene (101297569), which was the most highly
expressed NBS-LRR gene in this locus, and the L-type-lectin-RLKs that were highly expressed
and strongly up-regulated in the inoculated roots. Because L-type-lectin-RLKs are known to
play important roles in Phytophthora-plant interactions, these RLKs are among the most inter-
esting resistance gene candidates in F. vesca and their function should be further characterized.
In addition, metabolomic studies should be carried out to confirm the changes observed in the
biosynthesis pathways.

Supporting Information
S1 Fig. In vitro infection system. The plants were grown and inoculated in the aerated hydro-
ponic cultures in modified RITA1 containers (VITROPIC, Saint-Mathieu-de-Tréviers,
France).
(TIF)

S2 Fig. Above-ground biomass (g) of control plants and P. cactorum 407 -inoculated plants
of F. vesca genotype Hawaii 4.4 and garden strawberry cv. Senga Sengana.Micropropagated
plants were grown in pots in peat-sand mixture (3:1) for three weeks and inoculated four times
with 5 ml of zoospore suspension 21, 29, 32, and 43 days after potting. The zoospore concen-
trations were 47 500, 130 000, 49 000, 41 000 zoospores /ml, respectively. Biomasses were mea-
sured 57 days after first inoculation. P. cactorum isolate 407 did not reduce the growth of
Hawaii 4.4 genotype, but inoculated Senga Sengana plants were severely stunted compared to

Table 4. Effect of P. cactorum inoculation of F. vesca roots on the expression of genes involved in cell wall synthesis.

Number of genes Up-regulated Down-regulated

Cellulose synthase A catalytic subunit 8 0 6

Cellulose synthase -like protein 12 4 1

COBRA-like protein 7 1 3

Expansins/Expansin-like 21 3 13

Fasciclin-like protein 13 0 9

Laccase 33 9 15

Lignin-forming anionic peroxidase 3 3 0

Trichome birefringence-like protein 34 2 19

doi:10.1371/journal.pone.0161078.t004
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the controls (p = 0.000001). The means are derived from ten replicates.
(TIF)

S3 Fig. Biomass of control plants and P. cactorum 407 -inoculated plants of F. vescaHawaii
4.4 genotype.Micropropagated plants were grown in hydroponic cultures for 32 days, and
then inoculated by dipping the roots in zoospore suspension (500 zoospores/ml) for two hours.
Biomasses were measured 8 weeks after inoculation. P. cactorum inoculation did not cause sig-
nificant reduction in biomass of Hawaii 4.4 plants.
(TIF)

S4 Fig. The most significantly enriched biological processes in the P. cactorum -inoculated
F. vesca roots: (A) up-regulated, (B) down-regulated (adjusted p-value< 1E-15). The most
redundant GO terms based on REVIGO analysis were removed to improve clarity. Cutoff
value for similarity of 0.7 was used for up-regulated and of 0.9 for the down-regulated pro-
cesses. The intensity of the color indicates the degree of significance and the node size is pro-
portional to the number of the genes assigned to each GO term in the tested gene set.
(TIF)

S5 Fig. Typical domain structures of RLKs.
(TIF)

S6 Fig. P. cactorum hyphae on the root surfaces of the inoculated plant two days after inoc-
ulation.
(TIF)

S1 Table. Differential expression analysis. Expression levels (cpm) of F. vesca genes in the
controls and in the inoculated roots, log2 fold changes, false discovery rates (FDR) and GO
terms. Expression data of all genes are presented on the first spreadsheet of the excel table and
the discussed gene groups are presented on separate spreadsheets.
(XLSX)

S2 Table. GO term enrichment analysis. Enriched GO terms (biological processes, molecular
functions and cellular components) in the up-regulated and down-regulated gene set.
(XLSX)
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