
Wan-Yu Lin is an associate professor at the Institute of Epidemiology and Preventive Medicine & Department of Public Health, College of Public Health,
National Taiwan University.
Ching-Chieh Huang is a Masters student at the Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University.
He is under Wan-Yu Lin’s supervision.
Yu-Li Liu is an investigator at the Center for Neuropsychiatric Research, National Health Research Institutes.
Shih-Jen Tsai is the Chairman at the Department of Psychiatry, Taipei Veterans General Hospital and a professor at the Division of Psychiatry, National
Yang-Ming University.
Po-Hsiu Kuo is a professor at the Institute of Epidemiology and Preventive Medicine & Department of Public Health, College of Public Health, National
Taiwan University.
Submitted: 5 June 2018; Received (in revised form): 14 August 2018

© The Author(s) 2018. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

2236

Briefings in Bioinformatics, 20(6), 2019, 2236–2252

doi: 10.1093/bib/bby086
Advance Access Publication Date: 13 September 2018
Review Article

Polygenic approaches to detect gene–environment
interactions when external information is unavailable

Wan-Yu Lin , Ching-Chieh Huang, Yu-Li Liu, Shih-Jen Tsai and
Po-Hsiu Kuo

Corresponding author: Wan-Yu Lin, Institute of Epidemiology and Preventive Medicine & Department of Public Health, College of Public Health, National
Taiwan University, Room 501, No. 17, Xu-Zhou Road, Taipei 100, Taiwan. Tel.: +886-2-33668106; Fax: +886-2-33668106; E-mail: linwy@ntu.edu.tw

Abstract

The exploration of ‘gene–environment interactions’ (G × E) is important for disease prediction and prevention. The scientific
community usually uses external information to construct a genetic risk score (GRS), and then tests the interaction between
this GRS and an environmental factor (E). However, external genome-wide association studies (GWAS) are not always
available, especially for non-Caucasian ethnicity. Although GRS is an analysis tool to detect G × E in GWAS, its performance
remains unclear when there is no external information. Our ‘adaptive combination of Bayes factors method’ (ADABF) can
aggregate G × E signals and test the significance of G × E by a polygenic test. We here explore a powerful polygenic approach
for G × E when external information is unavailable, by comparing our ADABF with the GRS based on marginal effects of
SNPs (GRS-M) and GRS based on SNP × E interactions (GRS-I). ADABF is the most powerful method in the absence of SNP
main effects, whereas GRS-M is generally the best test when single-nucleotide polymorphisms main effects exist. GRS-I is
the least powerful test due to its data-splitting strategy. Furthermore, we apply these methods to Taiwan Biobank data.
ADABF and GRS-M identified gene × alcohol and gene × smoking interactions on blood pressure (BP). BP-increasing alleles
elevate more BP in drinkers (smokers) than in nondrinkers (nonsmokers). This work provides guidance to choose a
polygenic approach to detect G × E when external information is unavailable.

Key words: diastolic blood pressure; systolic blood pressure; gene–alcohol interaction; gene–smoking interaction; Taiwan
Biobank; multiple-testing correction

Introduction
Evidence of ‘gene–environment interactions’ (G × E) has been
found in some phenotypes and complex diseases [1–5]. Genes
and environmental exposure may jointly influence disease
liability. The identification of G × E is important to improve the
accuracy and precision of assessing genetic and environmental
influences [6]. The G × E identification is an active research
area that generates high expectations, but usually leads to

great disappointment [7]. With the shift toward genome-wide
association studies (GWAS), genome-wide G × E studies are fairly
common in human genetic research [8]. However, few significant
and replicated G × E have been found from GWAS to date [9–12].
Popular choices for genome-wide G × E analyses include
single marker analysis and set-based (or gene-based) analysis
[13–16]. However, with the large number of single-nucleotide
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polymorphisms (SNPs) or genes in the human genome, both
approaches suffer from low statistical power due to a harsh
penalty from multiple hypothesis correction.

Many G × E studies avoid the harsh multiple-testing penalty
by constructing a genetic risk score (GRS) according to previ-
ous GWAS findings and then testing the significance of the
interaction term (GRS × E) in a regression model [3–5, 17–19].
The GRS or polygenic risk score (PRS) is commonly used to
summarize genetic effects among an ensemble of SNPs that do
not individually achieve the genome-wide significance level, i.e.
5 × 10−8 [20–22]. Information on L disease-associated SNPs that
are nearly in linkage equilibrium is aggregated by defining a GRS
of the ith subject as GRSi = ∑L

l=1β̂lgil, where gil is the number
of risk alleles (those associated with disease liability according
to previous studies) at the lth SNP of that subject and β̂l is the
weight given to the lth SNP (l = 1, · · · , L; i = 1, · · · , n, where n is
the sample size).

If all the β̂ls are specified to be 1, the GRSi is the overall gene-
tic burden of the ith subject by summing his/her total number of
risk alleles. For example, the gene × physical activity interaction
in obesity was identified using an unweighted GRS [3, 4]. This
unweighted GRS was composed of 12 body mass index (BMI)
associated SNPs that were discovered by previous GWAS [23–27].
However, the unweighted GRS (all β̂ls = 1) should be used
only if the L disease-associated SNPs are considered of equal
importance.

When a weighted GRS is considered, researchers often extract
β̂ls from external GWAS that focus on the same ethnicity [28].
Because GWAS usually fit a regression model for each SNP and
provide summary statistics for the scientific community, β̂ls
come from the regression estimates regarding SNP effects. For
a continuous trait, β̂l (l = 1, · · · , L) is the effect size of the risk
allele at the lth SNP [5]. For a binary trait, β̂l is the log odds ratio
(OR) of the risk allele at the lth SNP [19, 29–31]. For example,
the interactions of gene × physical activity, gene × alcohol
consumption and gene × socioeconomic status were detected
using a weighted GRS [5] composed of 94 BMI-associated SNPs
that were identified by a previous GWAS [32]. Mullins et al.
found that childhood trauma has a greater effect in subjects
with lower genetic liability for major depressive disorder [19], by
constructing a weighted GRS using results from the Psychiatric
Genomics Consortium [33, 34]. These G × E findings rely on previ-
ous GWAS discoveries. However, an appropriate external GWAS
is not always available, especially for non-Caucasian ethnicity.

When there is no appropriate external information, the
weights have to come from the current study. Hüls et al. have
proposed a ‘GRS-marginal-internal approach’ and a ‘GRS-
interaction-training approach’ for pathway-oriented G × E
studies [28, 35]. That is, G × E interactions are investigated in
a pre-selected set of candidate SNPs, e.g. SNPs from a biological
pathway. The weights of these SNPs are then estimated
by a multivariate elastic net regression [36]. However, take
Taiwan Biobank (TWB) GWAS as an example, there are 601 531
autosomal SNPs passing the quality control stage. After pruning
SNPs in high linkage disequilibrium (LD), we still have 143 574
SNPs. Fitting a multivariate elastic net regression on such a large
number of SNPs is computationally infeasible. Therefore, in this
work, we borrow the idea from Hüls et al. [28, 35] and list two
GRS-based tests that can be implemented in GWAS.

The GRS weights can be determined in the following two
ways: (1) based on SNP marginal effects (we call it ‘GRS-
M’) and (2) based on SNP × E interaction effects (we call it
‘GRS-I’). The abovementioned [3–5, 19] and many other G × E
studies [17, 18, 29–31, 37–39] were all applications of the

GRS-M approach, because their GRSs were constructed by
SNPs with larger marginal effects on the phenotype. In most
GRS-M applications, the weights β̂ls (l = 1, · · · , L) required to
build GRS came from external studies [3–5, 17–19, 29–31].

Another way to construct a GRS for detecting G × E is to
use the weights from SNP × E interaction effects themselves,
and we call it the GRS-I approach. To preserve the validity,
GRS-I should be performed by splitting the whole sample into a
training subset and a testing subset. The weights β̂ls are decided
by the regression coefficients of SNP × E interaction term using
the training subset. Then, GRS-I is calculated for the testing
subset, and the significance of GRS-I × E is assessed.

Although G × E have been found for several phenotypes,
many interaction effects may remain hidden due to the lack
of a powerful polygenic test. In this work, we use the ‘adaptive
combination of Bayes factors method’ (ADABF) [40] to aggregate
G × E signals and to test the significance of G × E by a
polygenic test. More than GRS-M and GRS-I, if the ADABF test
result is significant, we can further pinpoint individual SNPs
that interact with E. We compare the performance of ADABF,
GRS-M and GRS-I with extensive simulations. Regarding the
ability to pinpoint individual SNP × E, we calculate the positive
predictive value (PPV) and sensitivity of ADABF and compare
these values with those of single marker analysis. We then
apply these approaches to TWB data to explore gene × alcohol
consumption and gene × smoking interactions on blood
pressure (BP) levels.

Methods
Adaptive combination of Bayes factors method

A pruning stage:

There are a pruning stage and a screening stage prior to using
ADABF. Both the two stages are also commonly used in GRS
methods [12, 20, 22, 41]. We first prune SNPs in high LD to
eliminate a large degree of redundancy in SNPs. Suppose we
have a GWAS dataset called ‘TWBGWAS’, the PLINK command
‘plink –bfile TWBGWAS –chr 1-22 –indep 50 5 2’ is used to
prune SNPs in high LD [42]. This command removes SNPs
with a variance inflation factor (VIF) > 2 within a sliding
window of size 50. The sliding window is shifted at each step
of five SNPs. VIF is calculated by

(
1 − R2

)−1, where R2 is the
multiple correlation coefficient when an SNP is regressed on all
other SNPs simultaneously. A VIF of 1 indicates that R2 = 0
and the SNP is completely independent of all other SNPs.
According to the PLINK guideline of SNP pruning (http://zzz.bwh.
harvard.edu/plink/summary.shtml#prune), a VIF between 1.5
and 2 should be used in practice.

A screening stage:

Moreover, to improve the statistical power of G × E tests, the
remained SNPs are then screened according to their marginal
associations with the phenotype. The generalized linear model
(GLM) for the lth SNP (l = 1, · · · , L) is described as follows:

g [E (Yi)] = β0 + βGl
Gil + β ′

XXi, i = 1, · · · , n, (1)

where g [·] is the link function; Yi is the phenotype, Gil is the
number of minor alleles at the lth SNP (0, 1 or 2) and Xi is the
vector of covariates of the ith subject. In this screening stage, we
test H0 : βGl

= 0 versus H1 : βGl
�= 0 (l = 1, · · · , L). The SNPs passing

the screening at the desired significance level (P < 0.05) are

http://zzz.bwh.harvard.edu/plink/summary.shtml#prune
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then analyzed using ADABF. This screening stage that reduces
the number of SNPs tested for interactions can substantially
increase the power of genome-wide G × E studies [8, 12, 43–48].

Suppose that in a GWAS there are L autosomal SNPs retained
after the pruning and screening stages. We assess the interaction
between the lth SNP (l = 1, · · · , L) and E by the following GLM:

g [E (Yi)] = β0 + βGl
Gil + βEEi + βGEl

GilEi + β ′
XXi, i = 1, · · · , n; (2)

where Ei is the environmental factor (E) of the ith subject, and the
other notations have been described under Equation (1). Let β̂GEl

be the maximum likelihood estimate (MLE) of βGEl
. According to

the asymptotic normality of MLE, β̂GEl
follows a normal distribu-

tion with a mean of βGEl
and a variance of Vl, i.e. β̂GEl

∼ N
(
βGEl

, Vl
)
.

Sizes of interaction effects (βGEl
s) depend heavily on the scale

of an E. An Ei ranging from 0 to 1 and an Ei ranging from 0
to 100 should be linked to different prior distributions of βGEl

s.
To propose a prior that can be used in most situations, we first
rescale Ei to range from 0 to 1. Therefore, GilEi will be between 0
and 2, the same as Gil. In Equation (2), a binary Ei (e.g. smoking
versus nonsmoking) is coded as 1 or 0 and a continuous Ei is
first scaled to a range from 0 to 1. Let Emin and Emax be the
minimum and maximum of a continuous Ei, where i = 1, · · · , n.
The continuous Ei is scaled to be Ei

′ = (Ei − Emin)/(Emax − Emin),
where i = 1, · · · , n.

The Wellcome Trust Case Control Consortium (WTCCC)
GWAS specified a normal distribution with a mean of 0 and
a variance of W = 0.22 = 0.04 as the prior of SNP main effects, i.e.
βGl

∼ N (0, W = 0.04). Because GilEi has been scaled to range
from 0 to 2 (the same as Gil), we may consider the appropri-
ateness of using N (0, W = 0.04) as the prior of βGEl

s. Similarly
with SNP main effects, most reported SNP × E interactions are
of modest effect sizes that can be positive or negative [49–51].
N (0, W = 0.04) may be a reasonable prior for βGEl

s as well. In
a binary trait analysis such as the WTCCC GWAS [52], this prior
implies that we believe 95% of ORs range from exp (−2 × 0.2) =
0.67 to exp (2 × .2) = 1.49. For continuous traits, this prior
implies that 95% of βGEl

s range from −.4 to 0.4. We consider this
prior suitable for a standardized continuous trait with a mean
of 0 and an SD of 1. Therefore, for a continuous trait analysis, our
R code (http://homepage.ntu.edu.tw/∼linwy/ADABFGEPoly.html)
standardizes the trait before implementing the ADABF method.

The prior variance, W = 0.22 = 0.04 is originally designed for
SNP main effects. Empirical evidence has shown that SNP × E
interaction effects are usually modest [49–51], and therefore
this prior variance may be slightly large for βGEl

s. However, a
larger prior variance can reflect our uncertainty of the prior
information [53]. If investigators believe that very few SNP × E
interactions may exist in their own study, they can specify a
smaller prior variance that provides more shrinkage toward zero
and favors more coefficients to be zero [53].

To test whether the lth SNP interacts with E, the hypothesis is
H0,l : βGEl

= 0 versus H1,l : βGEl
�= 0 (l = 1, · · · , L). The BF is described

as follows [54, 55]:

BFl = Pr
(
Data|H1,l

)
Pr

(
Data|H0,l

) =
√

V̂l

V̂l + W
exp

(
β̂2

GEl
W

2V̂l
(
V̂l + W

))
, l = 1, · · · , L,

(3)

where β̂GEl
and V̂l have been estimated from the GLM in

Equation (2).

The hypothesis of interest in ADABF is H0 : βGE1 =· · ·= βGEL= 0
(none of the L SNPs interact with E) versus H1 : at least one
βGEl

�= 0 for l = 1, · · · , L. ADABF tests the interaction between
E and all the L SNPs, by combining Bayes factors (BFs) of the L
SNP × E signals. After obtaining BF1, · · · , BFL from Equation (3),
we sort these L BFs from largest to smallest and denote them
as BF(1) ≥ BF(2) ≥ · · · ≥ BF(L). We calculate a summary score
that aggregates the leading k BFs, Sk = ∑k

l=1 log
(
BF(l)

)
, where

k = 1, · · · , L. We then perform B resampling replicates, e.g.
B = 1000 in our simulation and B = 105 in the following real
data analysis. In each resampling, we draw an L-length vector
of β̂GE,H0

containing the MLEs of βGEl
s (l = 1, · · · , L) under H0 :

βGE1 = · · · = βGEL = 0. With the typical large sample size of a
GWAS, the asymptotic normality of MLE holds so that β̂GEl

follows
a normal distribution with a mean of 0 (under H0). Therefore,
β̂GE,H0

follows the multivariate normal distribution N (0L×1, VL×L).
The (i, j)th element of the variance–covariance matrix VL × L is

Ri,j

√
V̂iV̂j, where V̂i and V̂j are the estimated variances of β̂GEi

and β̂GEj
, respectively. Because the correlation among association

statistics can be well approximated by the correlation among
genotypes [56], Ri,j is the correlation coefficient of the genotypes
at the ith and jth SNPs. VL×L incorporates the pairwise correlations
among SNPs and therefore the pruning of SNPs in high LD is
not necessary in ADABF (but is still recommended to reduce the
computational burden).

Let the summary score from the bth resampling be S(b)

k , where
k = 1, · · · , L and b = 1, · · · , B. P-value is the probability of
obtaining a statistic as extreme as or more extreme than the
observed statistic under the null hypothesis. Therefore, the P-

value of Sk is estimated by 1
B

∑B
b=1I

(
S(b)

k ≥ Sk

)
, where k = 1, · · · , L

and I
(
S(b)

k ≥ Sk

)
is an indicator variable with an outcome of

1 if S(b)

k ≥ Sk or 0 if otherwise. Likewise, we calculate the P-

value of S(b)

k by 1
B−1

∑
b′ �=bI

(
S(b′)

k ≥ S(b)

k

)
, where k = 1, · · · , L and

b = 1, · · · , B. Denote the minimum P-value (across k = 1, · · · , L)
of the observed sample by min P and its counterparts from the
B resampling replicates by min P(b), b = 1, · · · , B. Therefore, the
P-value of the ADABF test is 1

B

∑B
b=1I

(
min P(b) ≤ min P

)
, which is

compared with the usual nominal significance level of 0.05 (or
0.01). No multiple hypothesis correction is required because all
the L SNPs are considered in an overall test. If the ADABF P-
value is less than 0.05 (or 0.01), the null hypothesis of H0 :
βGE1 = · · ·= βGEL = 0 is rejected, and we conclude that at least
one SNP interacts with E. Because a P-value < 0.05 (or 0.01)
leads to the rejection of H0 of no polygenic SNP × E interactions
[57], 1000 resampling replicates (B = 1000) is sufficient for our
ADABF. This is different from the gene-based ADABF test where
P-values are compared with the genome-wide significance level
of 2.5 × 10−6 = 0.05/20 000 (∼20 000 genes in the genome) [40].
Given a significant ADABF test, the subsequent step is to pinpoint
which SNPs interact with E.

From the above resampling procedure, we can also obtain
the resampling false discovery rate (FDR). In the bth resampling
replicate, we have BF(b)

1 , · · · , BF(b)

L , for the L SNP × E. Based on
the B resamples, the average number of false positives in a
resampling replicate (while claiming significance of the leading

k SNP × E) is estimated by FP(k) = 1
B

∑B
b=1

∑L
l=1I

(
BF(b)

l ≥ BF(k)

)
.

The corresponding FDR is thus estimated as FDR(k) = 1
k FP(k), i.e.

the number of false positives over the number of significant
findings [58, 59]. We find the maximum k that satisfies FDR(k) <

5% and the SNPs corresponding to the leading k BFs are
suggested to have interactions with E. The R code of the

http://homepage.ntu.edu.tw/\ linwy/ADABFGEPoly.html
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ADABF approach can be downloaded from http://homepage.ntu.
edu.tw/∼linwy/ADABFGEPoly.html. We also provide the pipeline
from PLINK to ADABF, at http://homepage.ntu.edu.tw/∼linwy/AD
ABFGEPolyPLINK.html.

The Gaussian (normal) prior is the most common choice
for a prior distribution [52, 60]. Under this setting, Wakefield
has derived a simple and convenient BF formula, as shown in
Equation (3) [55]. It is hard to justify that the prior really follows a
normal distribution. However, deviation from the Gaussian prior
may not make much difference to ADABF results, because this
method makes inference through the resampling procedure. For
the observed data and for each of the resampling replicates,
we obtain BFs according to the same prior. As shown by the
following simulations, ADABF performs well although the true
interaction effects (βGEl

s) never really come from a Gaussian
distribution.

GRS based on marginal effects of SNPs

We compare ADABF with GRS-M and GRS-I. Regarding GRS-M,
the phenotype is first regressed on each of the L SNPs, as shown
by Equation (1). The regression coefficients (β̂Gl

s) of the SNPs
that are more associated with the phenotype (P-value less than
a certain threshold) are treated as the weights of the GRS. To
be specific, the pre-scaled GRS-M of the ith subject is defined
as follows:

GRSpre
Mi,t =

∑L

l=1
β̂Gl

GilI
(
PGl

< Pt
)
, i = 1, · · · , n; t = 1, · · · , 10, (4)

where β̂Gl
is estimated by the GLM in Equation (1), Gil is the

number of minor alleles at the lth SNP of the ith subject, I (·) is the
indicator variable, PGl

is the P-value of testing H0 : βGl
= 0 versus

H1 : βGl
�= 0 and Pt is the tth P-value threshold. Most investigators

use a P-value threshold to select a subset of SNPs for a GRS [20,
22, 57, 61–64]. We used 10 thresholds to explore the strength of
GRS: 0.0001, 0.00025, 0.0005, 0.001, 0.0025, 0.005, 0.01, 0.025, 0.05
and 0.1.

For example, if the phenotype is binary (Y = 1 means diseased
whereas Y = 0 indicates non-diseased) and the minor allele at
the lth SNP is a risk allele, β̂Gl

estimated by the GLM (i.e. a logistic
regression) in Equation (1) will be positive. Subjects with more
minor alleles at this SNP will get an increase in their GRSpre

Mi,t.
However, if the minor allele at the lth SNP is a protective allele,
β̂Gl

will be negative and subjects with more minor alleles at this
SNP will get a decrease in their GRSpre

Mi,t. Therefore, summing the
information of the L SNPs, a larger GRSpre

Mi,t indicates a larger
disease liability. GRSpre

Mi,t is then rescaled to calibrate the number
of phenotype-increasing alleles [18]:

GRSMi,t = GRSpre
Mi,t × number of available SNPs

sum of
∣∣β̂Gl

∣∣ of available SNPs
. (5)

Denote WA = GRSpre
Mi,t

/(
sum of

∣∣β̂Gl

∣∣ of available SNPs
) as the

weighted average of the number of phenotype-increasing alle-
les. (For a set of values xis with nonnegative weights wis, the

weighted average of this set is
∑

wixi

/∑
wi

). The weights here,

β̂Gl
s, can be positive or negative. Nonetheless, positive and neg-

ative β̂Gl
s will not be cancelled out in the formula of GRSpre

Mi,t.
As explained in the previous paragraph, regardless of the sign

of each β̂Gl
, a larger GRSpre

Mi,t indicates a larger disease liability.
Therefore, the denominator of WA is the sum of the absolute
values of β̂Gl

s.
Because β̂Gl

s can be positive or negative, GRSpre
Mi,t and WA can

be positive or negative as well. The range (maximum–minimum)
of WA is up to 2, i.e. the number of minor alleles at each SNP. (For
a set of values xis ∈ {0, 1, 2} with nonnegative weights wis, the

weighted average of this set is
∑

wixi

/∑
wi

, ranging from 0 to

2.) To reflect the number of phenotype-increasing alleles from
multiple loci, WA is multiplied by the number of available SNPs,
as shown in Equation (5) [18].

Given the tth P-value threshold (t = 1, · · · , 10), we calculate
GRSMi,t for all the n subjects, fit the following GLM, and test H0 :
φGE = 0 versus H1 : φGE �= 0:

g [E (Yi)] = φ0 + φGGRSMi,t + φEEi + φGEGRSMi,t · Ei + φ′
XXi, i = 1, · · · , n.

(6)

Because we consider 10 P-value thresholds, 10 GLMs are fitted
and H0 : φGE = 0 is tested 10 times.

In Equation (6), GRSMi,t is in the same scale as the number of
phenotype-increasing alleles [18], and therefore the regression
coefficient φGE can be explained as follows. For continuous traits,
each additional trait-increasing allele is associated with φGE

change in trait for subjects with Ei = 1 than for subjects with
Ei = 0. For binary traits, each additional disease susceptibility
allele is associated with an OR of exp (φGE) for subjects with Ei = 1
than for subjects with Ei = 0.

GRS based on SNP × E interactions

Hüls et al. have proposed the ‘GRS-interaction-training approach’
[28]. This is the 1st study presenting GRS with weights from
the SNP × E interaction term itself. This approach was origi-
nally designed for pathway-oriented G × E studies. Borrowing
the concept of ‘GRS-interaction-training approach’ [28], we con-
struct a GRS according to the weights from the SNP × E inter-
action term itself. Different from the ‘GRS-interaction-training
approach’ [28], we cannot fit a multivariate elastic net regression
[36] on the typical large number of SNPs in GWAS. Instead, we
estimate the SNP × E interaction effects by respective GLMs, as
shown in the following Equation (7).

We first randomly split the whole sample into a training
subset and a testing subset and an even split (1:1) is expected to
yield the greatest power for GRS-I [22, 28]. Suppose the sample
sizes of the training subset and the testing subset are n1 and n2,
(n1 ≈ n2), respectively. We used the training subset to regress the
phenotype on each SNP, E and SNP × E. The GLM for the lth SNP
(l = 1, · · · , L) is as follows:

g [E (Yi)] = β0 + βGl
Gil + βEEi + βGEl

GilEi + β ′
XXi, i = 1, · · · , n1. (7)

The pre-scaled GRS-I of the ith subject in the testing subset is
as follows:

GRSpre
Ii ,t =

∑L

l=1
β̂GEl

GilI
(
PGEl

< Pt
)

, i = 1, · · · , n2, (8)

where β̂GEl
has been estimated by the GLM in Equation (7) and

PGEl
is the P-value of testing H0 : βGEl

= 0 versus H1 : βGEl
�= 0

using the training subset.
For example, if the minor allele at the lth SNP has a synergistic

effect with E on the phenotype, β̂GEl
estimated by the GLM in

http://homepage.ntu.edu.tw/\ linwy/ADABFGEPoly.html
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Equation (7) will be positive. Subjects with more minor alleles at
this SNP will get an increase in their GRSpre

Ii,t . In contrast, if the
minor allele at the lth SNP has an antagonistic effect with E
on the phenotype, β̂GEl

will be negative and subjects with more
minor alleles at this SNP will get a decrease in their GRSpre

Ii,t .
Therefore, summing the information of the L SNPs, a larger GRSpre

Ii,t

indicates that the genetic makeup has a larger synergistic effect
with E on the phenotype. GRSpre

Ii,t is then rescaled to calibrate the
number of alleles exhibiting synergistic effects with E on the
phenotype [18]:

GRSIi,t = GRSpre
Ii,t × number of available SNPs

sum of
∣∣β̂GEl

∣∣ of available SNPs
. (9)

Given the tth P-value threshold (t = 1, · · · , 10), we calculate
GRSIi, t for the n2 subjects in the testing subset, fit the following
GLM and test H0 : ψGE = 0 versus H1 : ψGE �= 0:

g [E (Yi)] = ψ0 + ψGGRSIi,t + ψEEi + ψGEGRSIi,t · Ei + ψ ′
XXi, i = 1, · · · , n2.

(10)
Because we consider 10 P-value thresholds, 10 GLMs are fitted

and H0 : ψGE = 0 is tested 10 times.
In Equation (10), GRSIi,t is in the same scale as the number

of alleles exhibiting synergistic effects with E [18] and therefore
the regression coefficient ψGE can be explained as follows. For
continuous traits, each additional allele exhibiting synergistic
effects with E is associated with ψGE change in trait for subjects
with Ei = 1 than for subjects with Ei = 0. For binary traits,
each additional allele exhibiting synergistic effects with E is
associated with an OR of exp (ψGE) for subjects with Ei = 1 than
for subjects with Ei = 0.

The data-splitting strategy is required to preserve the type
I error rates of GRS-I [22, 28]. However, we do not need to
split the whole sample into two subsets when performing GRS-
M, because the SNPs are screened according to their marginal
associations with the phenotype (rather than the strength of
SNP × E). Corollary 1 proposed by Dai et al. [43] has justified
the validity of using marginal associations as the screening test.
Moreover, the following results of empirical type I error rates also
verify that the data-splitting strategy is not required for GRS-M.

Numerical experiments and simulations

TWB GWAS data were used for our simulations to consider real
human LD patterns. The TWB aims at building a database that
integrates the genomic data and lifestyles of residents aged
30–70 years in Taiwan [65]. Our study included 16 555 unre-
lated community-based volunteers, among which 8213 were
males and 8342 were females. This study was approved by
the Research Ethics Committee of National Taiwan University
Hospital (NTUH-REC no. 201612188RINA).

We removed SNPs with genotyping rates <95%, with Hardy–
Weinberg test P < 5.7×10−7 [52], or with minor allele frequencies
<1%. In total, 601 531 autosomal SNPs remained after removing
SNPs that could not pass these quality control tests. These
601 531 autosomal SNPs that passed the quality control stage
were used to construct the principal components (PCs) to adjust
for population stratification.

In order to eliminate a large degree of redundancy in SNPs
and compare our ADABF with the GRS approaches, we removed
SNPs in high LD [42] according to the pruning stage described

in the ‘Methods’ section. After this pruning stage, 143 574 SNPs
remained.

Then, we obtained a subset of SNPs that passed the screening
stage by regressing diastolic blood pressure (DBP) on each of
the 143 574 SNPs while adjusting for sex, age, BMI and the 1st
seven PCs (the reason of considering the 1st seven PCs can be
seen in the section of ‘Application to TWB data’). There were
7652 SNPs with larger marginal effects on DBP (P < 0.05). The
genotypes of the 16 555 subjects at these 7652 SNPs were used
as our simulation materials. Moreover, without losing generality,
we used smoking status as our E. Among the 16 555 subjects,
4104 subjects (∼24.8%) smoked for over 6 months, whereas 12 429
subjects did not. A total of 22 subjects did not respond to this
question. We created a binary environmental exposure E, which
was coded as 1 if the subject smoked for over 6 months and as 0
otherwise.

Type I error rates

We assessed the type I error rates by assuming a disease with
a prevalence of 5% and generating binary traits based on the
following model:

log
Pr (Y = 1)

1 − Pr (Y = 1)
= log

0.05
1 − 0.05

= −2.94. (11)

The continuous traits were simulated by the following model:

Y = e, (12)

where e was the random error term following the standard
normal distribution.

Power (in the absence of SNP main effects)

We evaluated the power performance of ADABF and GRS by ran-
domly selecting D SNPs and letting them interact with E, where
D = 20 or 50. The following three situations were considered: (1)
20 SNP × E with smaller effect sizes, (2) 20 SNP × E with larger
effect sizes and (3) 50 SNP × E with smaller effect sizes.

The binary traits were simulated according to the following
model:

log
Pr (Y = 1)

1 − Pr (Y = 1)
= −2.94 +

D∑
d=1

βGEd
GdE. (13)

We let 50% of βGEd
s be positive and 50% of βGEd

s be negative.∣∣βGEd

∣∣s (d = 1, . . ., D) were uniformly drawn from the intervals
[log(1.2), log(1.4)] and [log(1.4), log(1.6)] for smaller effect sizes
and larger effect sizes, respectively.

Our setting of D (20 or 50) and the size of βGEd
[from log(1.2)

to log(1.6)] in Equation (13) is reasonable for a GWAS. Take a
binary trait—hypertension (HYP) in TWB as an example, which is
defined as DBP > 80 mm Hg or systolic BP (SBP) > 130 mm Hg [66].
Totally 7474 SNPs that passed the pruning and screening stages
were analyzed according to Equation (2), in which age, gender,
BMI and the 1st seven PCs were adjusted. We considered two
binary Es—alcohol drinking (described in the following ‘Appli-
cation to TWB data’) and smoking. In total, 127

∣∣β̂GE

∣∣s > log(1.4)
when E = drinking and 22

∣∣β̂GE

∣∣s > log(1.4) when E = smoking;
1064

∣∣β̂GE

∣∣s > log(1.2) when E = drinking and 405
∣∣β̂GE

∣∣s > log(1.2)
when E = smoking. Approximately 50% of these β̂GE s were
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positive and 50% of β̂GEs were negative. Histograms of β̂GEs can
be seen from the top row of Figure 1.

Continuous traits were generated by the following model:

Y =
D∑

d=1

βGEd
GdE + e, (14)

where e was the random error term following the standard
normal distribution. We let 50% of βGEd

s be positive and 50%
of βGEd

s be negative.
∣∣βGEd

∣∣s (d = 1, . . ., D, where D = 20 or 50)
were uniformly drawn from the intervals [0.05, 0.07] and [0.07,
0.09] for smaller effect sizes and larger effect sizes, respectively.
Likewise, the abovementioned situations (1–3) were accordingly
considered in the simulations of continuous traits.

Our assumption of D and the size of βGEd
(from 0.05 to 0.09) in

Equation (14) is also reasonable for continuous traits. Take DBP
in TWB as an example. We first standardized DBP by DBP′ =(
DBP − DBP

)
/SD(DBP), where DBP and SD(DBP) were the mean

and the SD of DBP, respectively. Through this standardization,
DBP′ was in the similar scale with Y in Equation (14), where e was
simulated from the standard normal distribution. In total, 7652
SNPs that passed the screening stage were analyzed according
to Equation (2), in which age, gender, BMI and the 1st seven PCs
were adjusted. A total of 1315

∣∣β̂GE

∣∣s > 0.07 when E = drinking and
451

∣∣β̂GE

∣∣s > 0.07 when E = smoking. Approximately 50% of these
β̂GEs were positive and 50% of β̂GEs were negative. Histograms of
β̂GEs are presented in the middle row of Figure 1.

Similarly, we obtained the standardized SBP′ and analyzed
7508 SNPs that passed the screening stage. In total, 1167∣∣β̂GE

∣∣s > 0.07 when E = drinking and 353
∣∣β̂GE

∣∣s > 0.07 when
E = smoking. Among these stronger β̂GEs, ∼50% of them were
negative. Histograms of β̂GEs can be found from the bottom row
of Figure 1. Therefore, in our simulation, the number of D (20 or
50) and the size of βGE are reasonable and modest.

Power (in the presence of SNP main effects)

We then evaluated the power performance of the polygenic
approaches in the presence of SNP main effects. The binary traits
were simulated according to the following model:

log
Pr (Y = 1)

1 − Pr (Y = 1)
= −2.94 +

D∑
d=1

βGd
Gd +

1.5D∑
d=0.5D+1

βGEd
GdE, (15)

∣∣βGd

∣∣s (d = 1, . . ., D) and
∣∣βGEd

∣∣s (d = 0.5D + 1, . . ., 1.5D, where
D = 20 or 50) were uniformly drawn from the interval [log(1.2),
log(1.4)] for smaller effect sizes, and were uniformly drawn from
[log(1.4), log(1.6)] for larger effect sizes.

The continuous traits were simulated according to the fol-
lowing model:

Y =
D∑

d=1

βGd
Gd +

1.5D∑
d=0.5D+1

βGEd
GdE + e, (16)

where e was the random error term following the standard
normal distribution.

∣∣βGd

∣∣s (d = 1, . . ., D) and
∣∣βGEd

∣∣s (d = 0.5D + 1,
. . ., 1.5D, where D = 20 or 50) were uniformly drawn from [0.05,
0.07] for smaller effect sizes and were uniformly drawn from
[0.07, 0.09] for larger effect sizes.

As expressed by Equations (15) and (16), we assume that
SNPs 1 ∼ 0.5D present only main effects, SNPs (0.5D + 1) ∼ D
exhibit both main effects and SNP × E interactions, and SNPs
(D + 1) ∼ 1.5D exhibit only SNP × E interactions on traits.
According to our observation from real data analyses (Figure 1),
we let 50% of βGEd

s be positive and 50% of βGEd
s be negative.

Moreover, we found minor alleles could be trait increasing or
trait decreasing in real data analyses and therefore 50% of βGd

s
were assumed to be positive and 50% of βGd

s were assumed to
be negative. Among the SNPs that exhibit both main effects
and SNP × E interactions, we let βGd

· βGEd
> 0 for ∼50%

SNPs and βGd
· βGEd

< 0 for the remaining ∼50% SNPs, where
d = 0.5D + 1, . . ., D.

Results
Type I error rates

In GWAS, a stringent genome-wide significance level (5 × 10−8)
is typically used due to multiple hypothesis correction. The
polygenic approaches investigated here combine SNPs across
the genome in one test, and therefore, no multiple hypothesis
correction is required. Table 1 presents the empirical type I error
rates under a nominal significance level of 0.05 or 0.01, based
on 10 000 replications of the binary traits and continuous traits
separately. All the tests preserved the type I error rates. This
simulation result confirms that the data-splitting strategy is not
required for GRS-M or ADABF.

For GRS, in addition to the type I error rates under 10 P-value
thresholds, respectively, we also present its type I error rate while
considering the 10 P-value thresholds simultaneously and then
correcting for multiple testing. In Table 1, M∗ and I∗ are GRS-M
and GRS-I corrected for multiple testing, respectively. According
to the Bonferroni correction (BON), the P-value of M∗ (or I∗) is 10
times the minimum P-value of the 10 GRS-M (or GRS-I) tests. An
M∗ (or I∗) test is claimed to be significant if its P-value < 0.05 or
0.01 (the nominal significance level). The type I error rates of M∗
and I∗ are smaller than the nominal significance levels because
of the conservative nature of the BON.

Power

Besides ADABF, GRS-M and GRS-I, we also evaluated the power
performance of single marker analysis while controlling the
family-wise error rate (FWER) at 5% using the BON, or controlling
the FDR at 5% using the Benjamini–Hochberg approach (BH) [67].
Although BON and BH are not polygenic tests, they are also
evaluated here because of their popularity. The power of BON
or BH was calculated as the proportion of replications in which
at least one SNP × E was identified.

Figure 2 presents the empirical power given the nominal
significance level of 0.05, where the power of each scenario was
calculated by 1000 replications. Our ADABF is more powerful
than other methods in the absence of SNP main effects
(Figure 2A and C). On the other hand, the presence of SNP main
effects can considerably increase the power of GRS-M (Figure 2B
and D). It constructs a GRS by aggregating the information of
SNPs with stronger marginal effects. This approach becomes
very powerful when some phenotype-associated SNPs also
exhibit interactions with E.

Regarding the performance of pinpointing true SNP × E, we
compared the sensitivity and PPV of our ADABF with BON and
BH. Sensitivity is defined as the total number of true findings
over the total number of SNP × E in the 1000 simulation
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Figure 1. Histograms of β̂GEs for SNPs that passed the pruning and screening stages. In total, 7474, 7652 and 7508 SNPs passed the pruning and screening stages for

analyses of HYP (a binary trait), DBP and SBP, respectively. These SNPs were analyzed according to Equation (2), in which age, gender, BMI and the 1st seven PCs were

adjusted. Two binary Es including alcohol drinking (left column) and smoking (right column) were considered. Here we show the histograms of β̂GEs from the GLM in

Equation (2).

replications, i.e. 20 000 or 50 000 (recall D = 20 or 50 in
Equations 13–16). PPV is defined as the total number of true
findings over the total number of findings in the 1000 simulation
replications. BON is the most conservative method, and
therefore, it has the lowest sensitivity and the highest PPV
(Figure 3). ADABF and BH performed similarly.

PPV = 1 − FDP, where FDP is the false discovery proportion.
As shown in Figure 3, the FDPs are generally larger than
the desired level of FDR, 5%. This is mostly because the
FDR procedures assume that the statistics are unbiased
[68]. Because fitting a multivariate regression on all SNPs is
computationally infeasible, ADABF, BON and BH are all based on
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Figure 2. Empirical power given a nominal significance level of 0.05. The empirical power of ADABF, GRS-M (M) and GRS-I (I). GRS-M and GRS-I were evaluated at 10

P-value thresholds (from the left bar to the right bar): 0.0001, 0.00025, 0.0005, 0.001, 0.0025, 0.005, 0.01, 0.025, 0.05 and 0.1. M∗ and I∗ are GRS-M and GRS-I corrected for

multiple testing, respectively. The P-value of M∗ (or I∗) is 10 times the minimum P-value of the 10 GRS-M (or GRS-I) tests. An M∗ (or I∗) test is claimed to be significant

if its P-value < 0.05 (the nominal significance level). BON is single marker analysis while controlling the FWER at 5% using the BON; BH is single marker analysis while

controlling the FDR at 5% using the BH. The height of the blue (yellow) bars marks the empirical power of each test given 20 SNP × E with smaller (larger) effect sizes.

The red line with black points marks the empirical power given 50 SNP × E with smaller effect sizes.

Figure 3. Sensitivity and PPV The sensitivity (the top row) is defined as the total number of true findings over the total number of SNP × E in the 1000 simulation

replications, i.e. 20 000 or 50 000 (recall D = 20 or 50 in Equations 13–16). PPV (the bottom row) is defined as the total number of true findings over the total number

of findings in the 1000 simulation replications. BON is single marker analysis while controlling the FWER at 5% using the BON; BH is single marker analysis while

controlling the FDR at 5% using the BH. The height of the blue (yellow) bars marks the sensitivity/PPV of each method given 20 SNP × E with smaller (larger) effect sizes.

The red line with black points marks the sensitivity/PPV given 50 SNP × E with smaller effect sizes.

regression models that consider one SNP at a time (Equation 2).
The statistics estimated from Equation 2 (β̂GEl

s) are biased
because complex traits are usually influenced by multiple

genetic variants, environmental exposures and the interplay
between them (e.g. Equations 13–16). Therefore, the FDPs are
larger than 5% for all the three methods (i.e. ADABF, BON and
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BH). The high FDP irrespective of the procedure used to correct
for multiple testing has also been observed in regression-based
analyses for environment-wide association study [68].

Application to TWB data

We then applied these approaches to TWB data to explore
SNP × alcohol and SNP × smoking interactions on BP. Approx-
imately 85% of the TWB subjects were of the Han Chinese
ancestry and ∼14.5% of the subjects belonged to a 3rd
group that is genetically distinct from neighboring Southeast
Asians [65].

In the TWB data, ‘drinking’ is defined as a weekly intake of
greater than 150 cc of alcohol for at least 6 months. Among the
16 555 subjects, 1764 subjects (∼10.6%) answered ‘yes’ to alcohol
drinking, whereas 14 779 subjects answered ‘no’. A total of 12
subjects did not respond to this question and were regarded as
missing values. Smoking has been described in the section of
‘Numerical experiments and simulations’. Both alcohol drinking
and smoking are binary Es. To obtain more reliable BP [69, 70],
two measurements were taken with a 5 min rest interval and
the average of the two measurements was recorded.

Regarding single marker analysis, for each of the 601 531
autosomal SNPs, we regressed DBP, SBP or HYP (yes versus
no) on SNP, the E (i.e. alcohol drinking or smoking), SNP × E,
while adjusting for age, gender, BMI and the 1st seven PCs.
After adjusting for the 1st seven PCs, PLINK reported very low
genomic inflation factors that were based on the median of the
Chi-square statistics, i.e. λGC = 1.00 for both the DBP and SBP
analyses and λGC = 1.02 for HYP analysis. No significant SNP × E
were found from the 601 531 autosomal SNPs, by controlling the
FWER at 5% with the BON or by controlling the FDR at 5% with
the BH [67].

We then performed the GRS tests using the subset of SNPs
that were nearly independent [22], i.e. the 143 574 SNPs that
passed the pruning stage by the PLINK command shown in
the section of ‘Methods’. Considering the 10 P-value thresholds
used for the GRS, the Bonferroni-corrected significance level to

control the FWER at 5% should be 0.05/
10 = 0.005. The pink

horizontal line in Figure 4A marks the significance threshold,
i.e. −log10 (0.005) ≈ 2.3. GRS-M identified SNP × alcohol inter-
actions on DBP and SBP and SNP × smoking interactions on
DBP (Figure 4A).

Figure 4C shows the regression coefficient φ̂GE in Equation (6)
at 10 P-value thresholds (Pt). For example, when Pt = 5 × 10−4,
GRSMs of SBP, DBP and HYP analyses are computed by 91, 102
and 88 SNPs, respectively. Each additional SBP-increasing allele
(DBP-increasing allele) is associated with ∼0.20 (∼0.10) mm Hg
higher SBP (DBP) in drinkers than in nondrinkers. Each addi-
tional HYP susceptibility allele is associated with an OR of exp
(0.015) = 1.015 in drinkers than in nondrinkers. Moreover, each
additional SBP-increasing allele (DBP-increasing allele) is associ-
ated with ∼0.07 (∼0.07) mm Hg higher SBP (DBP) in smokers than
in nonsmokers.

Finally, as described in the screening stage of the ‘Methods’
section, SNPs passing the screening at the desired significance
level (P < .05) are then analyzed using ADABF. In the analysis
of marginal associations, DBP, SBP and HYP were separately
regressed on each of the 143 574 SNPs while adjusting for age,
gender, BMI and the 1st seven PCs. Linear regression models were
used for analyses of DBP and SBP, whereas logistic regression
models were fitted for HYP. In total, 7652, 7508 and 7474 SNPs

passed the screening test for DBP, SBP and HYP, respectively.
Table 2 shows the analysis results based on 105 resampling
replicates in the ADABF approach. A P-value < 0.05 or 0.01 is
sufficient to reject H0 of no polygenic SNP × E interactions
[57]. Like GRS-M (Figure 4A), ADABF identified SNP × alcohol
interactions on DBP and SBP and SNP × smoking interactions on
DBP, but ADABF provided more significant P-values than GRS-M.
Additionally, ADABF identified SNP × alcohol interactions
on HYP.

GRS-I did not provide any significant results under the

Bonferroni-corrected significance level of 0.05 /
10 = 0.005

(Figure 4B). The pink horizontal line in Figure 4B marks the
significance threshold, i.e. −log10 (0.005) ≈ 2.3. This result was
consistent with the above finding in our simulations. That is,
GRS-I is the least powerful approach due to its data-splitting
strategy.

Figure 4D shows the regression coefficient ψ̂GE in Equation (10)
at 10 P-value thresholds (Pt). Although GRS-I tests are not
significant at all the 10 Pts, we still explain the meaning of ψ̂GE

here. For example, when Pt = 5 × 10−4, GRSIs of SBP (E = drinking
and smoking) and DBP (E = drinking and smoking) analyses
are computed by 89, 84, 146 and 113 SNPs, respectively. Each
additional allele exhibiting synergistic effects with drinking
is associated with ∼0.05 (∼0.05) mm Hg higher SBP (DBP) in
drinkers than in nondrinkers. Moreover, each additional allele
exhibiting synergistic effects with smoking is associated with
∼0.02 (∼0.04) mm Hg higher SBP (DBP) in smokers than in
nonsmokers.

We also identified an rs10811568 × alcohol interaction on DBP
(resampling FDR = 1.2%), rs62065089 × alcohol interaction on
SBP (resampling FDR = .4%) and rs79990035 × smoking interac-
tion on DBP (resampling FDR = 1.1%) through the resampling
procedure in ADABF. Table 3 lists the detailed information on
these three SNPs. Figure 5 presents plots of these interaction
effects.

These three SNPs can also be identified by BON/BH when con-
trolling the FWER/FDR at 5% given the ∼7600 SNPs that passed
the pruning and screening stages. Because we have removed
SNPs in high LD, these ∼7600 SNPs are nearly independent of
each other and therefore the resampling FDR and BH lead to the
same results. Despite this, performing ADABF is still worthwhile.
As shown by Table 2, SNP × alcohol interactions on HYP can only
be detected by the ADABF polygenic test, although no individual
SNP × alcohol interactions can be identified from the subsequent
resampling FDR. Nothing can be found if we bypass the ADABF
polygenic test and directly use BON/BH. This result is consis-
tent with the power gain of ADABF compared with BON/BH
(Figure 2).

For a polygenic test, a P-value <0.05 or 0.01 is sufficient to
reject H0 of no polygenic effects [57]. Therefore, resampling 105

replicates is sufficient for a real data analysis. ADABF takes
∼2.5 h to analyze SNP × E on a continuous phenotype based
on a Linux platform with a Dell Intel Xeon E5–2690 2.9 GHz
processor and 8 GB of memory. Approximately 3.4 h are required
for the analysis of a binary phenotype, because fitting a logistic
regression takes more computation time than fitting a linear
regression.

Discussion
Genetic effects can differ between subjects depending on their
lifestyle factors or environmental exposure because of G × E [5].
Therefore, the identification of G × E is important for investigat-
ing new mechanisms in disease [71]. Given a specific sample size,
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Figure 4. TWB analysis results using the GRS-M and GRS-I tests. The left and right columns show the GRS-M and GRS-I results, respectively. The black x-axes list

the 10 P-value thresholds, i.e. in Equations (4) or (8). The blue (for DBP analysis), red (for SBP analysis) and green (for HYP analysis) x-axes list the number of SNPs

used to construct GRSM or GRSI . The y-axes of plots (A) and (B) are −log10(P-value of GRS-M) and −log10(P-value of GRS-I), respectively. Considering the 10 P-value

thresholds used for the GRS, the Bonferroni-corrected significance level to control the FWER at 5% is .05/
10 = .005. The pink horizontal lines in plots (A) and (B) mark

−log10(0.005) = 2.3. Moreover, φGE and ψGE are estimated from Equations (6) and (10), respectively, and are shown in the y-axes of plots (C) and (D).

Table 2. TWB analysis results using the ADABF, BON, and BH approaches

ADABF1 BON2 BH3

SNPxalcohol on DBP (based on 7,652 SNPs)
P-value < 0.00001 — —
SNP found to have interaction with alcohol consumption rs10811568 (Resampling FDR = 1.2%) rs10811568 rs10811568
SNPxalcohol on SBP (based on 7,508 SNPs)
P-value < 0.00001 — —
SNP found to have interaction with alcohol consumption rs62065089 (Resampling FDR = 0.4%) rs62065089 rs62065089
SNPxalcohol on HYP (based on 7,474 SNPs)
P-value 0.00098 — —
SNP found to have interaction with alcohol consumption — — —
SNPxsmoking on DBP (based on 7,652 SNPs)
P-value 0.00059 — —
SNP found to have interaction with smoking rs79990035 (Resampling FDR = 1.1%) rs79990035 rs79990035
SNPxsmoking on SBP (based on 7,508 SNPs)
P-value 0.1573 — —
SNP found to have interaction with smoking — — —
SNPxsmoking on HYP (based on 7,474 SNPs)
P-value 0.0592 — —
SNP found to have interaction with smoking — — —

1The P-value of ADABF and the resampling FDR were based on 105 resampling replicates. In SNPxalcohol interaction analysis on DBP or SBP, the observed interaction
signal was more significant than that of all the 105 resampling replicates. Therefore, the P-values were represented as “<0.00001”. A P-value < 0.05 or 0.01 is sufficient
to reject H0 of no polygenic SNPE interactions [57]. No more resampling replicates are required to obtain a more precise P-value. P-values < 0.05 are highlighted.
2BON is single marker analysis while controlling the FWER at 5% using the Bonferroni correction.
3BH is single marker analysis while controlling the FDR at 5% using the Benjamini-Hochberg approach.

the power to detect G × E is much lower than the power to detect
genetic main effects [47, 72]. The exploration of G × E from GWAS
data is even more challenging due to the harsh multiple-testing
penalty. There is a great need to discover a powerful polygenic
approach that can identify G × E and further pinpoint SNPs that
interact with E.

Most complex diseases are polygenic (influenced by many
small genetic effects), including obesity [73, 74], HYP [75],
schizophrenia and bipolar disorder [76]. The GRS that aggregates
multiple genetic variants into a score is widely used for testing
and prediction [77, 78]. A majority of the G × E findings were
discovered by the GRS approach [3, 5, 79–83]. For example,
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Figure 5. Plots of SNP × alcohol or SNP × smoking interaction effects on DBP and SBP Controlling the resampling FDR at 5%, we found an rs10811568 × alcohol interaction

on DBP, rs62065089 × alcohol interaction on SBP and rs79990035 × smoking interaction on DBP. As shown in these plots, these identified interaction patterns in DBP/SBP

are similar to those in SBP/DBP. The black curves depict the mean of DBP/SBP among the nondrinkers/nonsmokers, whereas the red/blue dashed curves depict the

mean among the drinkers/smokers. The number shown on each point represents the sample size of that category.

recently, Rask-Andersen et al. [5] constructed a GRS composed
of 94 independent BMI-associated SNPs that were reported by a
previous GWAS [32], and they found interactions between this
GRS and several Es. However, an appropriate external GWAS may
not be available for other phenotypes or other ethnicity.

When external information is unavailable, the weights for
a GRS have to be determined internally. Because the ‘best’
P-value threshold for the ‘optimal’ subset of SNPs is unknown,
many studies constructed a panel of GRSs under various P-value

thresholds [21, 78, 84, 85]. Therefore, the significance of a GRS
test has to be corrected by the number of P-value thresholds
evaluated [57]. (Specifying a P-value threshold to select SNPs is
not an issue in the ‘GRS-marginal-internal approach’ and ‘GRS-
interaction-training approach’. Hüls et al. select SNPs according
to a multivariate elastic net regression [28, 35].)

We here compare our ADABF with the GRS-M and GRS-
I tests. Regarding the power to detect polygenic–environment
interactions, ADABF is the most powerful test in the absence
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of SNP main effects (Figure 2A and C). When SNP main effects
exist, GRS-M can outperform ADABF and can become the best
test (Figure 2B and D). GRS-I is the least powerful approach due
to its data-splitting strategy.

In most applications of BFs [52], specifying a different prior
variance (W) will change the magnitude of a BF and can lead
to a different inference. For example, a BF between 10 and
100 is regarded as a ‘strong’ evidence against H0, whereas a
BF larger than 100 is deemed as a ‘decisive’ evidence against
H0 [86]. However, ADABF does not fully rely on the absolute
magnitudes of BFs. Instead, ADABF compares the BFs from the
observed data with those from the resampling replicates, under
the same prior. Therefore, this method is robust to the setting
of the prior variance (W) [40]. When W was set at .12 = 0.01 or
0.32 = 0.09, the ADABF results were very close to those obtained
from W = 0.22 = 0.04 (Supplementary Table S1 and 2).

When multiple SNPs interact with E but their effect sizes
are small, we may obtain a significant ADABF test result; how-
ever, no individual SNP × E can be identified by controlling
the resampling FDR at 5%. SNP × alcohol on HYP shown in
Table 2 is an example. In this situation, if we bypass ADABF and
directly use BH to identify SNP × E, we will find nothing, and
G × E can be missed (comparing the power of ADABF and BH in
Figure 2).

Gene × alcohol and gene × smoking interactions on BP
have been found in Caucasians [49, 87] and Japanese [88, 89].
Our results support these G × E on BP in Han Chinese as well.
Although ADABF is a powerful polygenic test for detecting G × E,
the identification of individual SNP × E is still very challenging.
If the ADABF test is significant (P-value < 0.05 or 0.01, no
multiple hypothesis correction is required), we conclude that
G × E interactions exist and the E can modify the genetic
effect on the phenotype. However, each SNP × E test may not
be able to reach a sufficient power that can withstand the
multiple hypothesis correction. In this situation, GRS-M can
help to identify whether synergistic or antagonistic interactions
exist between risk alleles and E, according to the sign of φ̂GE in
Equation (6). For example, the positive φ̂GEs (Figure 4C) indicate
that BP-increasing alleles elevate more BP in drinkers (smokers)
than in nondrinkers (nonsmokers).

We found the rs79990035 × smoking interaction on DBP
(resampling FDR = 1.1%). The SNP rs79990035 is located in the
acylphosphatase 2 (ACYP2) gene. Cheng et al. recently also found
an ACYP2 × smoking interaction related to susceptibility to
ischemic stroke (IS) in a Han Chinese population [90]. High BP
levels are usually observed in acute IS patients [91–93]. Therefore,
for Han Chinese, the ACYP2 × smoking interaction on BP war-
rants further investigation.

Some G × E have been discovered by constructing a GRS
based on external GWAS results [3–5, 17–19, 29–31]. However,
appropriate external information is not always available. This
work compares polygenic approaches to identify G × E in
the context of GWAS, when external information is unavail-
able. Using ADABF or GRS-M, many hidden G × E might
be explored. Moreover, GRS-M can help to identify whether
synergistic or antagonistic interactions exist between risk alleles
and E.

Key Points
• The scientific community usually constructs a GRS

and tests the interaction between this score and an E.
However, until now, little has been known about the

performance of the GRS for detecting G × E. Moreover,
appropriate external weights required for a GRS are not
always available.

• We explored a powerful polygenic approach for detect-
ing G × E when external weights are not available,
by comparing our ‘ADABF’ with the GRS-M and GRS-I
effects.

• ADABF is the most powerful method in the absence of
SNP main effects, whereas GRS-M is generally the best
test when SNP main effects exist. GRS-I is the least pow-
erful test due to its data-splitting strategy. This work
provides guidance to choose a polygenic approach to
detect G × E when external information is unavailable.

Supplementary Data

Supplementary data are available online at https://academic.
oup.com/bib.
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