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Abstract

Background

Identifying cancer subtypes is an important component of the personalised medicine frame-
work. An increasing number of computational methods have been developed to identify
cancer subtypes. However, existing methods rarely use information from gene regulatory
networks to facilitate the subtype identification. It is widely accepted that gene regulatory
networks play crucial roles in understanding the mechanisms of diseases. Different cancer
subtypes are likely caused by different regulatory mechanisms. Therefore, there are great
opportunities for developing methods that can utilise network information in identifying can-
cer subtypes.

Results

In this paper, we propose a method, weighted similarity network fusion (WSNF), to utilise
the information in the complex miRNA-TF-mRNA regulatory network in identifying cancer
subtypes. We firstly build the regulatory network where the nodes represent the features,
i.e. the microRNAs (miRNAs), transcription factors (TFs) and messenger RNAs (mRNAs)
and the edges indicate the interactions between the features. The interactions are retrieved
from various interatomic databases. We then use the network information and the expres-
sion data of the miRNAs, TFs and mRNAs to calculate the weight of the features, represent-
ing the level of importance of the features. The feature weight is then integrated into a
network fusion approach to cluster the samples (patients) and thus to identify cancer sub-
types. We applied our method to the TCGA breast invasive carcinoma (BRCA) and glioblas-
toma multiforme (GBM) datasets. The experimental results show that WSNF performs
better than the other commonly used computational methods, and the information from
miRNA-TF-mRNA regulatory network contributes to the performance improvement. The
WSNF method successfully identified five breast cancer subtypes and three GBM subtypes
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which show significantly different survival patterns. We observed that the expression pat-
terns of the features in some miRNA-TF-mRNA sub-networks vary across different identi-
fied subtypes. In addition, pathway enrichment analyses show that the top pathways
involving the most differentially expressed genes in each of the identified subtypes are dif-
ferent. The results would provide valuable information for understanding the mechanisms
characterising different cancer subtypes and assist the design of treatment therapies. All
datasets and the R scripts to reproduce the results are available online at the website: http://
nugget.unisa.edu.au/Thuc/cancersubtypes/.

Introduction

Rather than being a single disease, cancer involves different subtypes characterised by different
sets of molecules [1, 2]. Identifying cancer subtypes is a crucial task for selecting the right treat-
ment for patients, as different cancer subtypes may respond well to different treatment thera-
pies. For example, estrogen receptor (ER) positive breast cancer subtype would respond to
hormone therapy, and the human epidermal growth factor receptor 2 (HER2) positive subtype
is likely to benefit from chemotherapy. However, our current understanding of the mecha-
nisms controlling each cancer subtype is still far from complete.

Several computational methods have been developed to identify cancer subtypes. These
methods fall into three different streams of research. In the first stream, data mining or
machine learning models are built to utilise gene expression datasets for clustering samples
(patients) into different groups, each corresponding to a cancer subtype [3-7]. However, utilis-
ing one genomic data type may not be sufficient to identify cancer subtypes accurately. With
the advance of sequencing technologies, multiple data types of cancer patients such as genomic,
miRNA and related clinical data are made available nowadays. These wealth of datasets lead to
the second stream of research in which researchers analyse different types of data separately for
identifying subtypes and the results obtained separately are then integrated to form the final
result. Highlights of this approach are [1, 8-10]. However, analysing the different types of data
separately may lose the complementary information in the data of the same patients, and there
may be conflict in the results obtained using different types of data. The last stream of research
focuses on analysing multi-omics data at the same time and has identified some important can-
cer subtypes recently [11-14].

However, the information from gene regulatory networks is rarely used by the existing
computational methods. Gene regulatory networks play an important role in every life process,
and understanding the dynamics of these networks help reveal the mechanisms of diseases
[15]. Although the importance of network-based information has been addressed in recent
works [16, 17], there is still a lack of methods utilising biological information from networks to
identify cancer subtypes. Moreover, it remains a great challenge to associate the multi-omics
data and network information with cancer subtypes and the outcomes in particular prognosis.
Recently, Liu et al. [18] proposed the NCIS (network-assisted co-clustering for the identifica-
tion of cancer subtypes) method to utilise the expression profiles of mRNAs and the network
information of mMRNA-mRNA interactions with a bi-clustering method to discover cancer sub-
types. However, gene regulatory networks are complex and involve many types of regulators
including miRNAs and TFs. It is of interest to utilise the information in the networks that
involve miRNAs, TFs, and mRNAs in identifying cancer subtypes. The information may not
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only improve the accuracy of the computational models, but also provide insights into the
mechanisms (the regulatory networks) regulating each cancer subtype.

In this paper, we propose a method, called weighted similarity network fusion (WSNF), to
identify cancer subtypes by making use of both the expression data and network information
of miRNAs, TFs and mRNAs. Given a dataset containing the expression profiles of a set of
miRNAs, TFs and mRNAs (known as features in the rest of the paper), WSNF firstly retrieves
the interactions between these features from different interatomic databases to build the miR-
NA-TF-mRNA regulatory network. In the network, features are represented by nodes and
interactions between features are indicated by edges. We then calculate the weight (i.e. impor-
tance) of a feature by utilising the miRNA-TF-mRNA network information and the expression
variation of the features. Finally, we modify the similarity network fusion (SNF) approach [11]
to take the feature weight into consideration when clustering patients for identifying cancer
subtypes.

We apply the WSNF method to the TCGA breast cancer and GBM datasets. The experi-
mental results show that our method has successfully identified five breast cancer subtypes and
three GBM subtypes which show significantly different survival patterns. The information
from the miRNA-TF-mRNA regulatory network improves the performance of the network
fusion approach, as the WSNF method performs better than both SNF [11], the network fusion
method without using feature weight and NCIS [18] that uses only mRNA expression data and
mRNA-mRNA interactions. We also compare our method with Consensus clustering (CC)
[7], a method that is commonly used in TCGA research. The experimental results show that
the WSNF method also has better performance with both the breast cancer and GBM datasets.
For the breast cancer dataset, we analyse the identified subtypes in detail and report the results
in terms of the expression patterns, the differences in the miRNA-TF-mRNA regulatory net-
works across the different subtypes, and the functional pathways characterising each subtype.
The information can be valuable for assisting the treatment design of specific breast cancer
subtypes.

Materials and Methods
Method overview

We propose to use the miRNA-TF-mRNA regulatory network to assist the identification of
cancer subtypes. There are three main steps in the WSNF method (Fig 1), including: 1) con-
structing miRNA-TF-mRNA regulatory network, 2) calculating the weight for each feature
(miRNA, TF, mRNA), and 3) modifying and applying the similarity network fusion approach
[11] to identify cancer subtypes, while taking the feature weight into consideration. We
describe the details of each step in the following.

Constructing the miRNA-TF-mRNA regulatory network

In this step, we use a variety of sources to build the miRNA-TF-mRNA interaction networks.
The network contains different types of interactions, including those between miRNA-mRNA,
miRNA-TF, TF-miRNA, TF-mRNA, TF-TF, and mRNA-mRNA. Fig 2 shows the details of the
data sources for retrieving the different type interactions. In the figure, each type of the interac-
tions is represented as a link where the source is the regulator and the arrow end is the target.
The data sources are listed next to each type of the interactions.

We firstly get the list of TFs by combining the TFs in the Encyclopedia of DNA Elements
(ENCODE) ChIP-seq data, TransmiR [19] and FANTOM5 Human transcription factors
which are available at http://fantom.gsc.riken.jp/5/sstar/Browse_Transcription_Factors_hgl9.
Finally a list of 1679 TFs is obtained (see the S1 File for the list).
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Fig 1. Workflow of WSNF. In step 1, interactions between miRNAs, TFs and mRNAs obtained from the databases are used to construct the miRNA-TF-
mRNA regulatory network. In step 2, the ranking of each feature (R) is calculated based on the network information, and gene and miRNA expression data
are used to get the feature expression variation (MAD) across all the samples. Then for each feature, its ranking and expression variation are combined to
obtain its weight (W). In step 3, the weighted sample similarity networks are obtained from genes (MRNAs, TFs) and miRNAs separately using the weights
and expression data of the features, and finally network fusion and clustering are performed to find patient groups that imply cancer subtypes.

doi:10.1371/journal.pone.0152792.g001

As shown in Fig 2, we obtain the miRNA-mRNA and miRNA-TF interactions from experi-
mentally confirmed databases, including Tarbase [20], mirTarbase [21], mirRecords [22], and
prediction database starBase v2.0 [23]. Tarbase, mirTarbase and mirRecords include the curated
confirmed interactions from the literature. starBase v2.0 contains the union of the sets of
miRNA-mRNA interactions predicted by the five miRNA target prediction software programs
(TargetScan, PicTar, PITA, miRanda and RNA22). It also tests each of the miRNA-mRNA
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Fig 2. The data sources for constructing the miRNA-TF-mRNA regulatory network.

doi:10.1371/journal.pone.0152792.9002

interaction pairs based on TCGA Pan-cancer [24] expression datasets. The criterion of the vali-
dation test is the anti-correlation with negative Pearson correlation coefficient (p-value< 0.05)
between a miRNA and its target. In our network, we use the miRNA-mRNA interactions in
starBase v2.0 that are supported by at least one TCGA Pan-cancer expression dataset. In addi-
tion, the miRNA-mRNA interactions derived from ENCODE data [25] are also used in our
work. The interactions are available at: http://encodenets.gersteinlab.org/.

The mRNA-mRNA interactions are retrieved from Reactome [26] and STRING v10.0 [27].
Since contained in the Reactome and STRING are the protein-protein interaction pairs, we use
the org. Hs.eg.db R package [28] to map the protein-gene annotation to get the corresponding
mRNA-mRNA interaction pairs. We choose the score cut-off as 0.9 in STRING v10.0 to select
the mRNA-mRNA pairs of high credibility for our network.

For TF regulation, we obtain the interactions between TF-mRNA from the ENCODE ChIP-
seq data [29] and Transcriptional Regulatory Element Database (TRED) [30]. ENCODE ChIP-
seq data at UCSC Genome Browser are processed using the computational pipeline to generate
uniform peaks of TF binding. TRED is an integrated repository for both cis- and trans-regula-
tory elements. It contains the curated transcriptional regulation information, including the
transcription factor binding motifs and experimental evidence. We retrieve the TF-TF interac-
tions from Reactome and STRING, with the protein-gene annotation mapping as that for get-
ting the TF-TF interactions. For our network, TF-miRNA interactions are obtained from two
sources: TransmiR [19] and the supplementary data of [25] that is also available at http://
encodenets.gersteinlab.org/.
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Calculating feature weights

With the proposed WSNF method, we calculate the weight of a feature in two stages. Firstly,
we use the information of the miRNA-TF-mRNA network constructed in the previous step to
rank the features. Then the expression data is used to find the expression variation of each fea-
ture across all the samples in the datasets. At last, the weight of a feature is obtained by combin-
ing its ranking and expression variation.

Stage 1: Computing ranking of features using Google PageRank. Google PageRank [31,
32] is an algorithm which was initially used to rank the vast number of webpages by Google
Search. It is based on a directed graph G(V,E) where the nodes V represent webpages and the
edges E indicate the hyperlinks between the webpages. The basic assumption is that an impor-
tant webpage is likely to have more inbound links from other webpages. Suppose there are N
webpages {p1, p2, - - ., pn}- The ranking of a webpage p; is defined as the following:

PR(p) = PR(p

(1)

pjEM(p;)

where PR(p;) and PR(p;) are the rankings of webpages p; and p; respectively, with p; < p;; d is
the damping factor which is like a click-through probability used to decay the ranking of the
webpages with no outgoing links, and 0 < d < 1; M(p;) is the set of webpages that are linked to
pisand L(p;) is the number of outbound links from p;. So a webpage p; will have a high ranking
if it is linked by many other high-ranked webpages p;. For interested readers, the convergence
and computation of the PageRank using the above iterative formula (i.e. Eq 1) are illustrated in
[33, 34].

For our case of utilising miRNA-TF-mRNA regulatory network to rank a feature, a molecu-
lar regulating many targets is important. In our miRNA-TF-mRNA network, denoted as G(V,
E), the nodes V are the features (miRNAs, TFs and mRNAs) and the edges E are the interac-
tions between regulators and their targets. The direction of an edge is from a regulator to its
target. An important regulator is analogous to an important webpage in PageRank that many
other webpages link to, except that the regulator has many links going out of it to its targets.
Suppose there are N features {f;, f2, . . ., fy}. The ranking (regulatory importance) of a feature f;
can be defined as follows using a modified PageRank algorithm:

R(f) = (2)

ﬁeTU

where R(f;) and R(f;) are the rankings of features f; and f; respectively, with f; — f; ; d is the the
damping factor, and 0 < d < 1; T(f;) is the set of targets that f; regulates; and L(f)) is the number
of regulators which regulate f;.

The R and Matlab scripts of computing the feature ranking from miRNA-TF-mRNA regu-
latory network is provided in the S2 File.

Stage 2: Integrating feature ranking and feature variation. The expression variation
across samples is an important indicator for the research of cancer genomic data. The features
(e.g. genes) with higher expression variations are always treated as more important biological
marker in cancer mechanisms. We use the median absolute deviation (MAD) to represent the
expression variation of a feature. The MAD of a feature f; is calculated as:

MAD(f,) = median(|X(f,) — median(X(f.))|) (3)

where X(f;) is a numeric vector which represents the expression values of feature f; across all
samples (patients).
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To integrate the feature variation with feature ranking, NCIS [18] follows the idea of GeneR-
ank [35] to simply replace the part [5¢] in Google PageRank algorithm with the MAD to
obtain the final weight of a feature. However, we find that the final weight obtained in this way
by both GeneRank and NCIS is strongly correlated with the feature weight directly calculated
with Eq 2, i.e. without using MAD. The strong correlation implies that the approach taken by
the two methods of integrating MAD is not effective as the expression variation information is
not reflected by the final weight obtained using their approach. The detailed results on this
finding are shown in the S3 File.

To overcome this problem, we adopt a linear model to effectively integrate the feature rank-
ing and the feature variation in this paper. We firstly normalise the feature ranking obtained
from the miRNA-TF-mRNA regulatory network and feature variation from expression data as
follows:

R(f)

Ry(f) = SV R(E) (4)

B MAD(fi)
MAD,(f) = SV MAD(f,) (5)

A linear model is then applied to integrate these two measures to get the final weight for
each feature.

W(f) = BRy(f) + (1 — F)MAD,(f) (6)

where S is a tuning parameter for the importance of the miRNA-TF-mRNA regulatory net-
work information. The larger the value of f is the more important role the information of the
miRNA-TF-mRNA regulatory network will play in calculating the final weight of the features.
In our experiments, we set 3 to 0.8 to focus more on the network information for the cancer
subtype discovery.

Weighted similarity network fusion

We utilise the feature weight information to assist the identification of cancer subtypes from
the gene expression data and miRNA expression data. To this end, we modify the similarity
network fusion (SNF) method [11] to incorporate the feature weight obtained in the previous
step into the process of cancer subtype classification.

SNF is a multi-omics data processing method that constructs a fusion patient similarity net-
work by integrating the patient similarity obtained from each of the genomic data types. SNF
calculates the similarity between patients using each single data type separately. The similarities
between patients from different data types are then integrated by a cross-network diffusion
process to construct the fusion patient similarity matrix. Finally, a clustering method is applied
to the fusion patient similarity matrix to cluster patients into different groups, which imply dif-
ferent cancer subtypes.

The key step of SNF is to define the similarity between patients, as we need to stratify similar
patients into the same group (subtype). Euclidean distance is used in SNF to measure the simi-
larity between patients in single genomic data type, where, however, all features are treated as
equally important. Suppose that there is an expression profile dataset (#n patients x p features),
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then the Euclidean distance between patient S; and patient §; is:

Distance(S,,S;) = 1/2 (Fo = V3 Vij < myi#j (7)

s . . . .
where f% and f,, are the expression values of f,, in patients S; and S, respectively.

We modify the patient distance formula as follows take the weight of each feature into con-
sideration:

Distance(S,, S;) = \/Z W(f,) * ) i Vij<mji#j (8)

By using the above modified samples distance formula, the proposed WSNF method con-
siders similarity of two patients based on not only the overall difference between the expression
levels of all their features, but also the importance (weight) of each of the features. As we make
use of the miRNA-TF-mRNA network information in the calculation of feature weight and
our method treats different features differently, we will see in the Results and discussion Sec-
tion that WSNF significantly outperforms the SNF and the other commonly used methods for
identifying cancer subtypes.

Results and Discussion
Datasets

In this paper, we use the BRCA and GBM datasets from The Cancer Genome Atlas (TCGA)
for our experiments, including the gene (mRNA and TF) expression data, miRNA expression
data and clinical data (overall survival time, survival status and some clinical covariates). The
Level 3 TCGA tumor samples are downloaded from the Broad GDAC Firehose (timestamp:
2015-04-02). To get the most number of matched samples for both cancers, we use RNASeq
and miRNAHiseq data for BRCA and microarray data for GBM.

The genes and miRNAs with very low expression levels and low variations across samples
are removed. The different cut-off points are selected based on the distribution characteristics
of the BRCA and GBM datasets (see the S3 File). For the BRCA RNASeq and miRNAHiseq
datasets, we firstly use the log2 transformation to preprocess them, which is commonly used
for RNA-sequencing data as introduced in the DESeq2 [36] R package. We calculate the aver-
age value for each feature across samples and remove the 25% genes and 60% miRNAs with
low average expression. Then the standard deviation of each gene and miRNA is calculated,
and genes and miRNAs with standard deviation less than 0.5 are also removed. For the GBM
microarray data, there are some missing observations. We firstly apply the imputation by using
the impute R pacakage [37]. Then we calculate the standard deviation of each gene and
miRNA. The genes with standard deviation less than 0.6 and the miRNAs with standard devia-
tion less than 0.2 are removed. The detailed processing procedure of the datasets are recorded
in the S3 File. In the end, there are 587 matched samples in BRCA with 12,233 mRNAs, 1,338
TFs and 361 miRNAs. Meanwhile, for GBM there are 276 matched samples with 10,278
mRNAs, 1,083 TFs and 287 miRNAs (see the S3 File).

Network construction

As mentioned in the Materials and Methods Section, we use several public databases to con-
struct the miRNA-TF-mRNA regulatory network. Table 1 shows the number of interactions
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Table 1. The interactions used for constructing the miRNA-TF-mRNA regulatory network for the BRCA dataset.

miRNA — TF&

miRNA —mRNA

TF — miRNA

TF — mRNA

TF — TF&
mRNA — mRNA

doi:10.1371/journal.pone.0152792.t001

Database Total interactions Found interactions
Tarbase v6.0 17,526 12,130
miRTarBase v4.5 37,423 26,847
miRecords v4 1,707 1,095
starBase v2.0 320,709 219,088
ENCODE [25] 117,193 54,603
ENCODE [25] 1,648 579
Transmir v1.2 649 457
ENCODE ChIP-Seq 229,486 133,952
TRED 7,066 4,739
Reactome 127,452 60,648
STRING v10.0 250,843 122,938

from the data sources for constructing the regulatory networks for the BRCA dataset. Similar
information for the GBM dataset is in the S3 File.

The identified subtypes have significantly different survival patterns

With the constructed networks and the BRCA and GBM expression datasets, WSNF identifies
five breast cancer subtypes and three GBM subtypes. The identified cancer subtypes and related
clinical information for breast cancer and GBM are given in the S4 and S5 Files. To assess how
well our method has performed in identifying cancer subtypes, we conduct survival analysis of
the identified cancer subtypes. Figs 3 and 4 show the survival curves of the patients in the five
subtypes of BRCA and the three subtypes of GBM, respectively. The p-values from the Log-
rank tests [38] are 0.00483 for BRCA and 0.00279 for GBM. The p-values suggest that the iden-
tified subtypes in both datasets have significantly different survival patterns, indicating differ-
ent cancer subtypes respectively.

Furthermore, we use the Silhouette width [39] and black-white heatmap to demonstrate the
consistency of the samples (patients) in each subtype and the difference across different sub-
types, respectively. As shown in Figs 3 and 4, the overall average Silhouette width values are
positive for both BRCA and GBM. Note that the Silhouette width value is positive if the sam-
ples in each subtype are consistent, and negative otherwise. Meanwhile, the black-white heat-
maps are generated from the matrix of sample similarity by arranging the samples according
the cluster labels. The block boundaries for all subtypes are very clear. In particular, the third
subtype of BRCA has a high Silhouette width value and a clear contrast in the black-white heat-
map, which suggests unique characteristics of the patients in this subtype.

The network information improves the identification of cancer subtypes

To investigate whether the information from the miRNA-TF-mRNA regulatory network actu-
ally helps improve the identification of cancer subtypes, we compare the WSNF method with
the previously proposed methods including NCIS [18], Consensus clustering (CC) [7], and SNF
[11]. NCIS utilises gene expression data and the information from mRNA-mRNA interactions.
CC is the commonly used clustering method in TCGA research papers [1, 8, 40-42] based on
single genomic data type. SNF is the multiple genome data fusion and clustering method but
does not use the information from the gene regulatory networks. To make a fair comparison,
from our processed datasets (BRCA & GBM) and constructed miRNA-TF-mRNA regulatory
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doi:10.1371/journal.pone.0152792.9003

networks, we use the gene expression data and extract mRNA-mRNA interactions as the input
for NICS. We concatenate the normalised gene expression data and normalised miRNA expres-
sion data for each patient as the input data for CC. The inputs of the SNF are the gene expres-
sion data and miRNA expression data. The inputs of our WSNF method are the gene
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doi:10.1371/journal.pone.0152792.9004

expression data, miRNA expression data and the miRNA-TF-mRNA regulatory networks. We
conduct the survival analyses for the identified subtypes by each of the methods and compare
the p-values of the Log-rank tests [38] to evaluate the significance of the different survival distri-

butions across subtypes.
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Table 2. Comparison of the Log-rank tests of cancer subtypes identified by different methods.

Dataset NCIS cc SNF WSNF(8 = 1) WSNF(g = 0.8)
BRCA 0.374 0.0634 0.0583 0.0277 0.00483
GBM 0.091 0.321 0.0107 0.00364 0.00279

doi:10.1371/journal.pone.0152792.1002

From Table 2, we see that WSNF has significantly lower p-values than other common meth-
ods in both the BRCA and GBM datasets. When /3 is set to 1, the weight for the features is
completely determined by the miRNA-TF-mRNA regulatory network. The results show that
the WSNF method is better than the other existing methods, suggesting that the information
from the miRNA-TF-mRNA regulatory network helps improve the identification of the sub-
types. We observe further that the method performs very well in both datasets when S is 0.8
(which is default value used for j).

Breast cancer subtypes show different expression patterns

In the previous section, we have demonstrated the performance of WSNF using the BRCA and
GBM datasets. The results suggest that WSNF is capable of discovering cancer subtypes with
distinct survival patterns and our method outperforms the existing cancer subtype identifica-
tion methods. We investigate the mRNA, TF and miRNA expression patterns across the five
different breast cancer subtypes. Similar to [8], we extract the “core samples” which are identi-
fied on the basis of their Silhouette width by removing samples with negative Silhouette width
values in each subtype. There are 502 samples with positive Silhouette width values across the
five subtypes. We also obtain 69 normal samples from TCGA for comparison. The heatmaps
for mRNA, TF, and miRNA expression are shown in Fig 5. Taking normal group as the refer-
ence, we can see from the figure that the expression profiles between the subtypes are signifi-
cantly different.

To have a closer look at the expression patterns of genes characterising each subtype, we use
the Voom [43] method and Limma [44] R Package to find the differentially expressed genes
(adjusted p-value<0.01) between each subtype and normal samples. We select the top 1500 dif-
ferentially expressed genes in each subtype for the analysis. Fig 6 shows the overlap of differen-
tially expressed genes across the subtypes. There are 473 common differentially expressed
genes for all subtypes. Meanwhile, each subtype has their specific genes (Subtype 1: 271, Sub-
type 2: 82, Subtype 3: 393, Subtype 4: 291, Subtype 5: 157). The common genes across the five
subtypes and the subtype-specific genes are listed in the S6 File. Although there are some com-
mon differentially expressed genes for all subtypes, their expression patterns are quite different
as shown in Fig 7. In the latter section, we conduct the pathway analysis for the subtype-spe-
cific genes to explore their function characteristics in each subtype.

Alterations in regulatory networks across breast cancer subtypes

We extract the TF gene BCL11A to show the alterations in the miRNA-TF-mRNA regulatory
network across the identified breast cancer subtypes. BCL11A is a proto-oncogene that has a
significant effect on breast cancer [45]. As shown in Fig 8, BCL11A is highly expressed in Sub-
type 3, but lowly expressed in other subtypes. We map the patients in Subtype 3 to clinical data
and find that 73.5% of the patients are in triple-negative class, including ER-, PR- and HER2-.
This is consistent with the results in [45], which proved that BCL11A is highly expressed in tri-
ple-negative breast cancer.
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Fig 5. mRNA, TF and miRNA expression heatmap for BRCA dataset.
doi:10.1371/journal.pone.0152792.g005

The target genes of BCL11A, including ANKRPD30B, MAG, BPIFBI and GRPR are lowly
expressed in Subtype 3 and this pattern is opposite to those in other subtypes. These different
patterns suggest that BCL11A down regulates ANKRPD30B, MAG, BPIFBI and GRPR in breast
cancer, and the expression level of BCLI1A may be a marker of different subtypes. We also
observe the co-expression between BCL11A and PTPRZ] in all subtypes and normal samples.
However, the expression level of BCL11A and PTPRZI are different across different subtypes
and normal samples, suggesting that the co-expression of BLC11A and PTPRZ]I are specific to
the subtypes.

To investigate why BCL11A has low expression levels in Subtypes 1, 2 and 5 (and not very
high in Subtype 4), we observe the changes in the expression levels of its upstream regulators.
As in Fig 8, miR-190b and ESR1 have high expression levels in the three subtypes, which is
totally opposite to that in Subtype 3. This observation suggests that miR-190b and ESRI may
down regulate BCLI1A in breast cancer. The level of down regulation may characterise differ-
ent breast cancer subtypes. We believe that the information of miRNA-TF-mRNA regulatory
mechanisms across subtypes would provide insights into the cause of each subtype.

Top enriched pathways in different breast cancer subtypes

To investigate the pathways involved in each subtype, we conduct the pathway analysis on the
differentially expressed genes characterising each subtype as shown in Fig 6. We use GeneGO
Metacore™™ (https://portal.genego.com/) to select the top 5 significant pathways for each sub-
type. The genes to be analysed are the subtype-specific genes (Subtype 1: 271, Subtype 2: 82,
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Fig 6. The overlap of the differentially expressed genes across the five subtypes of BRCA.

doi:10.1371/journal.pone.0152792.9g006

Subtype 3: 393, Subtype 4: 291, Subtype 5: 157), as we wish to observe different biological path-
ways for different subtypes. We also conduct the pathway analysis for the 473 common genes
in all the subtypes.

Table 3 shows the top 5 enriched pathways of the common genes and subtype-specific
genes of each subtype. We can see from the table that the pathways are quite different between
different subtypes. The significant pathways of the common genes are related to cell cycle.
Pathways in Subtype 1 are related to Epithelia to Mesenchymal Transition (EMT), which
implies the progression of breast carcinoma to metastasis [46]. Meanwhile, pathways in Sub-
type 3 are related to the neurophysiological process, Subtype 4 pathways are about the cytoskel-
eton remodeling, and Subtype 5 pathways are related to the immune responses. These
pathways show that different subtypes have different causes.

Discussion and Conclusion

Identifying cancer subtypes is one of the important components in the personalised medicine
framework, as correctly stratifying patients into subtypes will increase the chance to provide
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the best treatment option. Computational methods have been advanced in the last decade to
systematically cluster patients into groups based on their genetic profiles. Especially, SNF is an
effective multi-omics data fusion method for stratification of cancer subtypes. Compared with
other existing methods, SNF is time efficient and effective in uncovering subtypes with distinct
survival patterns. However, similar to other existing methods, SNF is not able to exploit the
biological importance of the features in building the model. Therefore, the valuable informa-
tion from biological networks, such as gene regulatory networks, is not utilised in the proce-
dure of grouping patients into subtypes. However, network information is very important for
understanding the mechanisms of cancer development and progression.

In this paper, we have proposed the WSNF method. WSNF is based on SNF, but it makes
use of the miRNA-TF-mRNA regulatory network to take the importance of the features into
consideration. We applied WSNF to the breast cancer and glioblastoma multiform datasets,
and the experimental results have shown that with the assistance of the network information
WSNF outperforms the other cancer subtype identification methods that do not use the infor-
mation. The results suggest that the miRNA-TF-mRNA regulatory network can provide valu-
able information for clustering cancer subtypes.

The performance of the WSNF method could be improved further. WSNEF is based on the
public databases of interactions between miRNAs, TFs, and mRNAs. Although the databases
are comprehensive, they do not cover all the true interactions. Moreover, the gene regulatory
networks may involve other types of molecules such as long non-coding RNAs, and they are
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not included in the gene regulatory network in this paper. Therefore, a more complete gene
regulatory network with multiple types of gene regulators (can be obtained when more data
become available) would help improve further the performance of WSNF in identifying signifi-
cant cancer subtypes.

We have observed that the expression patterns of genes across the identified breast cancer
subtypes are very different, suggesting that the expression levels of groups of genes may char-
acterise the cancer subtypes. We have also investigated the expression patterns of genes in the
sub-networks around BCL11A across different subtypes of breast cancer. The results show that
the expression pattern of the genes in Subtype 3, where 73.5% of the patients have triple-nega-
tive (ER-, PR- and HER2-), is very different from those in other subtypes. Moreover, func-
tional pathway analysis shows that different pathways involved in different breast cancer
subtypes, suggesting that the breast cancer subtypes may be caused by different pathways.
These findings are useful for domain experts to design different treatments for different breast
cancer subtypes.
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Table 3. Top 5 enriched pathways in five subtypes of BRCA. The p-values have been adjusted by the
Benjamini-Hochberg (BH) method.

Datasets

Common

Subtype 1

Subtype 2

Subtype 3

Subtype 4

Subtype 5

Top 5 enriched pathways

Cell cycle The metaphase checkpoint

Cell cycle Role of APC in cell cycle regulation

Cell cycle Spindle assembly and chromosome separation
Reproduction Progesterone-mediated oocyte maturation
Cell cycle Chromosome condensation in prometaphase
NETosis in SLE

Development WNT signaling pathway.Part 2

Cell adhesion Cell-matrix glycoconjugates
Hypoxia-induced EMT in cancer and fibrosis

Immune response IL-12 signaling pathway

Immune response IL-6 signaling pathway
Neurophysiological process Receptor-mediated axon growth repulsion
Signal transduction IP3 signaling

Immune response Function of MEF2 in T lymphocytes
Development Role of HDAC and calcium

Cell adhesion ECM remodeling

Breast cancer (general schema)

Neurophysiological process Melatonin signaling
Neurophysiological process Receptor-mediated axon growth repulsion
Action of GSKS3 beta in bipolar disorder

Cell adhesion Gap junctions

Cytoskeleton remodeling Neurofilaments

Cytoskeleton remodeling Keratin filaments

Cell adhesion Tight junctions

Breast cancer (general schema)

Development Prolactin receptor signaling

Immune response ETV3 affect on CSF1-promoted macrophage differentiation

Immune response Human NKG2D signaling
Immune response TSLP signalling
Immune response Murine NKG2D signaling

doi:10.1371/journal.pone.0152792.t003

Adj- p -value
1.337E-15
1.118E-10
5.812E-08
3.553E-07
3.947E-07
3.209E-06
7.827E-05
1.536E-04
1.969E-04
2.404E-04
4.784E-03
9.892E-03
1.165E-02
1.258E-02
1.403E-02
8.725E-04
2.768E-03
3.299E-03
3.896E-03
4.203E-03
1.212E-05
1.132E-04
4.832E-04
4.832E-04
7.987E-04
4.736E-05
7.416E-05
1.303E-04
1.445E-04
1.936E-04

In summary, we have developed a method utilising the information of miRNA-TF-mRNA

regulatory network to identify cancer subtypes. The method has successfully identified sub-
types in breast cancer and glioblastoma multiforme. The results provide strong indicators for
further analysis of the mechanisms of the subtypes. We provide all datasets, results and scripts

for readers to reproduce and further analyse the results.

Supporting Information
$1 File. TF list(1679).

(CSV)

S2 File. R scripts for our method.

R)

S3 File. Supplementary Materials.

(PDF)
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S6 File. The significant differentially expressed genes in the five BRCA subtypes.
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