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Neural network identification of 
people hidden from view with a 
single-pixel, single-photon detector
Piergiorgio Caramazza1,2, Alessandro Boccolini1, Daniel Buschek3, Matthias Hullin4, 
Catherine F. Higham   5, Robert Henderson6, Roderick Murray-Smith5 & Daniele Faccio   2

Light scattered from multiple surfaces can be used to retrieve information of hidden environments. 
However, full three-dimensional retrieval of an object hidden from view by a wall has only been 
achieved with scanning systems and requires intensive computational processing of the retrieved 
data. Here we use a non-scanning, single-photon single-pixel detector in combination with a deep 
convolutional artificial neural network: this allows us to locate the position and to also simultaneously 
provide the actual identity of a hidden person, chosen from a database of people (N = 3). Artificial neural 
networks applied to specific computational imaging problems can therefore enable novel imaging 
capabilities with hugely simplified hardware and processing times.

Recent years have seen a surge of interest and corresponding advances in the ability to image objects that are not 
visible within the direct line of sight. In particular we refer to the situation in which the object is hidden behind a 
wall, a corner or inside a room to which we do not have access1–13. The majority of the techniques that attempt to 
image a scene or object that is hidden behind an obstacle have relied on active imaging, i.e. the scene is actively 
illuminated using a light source that is controlled by the observer. Although recent work used continuous illu-
mination6, the most common approach is to use a pulsed light source, for example a laser. The basic functioning 
principle is then very similar to listening to sound echoes reflected from multiple surfaces: the laser beam is 
scattered off a surface that lies within the direct line of sight, but also such that the scatter may enter the hidden 
environment. By then synchronising the detection system to the emitted pulses and measuring the return time 
for each echo, it is possible to determine the distance of the object that created/reflected the signal. If one wants to 
build a full image of the hidden environment or object, simply measuring return times from a single point is not 
sufficient: multiple pixel information is required and is built up by either directly imaging and/or scanning the 
imaging optics across the surface where the reflected echoes are detected, or by scanning the illumination spot 
on the first scattering surface. Both approaches, followed by computational processing of the collected data can 
provide full 3D reconstruction of the hidden environment.

However, the overall constraints on the problem make it extremely hard to achieve 3D imaging of hidden 
objects with high resolution (few mm or less), at significant distances (1 m or more) and within reasonable (e.g. 
less than several seconds) time-frames. The main limitations are: the very low return signal which will typically 
decay as ∼ d1/ 6 (d is the distance of the hidden object from the imaging system)9; the very high temporal resolu-
tion (10–100 ps or less) required for the detector to obtain sub-cm precision; the requirement to scan either the 
laser or the detector lengthens the acquisition times to minutes or even hours3,5. Currently, there is no obvious 
and single solution to all of these problems: 3D imaging can be obtained at the expense of acquisition and pro-
cessing time or tracking can be obtained at higher frame rates, albeit with limited resolution and hence the impos-
sibility to reconstruct actual 3D shapes of the hidden objects. Moreover, very little work has been performed to 
date on large objects and actual people, with results limited to tracking of location and movement detection9.
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If we then ask the question, “is it possible to both locate and even identify a person who is hidden behind a 
wall?”, we are faced with even larger hurdles and the answer is that such a capability is well out of the reach of all 
currently adopted approaches.

The key point of this work is to show that by moving beyond the current paradigms of non-line-of-sight 
(NLOS) imaging, it is actually possible to perform the feat questioned above on at least a limited set of chosen 
targets. In order to do this we use data from a single-photon, single-pixel detector that is analysed by a previ-
ously trained artificial neural network (ANN). Use of just one single pixel detector is highly advantageous due 
to commercial availability and optimised specifications in terms of photon sensitivity (can be close to 100%, 
whilst quantum efficiency remains similar) and temporal resolution (can be lower than 20 ps). The ANN is able 
to recognise the position of a hidden person (from a training set of 7 positions) and even provide the identity of 
the person (from a training set of 3 people). Remarkably, person-identification is successful even when all three 
individuals have the same clothing, thus hinting that the ANN can recognise the more subtle changes in the phys-
iognomy from one person to another. This is all the more remarkable when we note that the temporal resolution 
of the detector (120 ps, corresponding to 1.8 cm depth resolution) would not be sufficient to precisely reconstruct 
the full 3D shape of a face, even after raster scanning. The ANN therefore extends the capability of the imaging 
system and by removing the requirement of any forward modelling or computational post-processing, allows fast 
location and identification of hidden people that would otherwise not be possible. We underline that currently 
there are no other techniques that can identify people from behind a corner, even within the strong limitations 
demonstrated here.

Experiments
Data is collected with the set-up shown in Fig. 1. A femtosecond pulsed laser beam, λ = 808 nm and Rep. Rate 
λ = 80 MHz, is pointed towards a wall where a first scattering occurs. Thus, the light illuminates the hidden indi-
vidual so that the backscattered light can be captured by the detection system. Three different people have been 
used for this experiment, and both same clothing and different clothing data were acquired (see Fig. 1). Moreover, 
we tested seven different positions of which, those from “A” to “E” share similar photon time-of-flight (i.e. the 
individual has a similar distance from the first scattering point on the wall). This situation was chosen so as to 
ensure that the ANN did not train solely on arrival time of the return photon echoes but rather focused on actual 
features within the temporal shape of the echo. For each person in each position, five separate measurements were 
taken, alternating people and position for each measurement.

In order to provide the large amount of data required for the neural network training, we make use of a single 
photon avalanche diode (SPAD) segmented array14. This consists of a 32 × 32 array of single-pixel SPAD detec-
tors, each characterized by an instrumental temporal response function (IRF) of ∼120 ps (this is the total IRF, i.e. 
includes both laser pulse duration and all electronic jitter effects). Thus, the pixels are treated as independent 
observers that are looking at roughly the same position on the wall (within the 3 × 3 cm2 imaged area on the wall). 
We note that the field of view covered by the array was such that there was some variability in the data but that this 
variability did not significantly distort the histograms from one pixel to the next. Indeed, we noticed in initial tests 
that with a field of view three times larger that the classification results were significantly worse by a factor 2–3. 
We also acquire a background signal under identical conditions but with the individual removed: this is then 
subtracted from the measurements. We note however, that if for example the individual is moving, then it is pos-
sible to acquire a background from a time-averaged signal, as demonstrated in4 therefore providing a practical 
approach to situations where it is not possible to acquire a pre-recorded background signal. Furthermore, we 
eliminate “hot” pixels and thus obtain 800 temporal histograms from each measurement. A subset example of 

Figure 1.  Experimental details: layout is shown in (a). A pulsed laser light source illuminates a wall which 
scatters light behind the obscuring wall, thus illuminating the hidden person. The return echoes are collected by 
the SPAD array, aimed at the first scattering wall. The three people used for the experiments, referred to in the 
text and figures as “n.1”, “n.2” and “n.3” are shown in (b), (c), (d), respectively. Their relative heights are: 1.68 
m, 1.57 m and 1.87 m. Two different cases were verified: different clothing, (b–d), and same clothing (e) (only 
individual “n.3” is shown for simplicity). Measurements where repeated 5 times across all 7 different positions 
(A, B, C, Db, Df, E and F).



www.nature.com/scientificreports/

3Scientific REPOrts |  (2018) 8:11945  | DOI:10.1038/s41598-018-30390-0

data from a single, background-subtracted measurement (for individual “n.1” in position “C”) is shown in 
Fig. 2a). The SPAD array is triggered directly from the laser external trigger and is thus synchronised to the emis-
sion of each individual laser pulse: a single acquisition takes two seconds, equivalent to integration over 160 × 106 
laser pulses.

Analysis of Experimental Data
The architecture we propose is inspired by the physics involved in the experiment. Here, the underlying assump-
tion is that the information about position and shape of the hidden individuals are both encoded in the photon 
time-of-flight and final temporal shape of the return echo. In Fig. 2b) we show a typical example of the histograms 
for the three individuals tested in this work (labeled as n.1, n.2 and n.3). As can be seen, there are clear differences 
between the three temporal histograms yet there is no unique feature that stands out as distinguishing one from 
the other. They have similar heights, total photon counts (physically connected to the overall target reflectivity) 
and widths (physically connected to the overall height of the target individual). This means that any data-driven 
classification approach has to learn to identify the overall ensemble of more subtle differences and classify the 
data accordingly. As previously introduced, we underline that SPAD single-pixel detectors in our setup are treated 
independently. Therefore no spatial information is actually used. Indeed, the aim of our algorithm is to identify 
and locate the individuals from just one time-binned pixel.

Neural Network Classifier
Artificial neural networks (ANN) are mathematical models loosely inspired by the human brain, which have pro-
vided an important contribution to both scientific and technological research for their capacity to learn distinc-
tive features from large amounts of data. Deep convolutional neural networks are computational models which 
are concerned with learning representations of data with multiple levels of abstraction. They have been broadly 
employed for tasks such as regression, classification, unsupervised learning, and are proving very successful at 
discovering features in high-dimensional data arising in many areas of science, with breakthroughs in image 
processing and time-series analysis15–17. The performance increases are due to increases in processing power, 
algorithm improvements better quality flexibility software, and the availability of large collections of training data.

Very recent studies have started to look at the use of ANNs in the area of computational imaging with applica-
tions in phase-object identification18, pose-identification of human-shaped objects19 and number/letter identifi-
cation20 from behind a diffusive screen. In this work, we rely on supervised machine learning algorithms in order 
to classify people hidden from our line of sight and located in varying positions.

We therefore build a nonlinear classifier aiming to correctly identify the label of the histograms resulting 
from the acquisition of pulsed laser light backscattered from three different people in seven different positions. 
We use a supervised approach where we pair the temporal histogram as input to the ANN and create an output 
vector encoding the class of the person and the target location. Both class and location are treated as categorical 
classification tasks, and encoded using a ‘one-hot’ encoding such that we use Nc binary outputs for Nc classes, and 
Nl binary outputs for location positions. In this work Nc = 3, Nl = 7. The cost function minimised during learning 
is the categorical cross-entropy21 see SM).

As it is shown in Fig. 3, our ANN architecture processes input data in parallel through: a fully-connected layer 
on one side, in order to retrieve more information about the distance, and in parallel, convolutional layers which 
due to their translation invariant nature, will focus more on the temporal histogram shape and features (see SM 
for more details).
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Figure 2.  (a) Example of the input data for the ANN, showing a subset 6 × 6 taken from the full 32 × 32 array. 
This data is a single measurement of individual “n.1” in position “C”. (b) For comparison, we show the temporal 
histograms for individuals n.1, 2 and 3 for the same pixel. The width of the temporal binning is 55 ps for both 
(a) and (b).
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Results
After optimisation was completed, we tested the performance of the classifier on new data, taken under the same 
conditions as the training data but is not used during the training process. To test the robustness of the optimi-
sation process, we use a leave-one-out cross-validation process, where we extract all data from one measurement 
to use as test data, then train on data associated with all other measurements. We then average the classification 
results in a per-pixel basis. For this training set with 5 measurements of ca. 800 pixels each, the classification 
average calculated over 5 runs obtained by training the ANN on data from 4 measurements and testing on the 
remaining one (repeating the procedure by all permutations of the 4 training and single test data sets).

Firstly, we show the results for the case in which all three individuals have “different clothing”, Fig. 4. Data are 
reported in a confusion matrix that compares the actual classes (vertical axis, “truth”) with the predicted classes 
(horizontal axis). Since our ANN predicts simultaneously position and identity relative to a testing histogram, 
the positions’ confusion matrix will contain information from all the three characters. Analogously, the people’s 
confusion matrix will contain prediction on characters disposed on all the seven positions. The matrix values 
represent the normalised average calculated over all 5 cross-validation runs. A “0” indicates no overlap between 
training and test data and a “1” indicates 100% statistical certainty in the correct classification.

As we can observe in Fig. 4(a), positions “Db” and “Df ” are identified with 100% certainty, whereas among the 
positions with similar photon time-of-flight, the classification fidelity is slightly worse, thus indicating a certain 
role played by the overall arrival time of the photons. However, the classification still shows a very good agree-
ment for all positions with the ground truth. In Fig. 4(b) we show the confusion matrix for person identification 
indicating that the classifier is able to correctly identify the three people. Since it is possible in this case that both 
shape and reflectivity of the bodies (that are clothed differently) play a key role, we try to isolate one of these two 
degrees of freedom by repeating the experiments with all individuals in the same clothing, see Fig. 5. The classifi-
cation of the individual’s position occurs with similar fidelity as in the “different clothing” case, Fig. 5(a). However, 

Input

Dense Layer

1D Convolu�onal
Layers

Dense Layer

Iden�ty

Posi�on

OutputInternal Scheme

Figure 3.  Network architecture tested and discussed in the text (1Dconv + Dense). Other architectures are 
discussed in the SM.

Figure 4.  Results for the case in which the three individuals (n.1, n.2, n.3) have different clothing. Confusion 
matrices are shown for: (a) retrieval of position (averaged over all individuals) and (b) retrieval of the individual 
identities. The ANN was trained with 4 measurements and tested with one, repeating over every permutation 
and averaging.
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person identification is indeed now more challenging with a higher confusion between individuals. The notable 
result from these tests is that even when individuals have the same clothing, a single-pixel is sufficient to identify 
them. All of the information is encoded in the temporal shape of the return photon echo. Yet, as the temporal 
resolution of 120 ps corresponds to a spatial depth resolution of 1.8 cm which is insufficient to create a 3D map 
of a human face, so we suspect that the classifier is not focusing solely on facial features, but is relying on overall 
physiognomy, including body height, width and skin reflectivity.

Finally, we compared the results from different ANN architectures. The results (see SM) tend to not show 
any particular sensitivity to the specific ANN architecture employed among those designs compared in this 
final stage, suggesting the robustness of the model structures chosen for this problem. We anticipate that further 
improvement in performance would need to come from larger and more controlled training sets. However, one 
interesting outcome is that the performance summary does seem to suggest that classifying location and identi-
ties jointly is consistently better than trying to deal with these individually. This is probably because the internal 
representations learned to predict class can then be useful to help predict location more accurately, and vice versa.

Instead of taking average classification performance at a per-pixel level, we can base classification on a major-
ity verdict, all ca 800 per-pixel classifications for a single measurement. The results of this approach (see SM) 
indicate that misclassification occurs within certain measurements rather than across measurements suggesting 
that increasing the variation in the training data should improve the classifier.

Conclusion
One-dimensional temporal histograms obtained by capturing laser echoes backscattered from a hidden body 
contain information that reliably allows the identification of different people in different positions. We underline 
that once the ANN is trained, the classification process is just the result of multiple matrix multiplications and 
vector function evaluations and can thus proceed extremely quickly, with millisecond processing times. Thus, a 
data-driven classifier, such as the ANN used here, can achieve identification with a precision that is not possible 
with any other currently available approach, and it does so with speeds that are orders of magnitude faster than 
even the best NLOS reconstruction shown to date. The method proposed here is based on supervised training. 
We therefore require knowledge on the person from which we are receiving data for the training phase. Once the 
training is complete however, we no longer require access to the hidden environment. We underline that with the 
classification scheme presented here, one is obviously limited to identify individuals that are part of the training 
database. New individuals that have never been seen before cannot be classified or identified with this method. 
The impact for example of changing clothing (that has not been seen during the training phase) also needs to be 
assessed in future work.

Interesting questions arise from this work, such as exactly how many individuals may be used for training and 
then successfully identified with a single temporal histogram that has a given IRF, and the impact of target move-
ment on the classification performance. Furthermore, we have not considered the impact of pose, i.e. the impact 
of the person standing at an angle, facing away from the wall or indeed, different “arrangements” of a single indi-
vidual (e.g. hair style, colour etc.). This is an interesting additional degree of freedom that should be considered 
in future work. The information content analysis of temporal photon echoes remains an open question for future 
work as well. Recent work has also shown how device-independent training is possible within the context of 
computational imaging problems, promising the ability to either train and test using completely different detec-
tors or even to train using forward modelling as in19. The latter would be particularly significant in the context of 

Figure 5.  Results for the case in which the three individuals (n.1, n.2, n.3) have the same clothing. Confusion 
matrices are shown for: (a) retrieval of position averaged over results for all three individuals and (b) retrieval of 
the individual’s identity.
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classification of hidden environments where the forward model is possibly easier to fully characterise and model 
with respect to people. These results pave the way to exciting novel scenarios for machine learning applications, 
such as identification of groups of individuals (for example distinguishing adults from children) but also of entire 
environments by means of a single pixel temporal measurements.

Data.  All experimental data is available at http://dx.doi.org/10.17861/c9ec32bf-0ff2-4b9f-a48a-5ee2aed59c61.
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