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Abstract

b-amyloid precursor protein (APP) is a key factor in Alzheimer’s disease (AD) but its physiological function is largely
undetermined. APP has been found to regulate retrograde transport of nerve growth factor (NGF), which plays a crucial role
in mediating neuronal survival and differentiation. Herein, we reveal the mechanism underlying APP-mediated NGF
trafficking, by demonstrating a direct interaction between APP and the two NGF receptors, TrkA and p75NTR.
Downregulation of APP leads to reduced cell surface levels of TrkA/p75NTR and increased endocytosis of TrkA/p75NTR and
NGF. In addition, APP-deficient cells manifest defects in neurite outgrowth and are more susceptible to Ab-induced
neuronal death at physiological levels of NGF. However, APP-deficient cells show better responses to NGF-stimulated
differentiation and survival than control cells. This may be attributed to increased receptor endocytosis and enhanced
activation of Akt and MAPK upon NGF stimulation in APP-deficient cells. Together, our results suggest that APP mediates
endocytosis of NGF receptors through direct interaction, thereby regulating endocytosis of NGF and NGF-induced
downstream signaling pathways for neuronal survival and differentiation.
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Introduction

An important pathological hallmark of Alzheimer’s disease (AD)

is the formation of extracellular senile plaques in the brain, whose

major components are b-amyloid (Ab) peptides. Ab is proteolyt-

ically derived from the b-amyloid precursor protein (APP) through

sequential cleavages first by b-secretase (BACE1) and then by the

c-secretase complex [1,2,3]. Extensive evidence demonstrates that

overproduction/accumulation of Ab in vulnerable brain regions is

a primary culprit in AD pathogenesis: Ab is neurotoxic and can

trigger a cascade of neurodegenerative steps including synaptic

dysfunction/loss, formation of intra-neuronal fibrillary tangles,

and subsequent neuronal death [4,5].

Full-length APP is a type-I transmembrane protein. After its

synthesis in the endoplasmic reticulum, APP is transported along

the secretory pathway to the Golgi/trans-Golgi network and the

plasma membrane [6,7,8]. Cell surface APP can be internalized

for endosomal/lysosomal degradation [9,10]. Although APP has

been under great scrutiny since its identification, the physiological

functions of APP remain largely undetermined. A role for APP has

been suggested in signal transduction, cell adhesion, calcium

metabolism, neurite outgrowth and synaptogenesis, etc, all

requiring corroboration with in vivo evidence [2]. In addition,

several studies, including ours, have indicated that APP may play a

role in protein trafficking regulation: APP was found to function as

a kinesin-I membrane receptor to mediate axonal transport of

BACE1 and PS1 [11,12], though another study failed to verify this

result [13]. We recently found that APP regulates cell surface

delivery of c-secretase components but not BACE1 [14]. APP was

also shown to interact with high-affinity choline transporter and

APP deficiency affected its endocytosis [15]. Another interesting

study found that increased doses of APP markedly decrease

retrograde transport of nerve growth factor (NGF) and causes

degeneration of forebrain cholinergic neurons in a mouse model of

Down’s Syndrome (DS) [16].

NGF belongs to the neurotrophin family, which plays an

important role in regulating development of both the central and

peripheral nervous systems [17]. Neurotrophins bind to specific

receptor tyrosine kinases (Trks) at the cell surface and activate

them. Formation of the ligand-receptor complexes also initiates

internalization of the activated receptors into vesicles and these

internalized receptors remain activated as long as they are

associated with the ligands [18]. Upon binding to its specific

receptors, TrkA and p75NTR, NGF can activate a series of

downstream signaling events mediating neuronal survival, differ-

entiation, and maintenance. The two major NGF-mediated

signaling pathways, PI3K/Akt and MAPK, are involved in

neuronal survival and differentiation, respectively [19,20,21].

Since retrograde transport of NGF after endocytosis upon its

binding to TrkA/p75NTR was shown to be affected by APP and
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the underlying mechanism has not been determined [16], herein

we investigate the effects of APP on regulating TrkA/p75NTR

trafficking and on the downstream signaling events upon NGF

stimulation.

Materials and Methods

Cell cultures, transfection and infection
Maintenance of mouse embryonic fibroblast (MEF) cells derived

from APP/APLP2 double knockout and control mice [22],

phenochromocytoma PC12 cells [17], and primary neuronal

cultures derived from postnatal day 0 mice or embryonic day 17

rat embryos [23], has been previously described. MEF cells were

transiently transfected with APP, TrkA, and/or p75NTR plasmids

using Lipofectamine 2000 (Invitrogen). Stable downregulation of

APP in PC12 cells was achieved by transfection of a pSUPER

RNAi vector containing a small hairpin RNA (shRNA) targeting

the APP sequence and selection with 200 mg/mL G418 [14].

Lentivirus containing the same APP targeting shRNA sequence

was used to infect primary rat neurons for APP downregulation.

All procedures were performed in accordance with the Guide for

Care and Use of Laboratory Animals of the National Institutes of

Health and were approved by the Institutional Animal Use and

Care Committee of Sanford-Burnham Medical Research Institute.

Antibodies
Antibodies used in this study included 22C11 recognizing the

amino-terminus of APP (Chemicon), 369 recognizing the carbox-

yl-terminus of APP, different TrkA antibodies (Santa Cruz,

Chemicon, and Upstate), and p75NTR antibodies (Abcam and

Cell Signaling). Antibodies recognizing Akt, phosphorylated Akt,

MAPK, phosphorylated MAPK, and MAP2 were from Cell

Signaling.

Cell surface protein biotinylation
Biotinylation was carried out as previously described [14].

Biotin-labeled cell surface proteins were precipitated with

streptavidin-agarose beads (Pierce), subjected to SDS-PAGE, and

analyzed by Western blotting with indicated antibodies.

Co-immunoprecipitation
PC12 cells were lysed with CelLytic M Cell Lysis Reagent

(Sigma) along with a protease inhibitor cocktail (Roche). Cell

lysates were subjected to immunoprecipitation with the indicated

antibodies and rProtein A-sepharose beads (Biochain Institute),

followed by Western blotting.

NGF treatments
To study the endocytosis of NGF, PC12 cells with stable

downregulation of APP and control cells were treated with 1 nM

quantum dot-labeled NGF (QD-NGF) for 3 h [24]. After a

complete wash, cells were fixed, permeabilized, stained with

DAPI, and observed under a fluorescent microscope. In addition,

cells were treated with 100 ng/mL NGF for different time periods

and the levels of phosphorylated and total Akt/MAPK were

analyzed by Western blotting.

NGF receptor endocytosis
To study the endocytosis of p75NTR and TrkA, cells were first

incubated with primary antibodies against p75NTR or TrkA at

4uC for 1 h, and then treated with 100 ng/mL NGF at 37uC for

1 h. Cells were then fixed and incubated with a secondary

antibody conjugated with Alexa FluorH-594 (for detecting cell

surface proteins) for 1 h. After a complete wash, cells were

permeabilized and then incubated with another secondary

antibody conjugated with Alexa Fluor-488 (for detecting both cell

surface and internalized proteins). Finally, cells were observed

under a confocal microscrope.

Neurite outgrowth
The next day after plating of embryonic day 17 rat primary

neurons, neurons were infected with APP or scrambled control

(SC) RNAi-containing lentivirus for 1 d. These neurons were then

treated with or without 100 ng/mL NGF for 5 d, and then fixed,

permeabilized, immunostained with MAP2 antibody and fluores-

cence-labeled secondary antibody, and observed under a fluores-

cent microscope. The neurite lengths of infected (indicated by

GFP fluorescence) neurons (indicated by positive MAP2 staining)

were measured for comparison.

Neuronal death
Neurons derived from postnatal day 0 APP heterozygous mice

and rat primary neurons with APP downregulated by RNAi, as

well as respective controls, were treated with or without 100 ng/

mL NGF for 5 d. These neurons were then treated with 25 mM

Ab for 1 d. Samples were stained by propidium iodide. The

numbers of dead (indicated by positive PI staining) neurons were

counted and compared.

Results

APP interacts with TrkA and p75NTR and regulates their
cell surface accumulation

While the underlying mechanism remains undetermined, it has

been shown that APP overexpression impairs the retrograde

axonal transport of NGF [16]. Because endocytosis of NGF is the

first step for its retrograde transport and NGF endocytosis is

mediated by its binding to the NGF receptors, TrkA and

p75NTR, at the cell surface, we investigated whether APP can

regulate cell surface levels of TrkA and p75NTR. We first

overexpressed TrkA and p75NTR individually in APP/APLP2

double knockout MEF cells and then transfected them with APP

or control pcDNA. The results showed that the steady state cell

surface levels of TrkA and P75NTR were increased by 2.9 and 2.1

folds, respectively, in the presence of APP (Figure 1A). We also

generated stable cell lines of rat phenochromocytoma PC12 cells

in which the level of APP was downregulated by RNAi and found

that these cells had reduced steady state cell surface levels of TrkA

(,2.4 folds) and P75NTR (,2.3 folds) (Figure 1B). In addition,

downregulation of APP in rat primary neurons by RNAi also

drastically reduced steady state cell surface levels of TrkA (,1.8

folds) and p75NTR (,3.1 folds) (Figure 1C). Together these

results clearly indicate that APP can regulate cell surface levels of

the NGF receptors TrkA and p75NTR.

APP has been reported to be able to interact with p75NTR and

TrkA [25,26]. Herein, we carried out co-immunoprecipitation

studies and confirmed that APP indeed interacts with p75NTR

and TrkA (Figure 1D). Fluorescent immunostaining also showed

that APP colocalizes with TrkA and p75NTR (data not shown).

Downregulation of APP results in increased endocytosis
of NGF and NGF receptors

Next, we studied whether APP deficiency affects NGF

endocytosis. When PC12 cells with APP stably downregulated

by RNAi were treated with QD-NGF for 3 h, the level of

endocytosed QD-NGF in these cells was about 2.6 folds higher

APP Regulates NGF Signaling
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than that in control cells (Figure 2A). These results are consistent

with the finding that APP overexpression impairs retrograde

transport of NGF [16].

Binding of NGF to its receptors is necessary for its endocytosis.

Therefore, we studied whether APP also affects endocytosis of

NGF receptors. After cells were treated with NGF for 1 h, we

observed considerably more internalized p75NTR in APP

downregulated cells than in control cells (Figure 2B). A similar

finding was observed for TrkA endocytosis (data not shown).

These results suggest that APP may mediate NGF endocytosis

through regulating endocytosis of TrkA/p75NTR.

APP deficiency results in increased neuronal
differentiation and survival in response to NGF

Since NGF activates a series of downstream signaling events

that mediate neuronal survival and differentiation, we investigated

whether altering cellular levels of APP affects neuronal survival

Figure 1. APP regulates cell surface levels of NGF receptors. (A) APP/APLP2 dKO cells were first transfected with p75NTR or TrkA. After
splitting equally, cells were transfected with pc DNA (control) or APP. Cell surface proteins were biotinylated, affinity precipitated, and subjected to
Western blotting. (B) PC12 cells were stably transfected with APP or scrambled control (SC) shRNA-containing vectors. Cell surface protein levels were
analyzed by biotinylation. (C) Rat primary neurons were infected with APP or scrambled control (SC) shRNA-containing lentivirus for 5 d. Cell surface
protein levels were analyzed by biotinylation. Protein levels were quantified by densitometry and normalized to those of controls for comparison (set
as one arbitrary unit). Error bars indicate SEM. *: P,0.05, n = 3. (D) Equal protein amounts of PC12 cell lysates were incubated with rabbit IgG (rIgG),
mIgG, APP antibodies (22C11 and 369), different TrkA antibodies (1–3) and P75NTR antibodies (1–2). Immunoprecipitated proteins were subjected to
Western blotting.
doi:10.1371/journal.pone.0080571.g001
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and differentiation. In the absence of exogenous NGF treatment

(i.e. at the basal levels), neurite outgrowth (indicative of neuronal

differentiation) of rat primary neurons with APP downregulated by

RNAi was about 2.7 folds less than that of control cells (Figure 3A),

consistent with our previous results that APP-deficient mouse

neurons manifest dramatic neuronal outgrowth defects [27].

However, when neurons were treated with NGF for 5 d, neurite

outgrowth of APP-downregulated neurons was about 1.5 folds

more than that of control cells (Figure 3A), suggesting that APP

deficiency results in an increased neuronal differentiation in

response to NGF treatment. We also compared neurons’ resistance

to Ab neurotoxicity. The results showed that when cells were

treated with Ab, APP heterozygous knockout (+/2) mouse

neurons had a much higher death rate (,2.3 folds) than control

neurons in the absence of NGF treatments (i.e., at the basal NGF

levels) (Figure 3B), but APP+/2 neurons had a similar death rate

to control neurons upon NGF treatments. These data suggest that

APP-deficient cells respond more acutely to NGF-mediated

survival signals than control cells.

Downregulation of APP enhances the NGF-mediated
PI3K/Akt and MAPK pathways

Neuronal survival and differentiation are regulated by the NGF-

activated downstream signaling pathways PI3k/Akt and MAPK,

respectively [19,20,21]. Herein, we found that when cells were

treated with NGF, phosphorylation of both Akt and MAPK for

their activation was dramatically elevated (Figure 4): in control

cells, NGF treatments for 1, 3 and 5 d promoted Akt phosphor-

ylation for 1.7, 1.6 and 1.4 folds, respectively, and promoted

MAPK phosphorylation for 3.8, 2.5 and 2.4 folds, respectively;

while in APP downregulated cells, NGF treatments for 1, 3 and

5 d promoted Akt phosphorylation for 2.8, 2.9 and 2.4 folds,

respectively, and promoted MAPK phosphorylation for 8.7, 6.6

and 4.6 folds, respectively. However, when we compared the

change of Akt and MAPK phosphorylation in control and in APP

downregulated cells, we noticed that the increased levels of both

Akt and MAPK phosphorylation were much higher in APP

downregulated cells than in control cells (Figure 4), which is

consistent with the more significant survival and differentiation

responses to NGF in these cells.

Figure 2. APP deficiency promotes endocytosis of NGF and NGF receptors. (A) PC12 cells stably expressing APP shRNA and control cells
expressing scrambled control (SC) shRNA were treated with 1 nM QD-NGF for 3 h. After a complete wash, cells were fixed, permeabilized, stained
with DAPI, and observed under a fluorescent microscope. Residual QD-NGF (in red) levels were quantified from 5 randomly selected regions with
comparable cell numbers. Control was set as one arbitrary unit. *: P,0.05. (B) Cells were first incubated with a p75NTR antibody at 4uC for 1 h, and
then treated with 100 ng/mL NGF at 37uC for 1 h. Cells were fixed and incubated with a secondary antibody conjugated with Alexa FluorH-594 for
1 h. After a complete wash, cells were permeabilized and then incubated with another secondary antibody conjugated with Alexa Fluor-488. Cells
were observed under a confocal microscrope. Arrows and arrow heads indicate internalized and cell surface p75NTR, respectively.
doi:10.1371/journal.pone.0080571.g002
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Discussion

Although its detailed physiological/pathological function re-

mains largely undetermined, APP is crucially involved in AD as

the precursor of Ab. In addition, a reduced availability of NGF has

also been found to contribute to AD: an impairment of NGF

maturation from its precursor proNGF causes the vulnerability of

cholinergic neurons in AD [28,29,30]; deprivation of NGF leads to

AD-like pathologies such as Ab accumulation/deposition, tau

hyperphosphorylation, synaptic dysfunction and memory deficits

in mice [31,32]; and administration of NGF can ameliorate Ab
pathologies and prevent memory deficits in AD animal models

[33,34]. Recent studies have suggested a correlation between APP

processing/Ab accumulation and NGF/NGF receptor mediated

signaling pathways. For example, our present study, as well as

others’ has shown that APP can interact with both TrkA and

p75NTR [25,26]. One study suggested that the interaction

between APP and TrkA requires the tyrosine residue at APP

position 682 (Y682, numbering based on APP695 isoform) [26].

APP-Y682 has been shown to be important for the function and

processing of APP [35]. Interestingly, overexpression of TrkA has

been found to be associated with both phosphorylation of APP-

Y682 and alteration of APP processing [36]. In addition, there are

reports showing that NGF can affect APP expression and

localization [37,38,39]. On the other hand, APP can regulate

activation of the NGF/TrkA signaling pathway, the subcellular

distribution of TrkA and the sensitivity of neurons to the trophic

action of NGF [26]. Increased levels of APP also markedly

decreases retrograde transport of NGF and causes degeneration of

forebrain cholinergic neurons in a mouse model of DS [16].

However, the detailed molecular pathways linking APP and NGF/

NGF receptor signaling have yet to be fully clarified.

Herein, we have found that APP deficiency results in a

significant decrease in cell surface levels of the two NGF receptors,

TrkA and p75NTR. Because APP has been shown to mediate

intracellular trafficking of certain proteins [11,12,14,15], one

possibility is that APP can also regulate intracellular trafficking of

TrkA and p75NTR through its interaction with these receptors.

Therefore, an increase in the APP level could result in more

TrkA/p75NTR at the cell surface and thus inhibit NGF

endocytosis, whereas a decrease in the APP level could facilitate

endocytosis of NGF upon its binding to TrkA and p75NTR.

Indeed, our data have shown that endocytosis of TrkA/p75NTR,

as well as endocytosis of NGF, is drastically higher in APP-

downregulated cells than in control cells.

Upon binding NGF, cell surface receptors are activated and

trigger a series of downstream signaling pathways, such as PI3K/

Akt and MAPK, which mediate neuronal survival and differen-

Figure 3. APP deficiency impairs neurite outgrowth and neuronal survival at basal levels, but promotes neurite outgrowth and
neuronal survival more acutely upon NGF stimulation. (A) The day after plating embryonic day 17 rat primary neurons, neurons were infected
with APP or scrambled control (SC) RNAi-containing lentivirus for 1 d. These neurons were then treated with or without 100 ng/mL NGF for 5 d, fixed,
permeablized, immunostained with MAP2 antibody and a fluorescent-labeled secondary antibody, and observed under a fluorescent microscope.
Infected cells were indicated by GFP fluorescence (in green) and neurons were indicated by positive MAP2 stainining (in red). The neurite lengths of
infected neurons (.100) were measured for comparison. (B) Primary neurons from postnatal day 0 wild type (WT) and APP heterozygous (+/2) mice
were treated with or without 100 ng/mL NGF for 5 d. These neurons were then treated with 25 mM Ab for 1 d. After staining with propidium iodide
(in red) and DAPI (in blue), the numbers of dead neurons (.300) were counted for comparison. Controls were set as one arbitrary unit. Error bars
indicate SEM. *: P,0.05, **: P,0.01.
doi:10.1371/journal.pone.0080571.g003
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tiation, respectively [19,20,21]. Herein, we have found that upon

NGF treatment, Akt and MAPK phosphorylation/activation is

much higher in APP-downregulated cells than in control cells.

This is probably attributed to an increased endocytosis of NGF-

receptor complexes in APP-downregulated cells and these

complexes remain active as long as the ligand keeps associated

with the receptors [18]. Moreover, more extensive activation of

Akt and MAPK signaling pathways in APP-deficient neurons

facilitates their differentiation and survival in response to NGF:

although APP-deficient neurons have significant defects in neurite

outgrowth and are highly susceptible to neurotoxicity-induced

neuronal death when compared to control cells, as shown in our

results (Figure 3) and described previously [27], these neurons

have comparable neurite outgrowth and Ab-induced death rates

to those of control cells.

Together, our results show that APP interacts with TrkA/

p75NTR, thereby regulating cell surface levels of TrkA/p75NTR

and their endocytosis, as well as endocytosis of NGF, and affecting

the NGF-mediated signaling cascades for neuronal survival and

differentiation. Consistently, APP has been implicated in critical

neuronal functions such as synapse formation, growth cone

outgrowth and axon guidance [2,3]. Hence dysregulated NGF

signaling cascades following APP impairment may lead to the

pathogenic states, including AD and DS.
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