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Background: Gastric cancer (GC) is a malignant tumor of the digestive tract. Hypoxia plays
an important role in the development of cancer, including GC. The present study aimed to
investigate the role of circular RNA SLAMF6 (circSLAMF6) in the progression of GC under
hypoxia.
Methods: The expression of circSLAMF6, microRNA-204-5p (miR-204-5p) and myosin
heavy chain 9 (MYH9) was measured by quantitative real-time polymerase chain reaction
(qRT-PCR). GC cells were maintained under hypoxia (1% O2) for experiments in vitro. Glu-
cose consumption and lactate production were determined by a Glucose Assay Kit and
a Lactate Assay Kit, respectively. Levels of all protein were detected by Western blot.
Cell migration and invasion were examined by Transwell assay. The interaction between
miR-204-5p and circSLAMF6 or MYH9 was analyzed by dual-luciferase reporter and RNA
immunoprecipitation (RIP) assays. Murine xenograft model was established to explore the
role of circSLAMF6 in vivo.
Results: CircSLAMF6 expression was increased in GC cells under hypoxia. Hypoxia pro-
moted glycolysis, migration, and invasion in GC cells, which were reversed by circSLAMF6
knockdown. CircSLAMF6 was validated as a miR-204-5p sponge, and MYH9 was a target
of miR-204-5p. Functionally, miR-204-5p inhibitor weakened the inhibition of circSLAMF6
knockdown on GC cell progression under hypoxia. Besides, MYH9 depletion suppressed
glycolysis, migration, and invasion in GC cells under hypoxia. Importantly, circSLAMF6 de-
ficiency inhibited tumor growth in vivo by regulating the miR-204-5p/MYH9 axis.
Conclusion: CircSLAMF6 was involved in glycolysis, migration, and invasion by regulating
the miR-204-5p/MYH9 axis in GC cells under hypoxia.

Introduction
Gastric cancer (GC) is a common malignancy, with more than 750000 additional cases annually worldwide
[1]. In addition, the 5-year survival rate in advanced GC patients is also worrisome [2]. The pathogenesis of
GC is complex and multifactorial. Hypoxia has been shown to play an important role in the development of
solid tumors, which accelerates the spread of tumors, malignant progression, and increases the resistance
to chemotherapy [3,4]. Under the condition of hypoxia, glycolysis can provide energy for cell metabolism
and facilitate cell migration and invasion [5]. Therefore, it is necessary to study the mechanism of GC
progression under hypoxia and explore novel biomarkers to assist early diagnosis of GC patients.
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Circular RNAs (circRNAs) are a special type of non-coding RNAs (ncRNAs) with covalently closed loop struc-
tures, which were validated to be involved in many biological processes and the development of human cancers [6].
Additionally, circRNAs can participate in hypoxia-induced tumor progression. Su et al. revealed that circDENND2A
could be induced by hypoxia in glioma cells, and it could mediate hypoxia-induced glioma cell migration and invasion
through targeting miR-625-5p [7]. CircDENND4C inhibition impaired breast cancer cell glycolysis and metastasis
via targeting miR-200b/c under hypoxia [8]. Furthermore, circRNA 403658 could potentiate the growth and glycol-
ysis of bladder cancer cells under hypoxia by activating LDHA [9]. Circular RNA SLAMF6 (circSLAMF6, known as
hsa circ 0000144) is generated from the back splicing of SLAMF6 first intron. It has been indicated to play a carcino-
genic role in bladder cancer by sponging miR-217 and regulating RUNX2 [10]. Importantly, a study demonstrated that
circSLAMF6 could elevate the progression of GC cells [11]. However, the function and mechanism of circSLAMF6
in GC progression under hypoxic conditions remain unknown.

CircRNAs can perform their functions via serving as competitive endogenous RNA (ceRNA) for microRNAs (miR-
NAs) in different species [12]. Recent studies revealed that miR-204-5p played a tumor-inhibition role in laryngeal
squamous cell carcinoma [13], non-small cell lung cancer [14], and melanoma [15]. MiR-204-5p also retarded the
proliferation of GC cells by targeting USP47 and RAB22A [16], and Chen et al. reported that lncRNA LINC01234
facilitated GC cell growth by sponging miR-204-5p [17]. Myosin heavy chain 9 (MYH9) was implicated in a variety
of biological processes, such as cell migration, differentiation, and morphogenesis [18]. In addition, high expression
of MYH9 has been found to play an oncogenic role in ovarian cancer [19], esophageal squamous cancer [20], and GC
[21]. However, the interaction among circSLAMF6, miR-204-5p and MYH9 in GC has not been reported till now.

In the present paper, we appraised circSLAMF6 expression in GC tissues and cells, and explored its effects on
glycolysis, migration and invasion in GC cells under hypoxia. Meanwhile, we investigated the molecular mechanism
of circSLAMF6 in GC cells under hypoxia.

Materials and methods
Tissue samples
Forty-five pairs of tumor tissues and the adjacent normal tissues were obtained from GC patients at Henan Provincial
People’s Hospital, People’s Hospital of Zhengzhou University, School of Clinical Medicine, Henan University. None
of the participants received any treatment before surgery. The collected samples were stored in liquid nitrogen. The
research was carried out in accordance with the World Medical Association Declaration of Helsinki. All participants
signed the written informed consents. The present study was approved by the ethics committee of the Henan Provin-
cial People’s Hospital, People’s Hospital of Zhengzhou University, School of Clinical Medicine, Henan University.

Cell culture and hypoxia stimulation
Human GC cell lines (AGS, MKN-45) and healthy gastric epithelial GES-1 cell line were acquired from Shanghai
Institutes for Biological Sciences (Shanghai, China). Roswell Park Memorial Institute 1640 (RPMI 1640, Hyclone,
South Logan, UT, U.S.A.) including 10% fetal bovine serum (FBS, Invitrogen, Carlsbad, CA, U.S.A.) was employed to
hatch the cells at 37◦C with 5% CO2. For hypoxia stimulation, AGS and MKN-45 cells were maintained in a hypoxia
chamber with 1% O2 for various different times (0, 3, 6, 12, 24, and 48 h).

Cell transfection
Small interfering RNA targeting circSLAMF6 (si-circSLAMF6) or MYH9 (si-MYH9) and the negative control
(si-NC), miR-204-5p mimic (miR-204-5p) and its control (miR-NC), miR-204-5p inhibitor (anti-miR-204-5p) and
its control (anti-miR-NC) were synthesized by RiboBio (Guangzhou, China). The lentiviral vector with interfering
RNA sequence against circSLAMF6 (sh-circSLAMF6) and its control (sh-NC) was constructed by Wuyuan Company
(Beijing, China). Cells were transfected with above constructed plasmids or oligonucleotides via Lipofectamine 3000
(Invitrogen).

Quantitative real-time polymerase chain reaction
The RNA in GC cells and tissues was isolated by TRIzol solution (Invitrogen) and then synthesized into the com-
plementary DNA (cDNA) by a PrimeScript RT Reagent Kit (Takara, Kusatsu, Shiga, Japan). The SYBR Premix Ex
Taq™ (Takara) was used to carry out the quantitative real-time polymerase chain reaction (qRT-PCR). The ex-
pression of circSLAMF6 or MYH9 and miR-204-5p was normalized to glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) and U6, respectively. The 2−��Ct method was utilized to calculate the relative RNA expression. Primer
sequences: circSLAMF6, forward, 5′-GAGTGTTGGCCTGTCCTCAA-3′, reverse, 5′-TTGTGCCCAGTTGCCTGT
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AT-3′; miR-204-5p, forward, 5′-CGAAGTTCCCTTTGTCATCCT-3′, reverse, 5′-GTGCAGGGTCCGAGGTATTC
-3′; MYH9, forward, 5′-AGTTTGTCTCGGAGCTGTGG-3′, reverse, 5′-GGTTCGTGTTCCTCAGCGTA-3′; U6,
forward, 5′-CGCTTCGGCAGCACATATAC-3′, reverse, 5′-AACGCTTCACGAATTTGCGT-3′; GAPDH, forward,
5′-GTGCACCTTGGTCCATTTG-3′, reverse, 5′-TGGTGAAGACGCCAGTGGA-3′.

Glucose consumption and lactate production
The transfected AGS and MKN-45 cells were seeded into the six-well plates. Following the day, cells were cultured
under hypoxia or normoxia for another 48 h. The cell medium was collected, and the concentrations of glucose and
lactate were checked by using a Glucose Assay Kit and a Lactate Assay Kit (Sigma-Aldrich, St. Louis, MO, U.S.A.),
respectively.

Western blot
The protein in transfected GC cells or GC tissues was extracted by RIPA (Beyotime, Beijing, China). After high tem-
perature denaturation at 98◦C, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was utilized
to separate the proteins, and the samples were then transferred to polyvinylidene fluoride (PVDF, Beyotime) mem-
branes. The membrane was mixed with 5% skim milk for 2 h and treated with the primary antibodies against hexok-
inase 2 (HK2, 1:2000, Abcam, Cambridge, MA, U.S.A.), matrix metallopeptidase 2 (MMP2, 1:1000, Abcam), MMP9
(1:1000, Abcam), MYH9 (1:1000, Cell Signaling Technology, Danvers, MA, U.S.A.), or GAPDH (1:2000, Abcam) at
4◦C overnight. Horseradish peroxidase-conjugated the antibodies anti-rabbit immunoglobulin G (IgG) (1:5000, Cell
Signaling Technology) were used to incubate the membranes. The protein bands were visualized by using a BeyoECL
Plus Kit (Beyotime).

Transwell assay
The migration and invasion of AGS and MKN-45 cells were evaluated through Transwell assay with the chamber.
Differently, the upper chamber was needed to coat with Matrigel (BD Bioscience, San Jose, CA, U.S.A.) when cell
invasion detection was performed. The transfected cells cultured in serum free medium were added into the upper
chamber in the 24-Transwell plates, and 600 μl medium containing 10% FBS was added into the lower chamber.
After 24 h transfection, the migrated or invaded cells were stained with 0.1% crystal violet. Twenty minutes later, an
inverted microscope was utilized to photograph and count the cells.

Dual-luciferase reporter assay
To affirm circSLAMF6 could bind to miR-204-5p and miR-204-5p directly targeted MYH9, circSLAMF6 or MYH9
wild-type reporter vector (circSLAMF6-WT or MYH9 3′UTR-WT) containing miR-204-5p binding sites and their
mutated-type reporter vectors (circSLAMF6-MUT or MYH9 3′UTR-MUT) without binding sites were constructed.
These reporter vectors were co-transfected into AGS and MKN-45 cells with miR-204-5p or miR-NC by Lipofec-
tamine 3000. After 24 h post-transfection, the luciferase activity was estimated through a Dual-luciferase Reporter
Assay System (Promega, Madison, WI, U.S.A.).

RNA immunoprecipitation assay
An EZ-Magna RIP Kit (Millipore, Billerica, MA, U.S.A.) was employed to confirm the interaction between
miR-204-5p and circSLAMF6 or MYH9 in RNA immunoprecipitation (RIP) assay. Briefly, AGS and MKN-45 cells
were transfected with miR-204-5p or miR-NC and then cultured for 48 h. Cells were harvested and lysed in RIP lysis
buffer. The magnetic beads pre-coated with Argonaute-2 (Ago2) antibody or IgG antibody were incubated with the
cells overnight at 4◦C. The RNA on the magnetic beads was purified and extracted, and the level of circSLAMF6 or
MYH9 enriched by RIP was examined by qRT-PCR.

Tumor xenograft mice
To establish xenograft tumor model, AGS cells transfected with sh-circSLAMF6 or sh-NC were injected into the male
nude mice (4–5 weeks old, n = 5 per group). Tumor volume was monitored once a week. Five weeks after injection,
the nude mice were all killed and the tumors were collected and weighed. Abundance of circSLAMF6, miR-204-5p,
or MYH9 in tumor samples was determined by qRT-PCR or Western blot. The experiments were carried out in the
Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, School of Clinical Medicine, Henan
University. Mice were killed by cervical dislocation after deep anesthesia with 2% isoflurane. Animal studies were
performed in compliance with the ARRIVE guidelines and the Basel Declaration. All animals received humane care
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Figure 1. The abundance of circSLAMF6 was up-regulated in GC cells under hypoxia

(A) The heatmap showed that the differentially expressed circRNAs in GC tissues and paired adjacent normal tissues. (B) Circ-

SLAMF6 expression in 45 GC tissues and the adjacent normal tissues was measured by qRT-PCR. (C) Kaplan–Meier survival

curves and log-rank tests were used to explore the relationship between circSLAMF6 expression and overall survival of GC pa-

tients. (D) CircSLAMF6 expression in GC cell lines (AGS and MKN-45) and normal cells (GES-1) was examined by qRT-PCR. (E,F)

Relative expression of circSLAMF6 in AGS and MKN-45 cells after hypoxia exposure for various times was detected by qRT-PCR.

*P<0.05.

according to the National Institutes of Health (U.S.A.) guidelines. The experiment was permitted by the Animal Care
and Use Committee of Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, School of
Clinical Medicine, Henan University.

Statistical analysis
Data were shown as mean +− standard deviation (SD) and analyzed using Graph-pad prism 7.0 tool. Each experiment
was repeated at least three times. The comparison between two or more groups was evaluated by using Chi-square test
or one-way analysis of variance (ANOVA). Kaplan–Meier survival assay and log-rank test were used to assess the rela-
tionship between circSLAMF6 level and prognosis of GC patients. The correlation among circSLAMF6, miR-204-5p,
and MYH9 in GC tissues was analyzed by Pearson correlation analysis. P<0.05 was regarded as significant difference.

Results
The abundance of circSLAMF6 was up-regulated in GC cells under
hypoxia
To identify GC-related circRNAs, we analyzed the GEO database (GSE78092) using the GEO2R method. The top
seven up-regulated and nine down-regulated circRNAs in GC tissue were presented in Figure 1A by the hierarchical
clustering. Through literature search, we chose hsa circ 0000144 (circSLAMF6) for further investigation. To explore
the role of circSLAMF6 in GC, its expression was examined in GC tissues. As shown in Figure 1B, qRT-PCR data
showed that circSLAMF6 expression was drastically increased in tumor tissues compared with the corresponding
adjacent normal tissues. Kaplan–Meier survival curves showed that the patients in high circSLAMF6 level group had
a shorter survival time than those in low circSLAMF6 level group (Figure 1C). Importantly, circSLAMF6 expression
was significantly increased in the two CC cell lines (AGS and MKN-45) that in healthy gastric epithelial GES-1 cell
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Figure 2. Silencing circSLAMF6 impeded glycolysis of GC cells under hypoxia

AGS and MKN-45 cells were transfected with si-NC or si-circSLAMF6 after treatment of hypoxia for 48 h. (A,B) CircSLAMF6

expression was measured by qRT-PCR. (C-F) Glucose consumption and lactate production were determined by the Glucose Assay

Kit and Lactate Assay Kit, respectively. (G,H) HK2 protein expression was detected via Western blot. *P<0.05.

line (Figure 1D). Furthermore, circSLAMF6 expression in AGS and MKN-45 cells after exposure of hypoxia was mea-
sured. The results indicated that the expression of circSLAMF6 was progressively induced in AGS and MKN-45 cells
after exposure of hypoxia in a time dependent manner (Figure 1E,F). These results demonstrated that circSLAMF6
might implicate in GC progression.

Silencing circSLAMF6 impeded glycolysis of GC cells under hypoxia
Based on the results mentioned above, the effect of circSLAMF6 knockdown on glycolysis of GC cells under hy-
poxia was explored. As shown in Figure 2A,B, circSLAMF6 level was augmented in AGS and MKN-45 cells under
hypoxia of 48 h, and transfection of si-circSLAMF6 reduced the level of circSLAMF6. Meanwhile, we found that glu-
cose consumption (Figure 2C,D), lactate production (Figure 2E,F), and HK2 protein expression (Figure 2G,H) in
hypoxia-induced AGS and MKN-45 cells were obviously induced, however, knockdown of circSLAMF6 enormously
attenuated these effects, suggesting that circSLAMF6 inhibition could hinder glycolysis of GC cells under hypoxia.

CircSLAMF6 depletion inhibited cell migration and invasion in GC cells
under hypoxia
We then investigated the effects of circSLAMF6 on GC cell migration and invasion, and Transwell assay was per-
formed. The findings manifested that the promotion effects of hypoxia on cell migration and invasion were weakened
by interfering with circSLAMF6 in AGS and MKN-45 cells (Figure 3A–D). Expression levels of key proteins MMP2
and MMP9 associated with migration and invasion were also detected by Western blot. MMP2 and MMP9 expression
levels in AGS and MKN-45 cells were boosted by hypoxia exposure, while these effects were neutralized by silencing
circSLAMF6 (Figure 3E,F). The results supported that circSLAMF6 knockdown suppressed migration and invasion
of GC cells under hypoxia.
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Figure 3. CircSLAMF6 depletion inhibited cell migration and invasion in GC cells under hypoxia

AGS and MKN-45 cells were transfected with si-NC or si-circSLAMF6 after treatment of hypoxia for 48 h. (A–D) Cell migration and

invasion were examined by Transwell assay. (E,F) The protein expression levels of MMP2 and MMP9 were measured by Western

blot. *P<0.05.

CircSLAMF6 acted as a sponge of miR-204-5p in GC cells
Numerous studies indicated that circRNAs can function as sponges for miRNA to exert their biological effects [22].
To search for circSLAMF6-associated miRNAs, circBank bioinformatics analysis was employed. As shown in Figure
4A, there were complementary binding sites between circSLAMF6 and miR-204-5p. Dual-luciferase reporter assay
and RIP assay were then performed. The results showed that miR-204-5p overexpression in AGS and MKN-45 cells
obviously decreased the luciferase activity of circSLAMF6-WT, but had no significant effect on the luciferase activity
of circSLAMF6-MUT (Figure 4B,C). RIP assay demonstrated that transfection of miR-204-5p resulted in the enrich-
ment of circSLAMF6 in RIP-Ago2 group, however, there was almost no enrichment of circSLAMF6 in IgG group
(Figure 4D,E). In addition, knockdown of circSLAMF6 elevated the expression of miR-204-5p in AGS and MKN-45
cells, and the effect was abolished by co-transfection with anti-miR-204-5p (Figure 4F,G). The results showed that
miR-204-5p expression was prominently decreased in GC tissues and cells (AGS and MKN-45) compared with nor-
mal tissues and cells (GES-1) (Figure 4H,I). A negative correlation between circSLAMF6 and miR-204-5p expression
in GC tissues was also observed (Figure 4J). Moreover, miR-204-5p expression in hypoxia-induced AGS and MKN-45
cells was progressively degraded in a time dependent manner (Figure 4K,L). These data revealed that the expression
of miR-204-5p was down-regulated in GC cells under hypoxia and inversely modulated by circSLAMF6.
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Figure 4. CircSLAMF6 acted as a sponge of miR-204-5p in GC cells

(A) The binding sites between circSLAMF6 and miR-204-5p were predicted by circBank. (B–E) Dual-luciferase reporter assay and

RIP assay were performed to verify the interaction between circSLAMF6 and miR-204-5p in AGS and MKN-45 cells. (F,G) Relative

expression of miR-204-5p in AGS and MKN-45 cells transfected with si-NC, si-circSLAMF6, si-circSLAMF6 + anti-miR-NC, or

si-circSLAMF6 + anti-miR-204-5p was examined by qRT-PCR. (H,I) Relative expression of miR-204-5p in GC tissues and cells

was determined by qRT-PCR. (J) The correlation between circSLAMF6 and miR-204-5p expression in GC tissues was analyzed

by Pearson correlation analysis. (K,L) The abundance of miR-204-5p in AGS and MKN-45 cells after hypoxia exposure for various

times was detected by qRT-PCR. *P<0.05.

Silencing circSLAMF6 impaired glycolysis, migration, and invasion in GC
cells under hypoxia by targeting miR-204-5p
To explore whether miR-204-5p affected the role of circSLAMF6 in GC, AGS, and MKN-45 cells were co-transfected
with si-circSLAMF6 and anti-miR-204-5p under hypoxia. The results manifested that the inhibitory effects of circ-
SLAMF6 suppression on glucose consumption (Figure 5A,B), lactate production (Figure 5C,D) and HK2 protein
expression (Figure 5E,F) could be rescued by interfering with miR-204-5p in AGS and MKN-45 cells under hypoxia.
Simultaneously, miR-204-5p deficiency could reverse the inhibition of si-circSLAMF6 on migration (Figure 5G,H)
and invasion (Figure 5I,J) in AGS and MKN-45 cells under hypoxia. Moreover, the levels of MMP2 and MMP9 re-
duced by circSLAMF6 knockdown were ameliorated via miR-204-5p repression (Figure 5K,L). These results revealed
that circSLAMF6 knockdown inhibited GC cell progression under hypoxia by increasing miR-204-5p.

CircSLAMF6 could regulate the expression of MYH9 targeted by
miR-204-5p
Subsequently, we used StarBase 3.0 database to search for the downstream targets of miR-204-5p. The results
showed that there were miR-204-5p binding sites in the 3′UTR of MYH9 (Figure 6A). Moreover, overexpression
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Figure 5. Silencing circSLAMF6 impaired glycolysis, migration, and invasion in GC cells under hypoxia by targeting

miR-204-5p

AGS and MKN-45 cells were transfected with si-NC, si-circSLAMF6, si-circSLAMF6 + anti-miR-NC, or si-circSLAMF6 + an-

ti-miR-204-5p after treatment of hypoxia. (A–D) Glucose consumption and lactate production were assessed by using the Glucose

Assay Kit and Lactate Assay Kit, respectively. (E,F) The protein expression of HK2 was measured by Western blot. (G–J) Transwell

assay was carried out to analyze cell migration and invasion. (K,L) The protein levels of MMP2 and MMP9 were examined via

Western blot. *P<0.05.

of miR-204-5p distinctly degraded the luciferase activity of MYH9 3′UTR-WT, but had no significant effect on the
luciferase activity of MYH9 3′UTR-MUT in AGS and MKN-45 cells (Figure 6B,C). As expected, the enrichment
of MYH9 in miR-204-5p transfected AGS and MKN-45 cells by RIP-Ago2 was higher, whereas the RIP-IgG group
showed little enrichment of MYH9 (Figure 6D,E). The results suggested that MYH9 was the target of miR-204-5p.
Besides, miR-204-5p overexpression drastically reduced both mRNA and protein expression of MYH9 in AGS and
MKN-45 cells (Figure 6F,G). As presented in Figure 6H, the abundance of MYH9 was found to be up-regulated in
GC tumor tissues compared with normal tissues from TCGA database. Consistently, the mRNA and protein levels of
MYH9 in GC tissues were significantly increased than that in normal tissues (Figure 6I,J), and the protein expression
of MYH9 in GC cell lines was also boosted (Figure 6K). Furthermore, both mRNA and protein expression levels of
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Figure 6. CircSLAMF6 could regulate the expression of MYH9 targeted by miR-204-5p

(A) The binding sites between miR-204-5p and MYH9 were predicted using StarBase 3.0 database. (B–E) Dual-luciferase reporter

assay and RIP assay were utilized to confirm the interaction between miR-204-5p and MYH9 in AGS and MKN-45 cells. (F,G) Both

mRNA and protein levels of MYH9 in AGS and MKN-45 cells transfected with miR-NC or miR-204-5p were determined by qRT-PCR

and Western blot, respectively. (H) MYH9 mRNA expression in GC tumor tissues and normal tissues was analyzed download from

TCGA database. (I,J) The mRNA and protein levels of MYH9 in GC tissues and cells were assessed by qRT-PCR and Western

blot, respectively. (K) The protein expression of MYH9 in GC cells (AGS and MKN-45) and normal cells (GES-1) was measured

by Western blot. (L-N) The mRNA and protein levels of MYH9 in AGS and MKN-45 cells after hypoxia exposure for various times

were evaluated by qRT-PCR and Western blot, respectively. (O,P) The protein expression of MYH9 in AGS and MKN-45 cells

transfected with si-NC, si-circSLAMF6, si-circSLAMF6 + anti-miR-NC, or si-circSLAMF6 + anti-miR-204-5p was examined by

Western blot. (Q,R) The correlation between MYH9 and miR-204-5p or circSLAMF6 expression in GC tissues was analyzed using

Pearson correlation analysis. *P<0.05.

MYH9 were progressively elevated in AGS and MKN-45 cells after hypoxia stimulation in a time dependent manner
(Figure 6L–N). We also found that knockdown of circSLAMF6 could decline the protein expression of MYH9 in the
two cells, while miR-204-5p inhibition reversed this effect (Figure 6O,P). Importantly, MYH9 expression strongly
negatively correlated with miR-204-5p expression, while positively correlated with circSLAMF6 expression in GC
tissues (Figure 6Q,R). Taken together, these data suggested that circSLAMF6 might regulate MYH9 expression by
acting as a sponge for miR-204-5p.
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Figure 7. Knockdown of MYH9 curbed glycolysis, migration, and invasion in GC cells under hypoxia

AGS and MKN-45 cells were transfected with si-NC or si-MYH9 after treatment of hypoxia. (A,B) The mRNA and protein levels

of MYH9 were determined by qRT-PCR and Western blot, respectively. (C–E) Glucose consumption, lactate production, and HK2

protein expression were estimated by the Glucose Assay Kit, Lactate Assay Kit and Western blot, respectively. (F,G) Cell migration

and invasion were evaluated by Transwell assay. (H) The protein expression levels of MMP2 and MMP9 were checked by Western

blot. *P<0.05.

Knockdown of MYH9 curbed glycolysis, migration, and invasion in GC
cells under hypoxia
To investigate the possible effects of MYH9 on cell glycolysis, migration, and invasion under hypoxia, si-MYH9 or
si-NC was transfected into AGS and MKN-45 cells under hypoxia. As shown in Figure 7A,B, both mRNA and protein
expression of MYH9 in AGS and MKN-45 cells were significantly up-regulated after hypoxia stimulation, which was
reversed by transfection of si-MYH9. Then, we observed that MYH9 knockdown markedly alleviated the effects on
glucose consumption (Figure 7C), lactate production (Figure 7D) and HK2 protein expression (Figure 7E) in AGS and
MKN-45 cells under hypoxia. Transwell assay data further showed that si-MYH9 transfection strikingly suppressed
cell migration and invasion ability of AGS and MKN-45 cells facilitated by hypoxia (Figure 7F,G). Moreover, the
promotion effects of hypoxia on the protein levels of MMP2 and MMP9 were abolished by MYH9 depletion (Figure
7H). These results supported that MYH9 inhibition impeded glycolysis, migration and invasion in GC cells under
hypoxia.

Silencing circSLAMF6 inhibited tumor growth in vivo
Next, mice xenograft models of GC were established to explore the role of circSLAMF6 in vivo. The results re-
vealed that tumor volume and weight were obviously reduced in sh-circSLAMF6 group compared with those in
sh-NC group (Figure 8A,B). Meanwhile, circSLAMF6 and MYH9 (mRNA and protein levels) were distinctly re-
duced, while miR-204-5p expression was highly expressed in tumor tissues derived from sh-circSLAMF6 group
(Figure 8C,D). These findings validated that circSLAMF6 knockdown could hinder tumor growth by regulating the
miR-204-5p/MYH9 axis.

10 © 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).
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Figure 8. Silencing circSLAMF6 inhibited tumor growth in vivo

AGS cells stably transfected with sh-circSLAMF6 or sh-NC were subcutaneously implanted into nude mice (n = 4 each group).

Five weeks later, all mice were killed. (A,B) Tumor volume and weight were measured. (C) The levels of circSLAMF6, miR-204-5p,

and MYH9 in xenograft tissues were detected by qRT-PCR. (D) MYH9 protein expression in xenograft tissues was examined by

Western blot. *P<0.05.

Discussion
GC ranks the third most common causes of cancer-related deaths globally [23]. Hypoxia is an essential feature in
the neoplastic microenvironment. CircRNA was found to participate in the modulation of tumor progression under
hypoxia [24], but there were few studies on circRNAs that affected the occurrence and development of GC under
hypoxia.

CircRNAs are a special class of RNA molecules, which are highly stable and conserved among species due to their
closed circular structures [25]. It has been shown that several circRNAs, such as circRACGAP1 [26] and circHIPK3
[27], can regulate the development of GC. In the present study, through GEO database analysis, circSLAMF6 showed
higher expression in GC tissues compared with normal tissues. Our results further indicated that circSLAMF6 was
significantly elevated in GC tissues and cell lines, and these results were consistent with those of Wei et al. [11]. More-
over, we observed that circSLAMF6 expression was augmented in GC cells under hypoxia. Importantly, knockdown
of circSLAMF6 could restrain cell glycolysis, migration and invasion in GC cells under hypoxia. These results revealed
that circSLAMF6 played an important role in promoting the development of malignant behaviors in GC, suggesting
that circSLAMF6 might be a potential molecular target for GC therapy.

CircRNA can regulate mRNA expression by serving as a miRNA sponge [28]. To appraise whether circSLAMF6
modulate GC progression via sponging miRNAs, circBank bioinformatics analysis was used, and miR-204-5p was
validated to be the target of circSLAMF6 by dual-luciferase activity and RIP assays. Many researchers revealed that
miR-204-5p implicated in the progression of GC. Liang et al. reported that DLX6-AS1 boosted cell proliferation and
metastasis by targeting miR-204-5p in GC [29]. Huan et al. found that miR-204-5p hindered GC cell proliferation,
motility, and invasion [30]. Moreover, lncRNA KCNQ1OT1 could aggravate hypoxia-induced cardiac injury in vitro
by targeting miR-204-5p [31]. In our results, miR-204-5p was remarkably reduced in GC cells under hypoxia. Besides,
circSLAMF6 could negative modulate miR-204-5p expression, inversely, interference of miR-204-5p reversed the
effects of circSLAMF6 knockdown on GC cell glycolysis, migration, and invasion under hypoxia. These data implied
that circSLAMF6 played a carcinogenic role by inhibiting the expression of miR-204-5p in GC cells.

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Then, MYH9 was identified as the downstream target of miR-204-5p. MYH9 is a gene encoding nonmuscle myosin
IIA (NMIIA), belongs to the myosin II subfamily, and it plays an essential role in invasion and metastasis of tumor
cells [32,33]. In this research, MYH9 expression was drastically boosted in GC cells under hypoxia. Furthermore,
circSLAMF6 knockdown reduced MYH9 expression by combining with

miR-204-5p, and the promotion of hypoxia on cell progression could be neutralized by MYH9 suppression, sug-
gesting that MYH9 could also play a oncogenic role in GC development, which was in agreement with the previous
reports [34]. Additionally, in vivo experiments showed that circSLAMF6 depletion could inhibit tumor growth by
decreasing MYH9 and increasing miR-204-5p.

In summary, our results revealed that circSLAMF6 knockdown played an anti-cancer role by inhibiting cell glycol-
ysis, migration, and invasion through sponging miR-204-5p and regulating MYH9 in GC under hypoxia, providing
a novel insight into the pivotal role of circRNA-miRNA-mRNA functional network in GC development.
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