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Abstract

Introduction

Under the hypothesis that early natural killer cell infusion (NKI) following haploidentical stem

cell transplantation (haplo-SCT) will reduce relapse in the early post-transplant period, we

conducted a pilot study to evaluate the safety and feasibility of NKI following haplo-SCT in

children with recurrent neuroblastoma who failed previous tandem high-dose chemotherapy

and autologous SCT.

Methods

We used the high-dose 131I-metaiodobenzylguanidine and cyclophosphamide/fludarabine/

anti-thymocyte globulin regimen for conditioning and infused 3 × 107/kg of ex-vivo expanded

NK cells derived from a haploidentical parent donor on days 2, 9, and 16 post-transplant.

Interleukin-2 was administered (1 × 106 IU/m2/day) subcutaneously to activate infused

donor NK cells on days 2, 4, 6, 9, 11, 13, 16, 18, and 20 post-transplant.

Results

Seven children received a total of 19 NKIs, and NKI-related acute toxicities were fever (n =

4) followed by chills (n = 3) and hypertension (n = 3); all toxicities were tolerable. Grade�II

acute GVHD and chronic GVHD developed in two and five patients, respectively. Higher

amount of NK cell population was detected in peripheral blood until 60 days post-transplant

than that in the reference cohort. Cytomegalovirus and BK virus reactivation occurred in all
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patients and Epstein-Barr virus in six patients. Six patients died of relapse/progression (n =

5) or treatment-related mortality (n = 1), and one patient remained alive.

Conclusion

NKI following haplo-SCT was relatively safe and feasible in patients with recurrent neuro-

blastoma. Further studies to enhance the graft-versus-tumor effect without increasing

GVHD are needed.

Introduction

The development of high-dose chemotherapy and autologous stem cell transplantation

(HDCT/auto-SCT) has improved treatment outcomes of patients with high-risk neuroblas-

toma in recent decades [1–4]. However, many patients with high-risk neuroblastoma experi-

ence relapse after HDCT/auto-SCT, and in these patients, allogeneic SCT (allo-SCT) with

graft-versus-tumor (GVT) effects might be a treatment option [4]. Recently, haploidentical

SCT (haplo-SCT) with or without high-dose 131I-metaiodobenzylguanidine (HD-MIBG) treat-

ment has been performed as an attempt to increase the anti-tumor effect for patients with

recurrent neuroblastoma and showed tolerable toxicity and potential anti-tumor effects [5,6].

In haplo-SCT in which T cells are usually depleted to prevent unacceptable graft-versus-

host disease (GVHD), donor natural killer (NK) cells may play an important role in eliminat-

ing residual tumor cells until T cell recovery [7]. NK cells are innate effector lymphocytes and

have cytotoxicity against tumor cells with decreased expression of major histocompatibility

class I antigen [8,9]. The activity of NK cells is controlled by networking of activating and

inhibitory receptors [10]. Previous studies have shown that selection of donors with killer cell

immunoglobulin-like receptors (KIR) mismatched with recipient HLA or group B KIR haplo-

type improved transplant outcomes in several malignancies [11–15]. Neuroblastoma cells have

been reported to have decreased class I HLA expression, which suggests that NK cell therapy

may be effective in killing neuroblastoma cells [16]. Our previous study showed that KIR/

HLA-ligand mismatched haplo-SCT might improve outcomes in children with recurrent neu-

roblastoma; however, most relapse/progression occurred in the early post-transplant period,

suggesting the need for further effective treatment to prevent early relapse after haplo-SCT

[17].

Clinical trials exploring the feasibility of donor-derived NK cell infusion (NKI) after haplo-

SCT have been performed in patients with several malignancies [18–21]. Although clinical tri-

als using NKI for recurrent neuroblastoma have been reported recently [22,23], studies on

NKI after haplo-SCT in children with neuroblastoma are limited [24]. Thus, under the hypoth-

esis that donor NKI after haplo-SCT may be helpful in preventing early relapse and improving

survival, we performed a pilot study to explore the safety and feasibility of NKI following

haplo-SCT in children with recurrent neuroblastoma who failed tandem HDCT/auto-SCT.

Materials and methods

Ethics statement

This study was approved by the Institutional Review Board of Samsung Medical Center and

The Korean Food and Drug Administration and is registered at ClinicalTrials.gov with the
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registration number #NCT01807468. All parents gave written informed consent before enroll-

ment. Patient records/information were anonymized and de-identified prior to analysis.

Patients

Patients with neuroblastoma who experienced relapse/progression after tandem HDCT/auto-

SCT from January 2012 to December 2014 without major organ dysfunction were eligible for

this study.

Treatment prior to haplo-SCT

Salvage chemotherapy was administered in order to reduce the tumor burden as much as pos-

sible prior to haplo-SCT. An ICE (ifosfamide + carboplatin + etoposide) regimen was used for

first-line salvage treatment, and a TC (topotecan + cyclophosphamide) regimen was used for

second-line salvage chemotherapy in patients with severe bone marrow suppression or refrac-

tory response with the first-line regimen. The duration of salvage chemotherapy prior to

haplo-SCT depended on tumor response and patient tolerance. Tumors were surgically

resected whenever possible. Local radiotherapy was also delivered to recurrent or metastatic

sites whenever possible.

Donor selection

Typing of HLA A, B, C, DRB1, and DQB1 was performed using high-resolution PCR

sequence-based typing, and KIR genotyping was performed from donor DNA samples using a

PCR-based sequence-specific oligonucleotide technique. A KIR/HLA-ligand mismatch was

defined by incompatibility between the inhibitory donor KIR and recipient HLA class I alleles,

as previously described [25]. Donor KIR haplotypes were categorized as AA (homozygous for

group A KIR haplotypes) or BX [either one (A/B heterozygotes) or two (B/B homozygotes)

group B haplotypes]. The KIR B haplotype-defining loci were KIR2DL5, 2DS1, 2DS2, 2DS3,

2DS5, or 3DS1 [11]. Genotypes were also assigned for the centromeric and telomeric regions

of the KIR locus. A haploidentical parent donor with KIR/HLA-ligand mismatch and/or KIR

BX haplotype was preferred.

NK cell generation and stem cell collection

For NK cell production, haploidentical parent donors underwent lymphapheresis on day -28,

and CD3+ cell–depleted peripheral blood mononuclear cells (PBMCs) were frozen at -196˚C.

Peripheral blood mononuclear cells were thawed (days -12, -5, and 2) 14 days before each of

the three planned infusions (days 2, 9, and 16) to allow each preparation and infusion of fresh

cells. The thawed PBMCs expanded as described previously under good manufacturing prac-

tice conditions [26]. Briefly, CD3+ cell–depleted PBMCs were expanded at a seeding concen-

tration of 2 × 105 cells/mL in CellGro SCGM serum-free medium (CellGenix, Germany) with

1% autologous plasma, 1 × 106 cells/mL irradiated (2,000 rad) autologous PBMCs, 10 ng/mL

anti-CD3 monoclonal antibody (Orthoclon, Switzerland), and 500 IU/mL of interleukin-2

(IL-2; Proleukin, Switzerland) in an A-350N culture bag (NIPRO, Japan). NK cells were fed

fresh medium with 500 IU/mL of IL-2 every 2 days until they were harvested after 14 days. The

cytotoxicity of ex-vivo expanded donor NK cells was measured using K562, SK-N-SH, and

NB-1691 cells by calcein releasing assay. For peripheral blood stem cell (PBSC) collection, hap-

loidentical parent donors received 5–10 μg/kg of G-CSF subcutaneously once daily for four

days; PBSCs were collected and transplanted without manipulation on day 0.
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Conditioning

At 21 days prior to transplant, all children received a single 1-hour intravenous infusion of
131I-MIBG (18 mCi/kg) with potassium iodide for thyroid protection and intravenous hydra-

tion. A cyclophosphamide (cyclophosphamide 60 mg/kg on days -7 and -6) + fludarabine (30

mg/m2 on days -5 to -1) + rabbit anti-thymocyte globulin (Thymoglobulin, Genzyme; 2.5 mg/

kg on days -4 to -1) regimen was used for conditioning.

NKI

Patients received 3 × 107/kg of ex-vivo expanded donor NK cells on days 2, 9, and 16 post-

transplant. Donor NK cells were infused over 1 hour through a central venous catheter after

pheniramine pre-treatment. Patients received IL-2 (1 × 106 IU/m2/day) subcutaneously to acti-

vate infused donor NK cells on days 2, 4, 6, 9, 11, 13, 16, 18, and 20. On the day of NKI, IL-2

was administered after a 4-hour observation period post-NKI.

GVHD prophylaxis and treatment

Cyclosporine (CSA) and short-course methotrexate were used to prevent GVHD. CSA was

administered from day -1 at a dose adjusted to maintain blood concentration in the range of

150–300 ng/mL. Methotrexate was administered at a dose of 15 mg/m2 on day 1 and at 10 mg/

m2 on days 3 and 6, followed by folic acid rescue. The timing and speed of CSA tapering were

determined by GVHD and tumor status of each patient. If the patient did not achieve complete

response (CR), early tapering of CSA was considered to enhance GVT. If acute GVHD devel-

oped during CSA prophylaxis or tapering, the CSA dose was increased. If� grade II acute

GVHD continued despite an increase in CSA dose, methylprednisolone (1–2 mg/kg/day) was

added with subsequent tapering in responsive cases. In refractory GVHD, mycophenolate

mofetil was added to reduce use of steroid. Acute and chronic GVHD were assigned grades

and stages based on previously described standard clinical criteria [27].

Infection surveillance and prophylaxis

Antifungal prophylaxis was administered until hospital discharge or during steroid treatment.

Acyclovir was used to prevent viral reactivation by day 30, and trimethoprim-sulfamethoxa-

zole was used from engraftment to day 180 or until immunosuppressant discontinuation.

Cytomegalovirus (CMV), Epstein-Barr virus (EBV), and BK virus (BKV) surveillance were

performed weekly during the first three months post-transplant and then monthly thereafter if

no viral reactivation occurred. If CMV or EBV load was increasing, ganciclovir or rituximab

was started as preemptive therapy, respectively.

Chimerism study and immune monitoring

Donor/recipient chimerism was evaluated at 30, 60, 90, and 180 days post-transplant in periph-

eral blood. Immunologic recovery was assessed by immunophenotyping of PBMCs (CD3+,

CD19+, and CD16+CD56+CD3– cells) from recipients at 16, 30, 60, 90, 180, and 270 days post-

transplant. In three patients (patient #4, #5, and #7), granulocyte-derived myeloid-derived sup-

pressor cells (MDSCs) by lymphogating of Lin–CD14–HLA-DR–CD11b+CD33+CD15+ cells

were analyzed to identify the association between the levels of these immune cells and relapse/

progression [28].
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Toxicity and response assessment

NKI-related immediate adverse reactions were defined as adverse reactions that developed

from initiation of NKI to 4 hours after completion of NKI. Toxicity was recorded according to

the common toxicity criteria (version 4.0) outlined by the US National Cancer Institute.

Tumor response evaluation was performed prior to HD-MIBG treatment and every three

months for the first year post-transplant. International response criteria for neuroblastoma

were used to evaluate treatment response [29].

Statistical analysis

To serve as a reference cohort, we identified seven patients who experienced recurrent/pro-

gressive neuroblastoma between March 2012 and October 2014 from our previously reported

cohort who underwent HD-MIBG treatment and haplo-SCT without NKI in our hospital [17].

Briefly, the reference cohort received ICE or TC regimens (± local radiotherapy) to reduce the

tumor burden prior to haplo-SCT. Further 131I-MIBG (18 mCi/kg) was administered prior to

reduced-intensity conditioning (cyclophosphamide + fludarabine + rabbit anti-thymocyte

globulin) without NKI. Six of the 7 patients in the reference cohort experienced acute GVHD

(grade I in five and grade III in one), and four patients experienced chronic GVHD (two mild

and two severe). The differences in immune reconstitution after haplo-SCT were analyzed

between the cohort in this study and the reference cohort using repeated measures ANOVA

and Mann–Whitney test. Relapse/progression-free survival was calculated using Kaplan–

Meier method and comparisons between survival curves were performed using the log-rank

test. The results with a P value of< 0.05 were considered significant.

Results

Patients

Seven patients with recurrent neuroblastoma underwent a total of 19 NKIs after haplo-SCT;

six patients completed 3 scheduled NKIs, and one patient (patient #6) received only the first

NKI on day 2 due to failure of NK cell production thereafter. Patient characteristics prior to

haplo-SCT are listed in Table 1. Patients received 4–7 cycles of salvage chemotherapy prior to

haplo-SCT. Two patients underwent surgery, and four patients received local radiotherapy.

Tumor status at haplo-SCT was CR in one patient, very good partial response in two, and par-

tial response in four.

Graft composition

Graft information is shown in Table 2. Six haploidentical donors had at least one KIR/HLA-

ligand mismatch, and five donors had BX haplotype. A median of 22.7 × 108 (range, 16.8–

35.3) total nucleated cells/kg including medians of 13.1 (range, 6.5–30.1) × 106 CD34+ cells/kg

and 5.6 (range, 2.1–6.5) × 108 CD3+ cells/kg were transplanted.

Characterization of ex vivo-expanded NK cells

NK cells were composed of enriched CD16+CD56+ cells (97.18 ± 1.33%) with minimal con-

tamination of CD3+ cells (0.35 ± 0.25%), CD14+ cells (0.45 ± 0.49%), and CD19+ cells

(0.10 ± 0.40%; Fig 1A). In a cytotoxicity assay, NK cells showed potent cytolytic activity against

K562 cells, SK-N-SH cells, and NB-1691 cells (Fig 1B).
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NKI-related immediate adverse reactions

NKI-related immediate adverse reactions observed during or after NKI are summarized in

Table 3. Out of 19 NKIs in seven patients, fever (n = 4) was most the common adverse reac-

tion, followed by chills (n = 3) and hypertension (n = 3); however, these adverse reactions were

manageable and transient. One patient (patient #3) experienced grade 3 hypertension after

NKI, which disappeared after anti-hypertensive treatment. The only adverse reaction related

to IL-2 treatment was fever, which occurred in all patients.

Regimen-related short-term toxicities

There were no short-term toxicities related to HD-MIBG treatment. After reduced-intensity

conditioning, neutropenic fever (n = 7), hypokalemia (n = 6), elevated liver enzymes without

veno-occlusive disease (n = 3), and diarrhea (n = 1) were common conditioning regimen-

Table 1. Patient characteristics.

Patient

#

Age (y)

at Dx.

Stage at

Dx

MYCN
status

HDCT1

regimen

HDCT2

regimen

Interval (m) to

relapsea
Age (y) at

relapse

Relapsed

sites

Treatment prior to

haplo-SCT

Tumor status at

haplo-SCT

1 3.3 4 NA CEC MIBG-TM 16 5.6 LNs CT×4, L-RT PR

2 3.5 4 A CEC MIBG-TM 32 7.2 Bone, BM CT×6 VGPR

3 1.5 4 A TTC MEC 75 8.6 Bone, BM,

brain

CT×5 PR

4 2.4 4 NA CEC MIBG-TM 12 4.4 Primary,

LNs

Surgery, CT×6, L-RT CR

5 3.1 4 NA CEC MIBG-TM 12 5.2 Brain, bone Surgery, CT×7, L-RT VGPR

6 3.3 4 A CEC MIBG-TM 45 5.9 Bone, BM,

brain

CT×6 PR

7 1.5 4 NA CEC MIBG-TM 19 4.1 LNs CT×5, L-RT PR

Dx, diagnosis; NA, not amplified; A, amplified; HDCT1, first high-dose chemotherapy; HDCT2, second HDCT; RIST, reduced intensity stem cell transplantation; CEC,

carboplatin + etoposide + cyclophosphamide; MIBG-TM, high-dose 131I-metaiodobenzylguanidine treatment + thiotepa + melphalan; MEC, melphalan + carboplatin

+ etoposide; LN, lymph node; BM, bone marrow; LMS, leptomeningeal seeding; CT, chemotherapy; L-RT, local radiotherapy; PR, partial response; MR, mixed response;

VGPR, very good PR.
aInterval between HDCT2 and relapse/progression.

https://doi.org/10.1371/journal.pone.0225998.t001

Table 2. Graft information, engraftment, and chimerism.

Patient

#

Donor

relation

HLA

match

KIR/HLA-ligand

mismatch

Donor KIR

haplotype (Cen/Tel)

No. of cells transplanted Engraftment (day) Donor chimerism

(%)

TNC

(108/kg)

CD34+

(106/kg)

CD3+

(108/kg)

ANC

500/μL

PLT

20,000/μL

Day

30

Day

60

Day

90

1 Mother 9/10 None A/A, A/A 35.3 11.0 5.6 12 18 100 100 100

2 Mother 5/10 2DL1a, 3DL2a A/A, A/B 17.1 9.2 4.8 13 27 100 100 100

3 Father 5/10 2DL1 A/A, A/A 16.8 13.1 2.6 11 16 99.8 99.8 99.2

4 Father 6/10 2DL1, 3DL2 A/A, A/B 32.3 30.1 5.8 11 19 100 100 100

5 Father 5/10 2DL1a, 3DL1, 3DL2 A/A, A/B 16.8 13.6 2.1 12 20 100 100 100

6 Mother 6/10 2DL1, 3DL2a A/B, A/A 28.0 6.5 6.5 13 14 100 100 100

7 Mother 5/10 2DL1a, 3DL2a A/B, A/A 22.7 15.7 6.5 12 17 100 99.1 100

HLA, human leukocyte antigen; KIR, killer cell immunoglobulin-like receptor; Cen, centromere; Tel, telomere; TNC, total nucleated cells; ANC, absolute neutrophil

count; PLT, platelet count.
aUnlicensed KIR/HLA-ligand mismatch between donor and recipient.

https://doi.org/10.1371/journal.pone.0225998.t002
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Fig 1. Characterization of ex vivo-expanded NK cells. (A) The percentages of CD16+CD56+, CD3+, CD14+, and CD19+

cells were analyzed by flow cytometric analyses. (B) Cytotoxicity of expanded NK cells against the K562, SK-N-SH, and

NB-1691 cell line was analyzed by calcein releasing assay with the indicated E:T ratio. Each point represents mean ± SD.

https://doi.org/10.1371/journal.pone.0225998.g001
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related grade� 3 toxicities. However, these toxicities were manageable, and there was no regi-

men-related death.

Hematologic recovery and chimerism

The median times required to reach an absolute neutrophil count of 500/μL and a platelet

count of 20,000/μL without transfusion for 7 days were 12 (range, 11–13) days and 18 (range,

14–27) days, respectively (Table 2). Complete donor chimerism (> 99%) was achieved at day

30 in all patients and was maintained thereafter.

GVHD

Acute GVHD developed in all patients (grade I in five and grade II in two), and chronic

GVHD developed in five patients (mild in two, moderate in two, and severe in one; Table 4).

CSA was tapered before 2 months post-transplant in four patients who showed PR or VGPR

to enhance GVT effects, of which two patients (patients #3 and #5) showed no chronic GVHD

and the remaining two patients (patients #6 and #7) showed mild and moderate chronic

GVHD, respectively.

Infectious complications

Bloodstream bacterial infection developed in two patients. No patient developed invasive fun-

gal infection. All seven patients experienced CMV reactivation and received preemptive ganci-

clovir treatment, and no patient experienced CMV disease. EBV reactivation was observed in

six patients, four of whom received preemptive treatment with rituximab. One patient (patient

#5) developed post-transplant lymphoproliferative disease, which improved after rituximab

treatment. BKV reactivation was observed in all seven patients, and two patients (patient #2

and #6) experienced BKV-associated hemorrhagic cystitis. A patient (patient #7) with moder-

ate chronic GVHD died from Pneumocystis jirovecii pneumonia at 10 months post-transplant

without tumor progression.

Immune monitoring

Immune reconstitution was evaluated in six patients who completed three scheduled NKIs.

CD16+CD56+CD3– cells were the predominant lymphocyte population until day 30, CD3+

cells were predominant at day 60, and CD19+ cells began to increase after day 180 (Fig 2A).

When this study’s cohort was compared with the reference cohort, the reconstitution of CD3+

cells and CD19+ cells was found to be similar (not shown). However, the number of

CD16+CD56+CD3– cells was higher until day 60 in the study cohort (Fig 2B). The number of

granulocyte-derived MDSCs decreased after NKI (Fig 3). In two patients (patient #4 and #5),

the number of granulocyte-derived MDSCs increased from day 90, and tumor relapse/progres-

sion had occurred at the six-month tumor evaluation. On the other hand, the number of gran-

ulocyte-derived MDSCs did not increase in patient #7, who remained progression-free.

Table 3. NKI-related immediate toxicity profiles in 19 NKIs.

Toxicities Grade 1–2 Grade 3–4 Total

Fever 4 (21.1%) 0 4 (21.1%)

Chills 3 (15.8%) 0 3 (15.8%)

Hypertension 2 (10.5%) 1 (5.3%) 3 (15.8%)

NKI, natural killer cell infusion.

https://doi.org/10.1371/journal.pone.0225998.t003
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Response and survival

At the three-month tumor evaluation, two patients achieved CR, four patients maintained the

same status as at haplo-SCT, and one patient experienced progression (Table 4). During fol-

low-up after NKI following haplo-SCT, a total of six patients experienced relapse/progression

at a median of 7.5 (range, 2–9) months post-transplant. Five of them died at a median of 16

(range, 8–29) months post-transplant, and the remaining one remained alive in CR at 45

months post-transplant after salvage treatment including surgery, radiotherapy, and TC che-

motherapy. Treatment-related mortality occurred in one patient (patient 7) without tumor

progression, as mentioned above. The median time to relapse/progression in the current

cohort was 7.5 months post-transplant, which was relatively longer than that in the reference

cohort; however there was no statistical difference between the cohorts (P = 0.323; Fig 4).

Discussion

Our previous study suggested that incorporation of HD-MIBG treatment into KIR/HLA-

ligand mismatched haplo-SCT might improve outcomes in children with recurrent neuroblas-

toma [17]. However, in that study, tumor relapse/progression occurred in the early post-trans-

plant period at a median of 2.5 (range, 2–9) months post-transplant. In the current study,

under the hypothesis that NKI during the early post-transplant period might prevent early

relapse in patients with recurrent neuroblastoma, we evaluated the safety and feasibility of

early NKI after haplo-SCT. Our results showed that NKI-related immediate adverse reactions

were tolerable, and the incidence of GVHD and infectious complications was similar to those

in our previous study [17].

Acute toxicities during NKI were uncommon in previous studies [30–33]. Lee et al.
reported that most NKI-related acute toxicities were mild except one patient who experienced

a grade 2 allergic reaction [34]. Another study reported transient neurologic toxicities such as

headache, confusion, delirium, and generalized seizure after NKI; however, those authors

reported that these neurologic complications might be related to haplo-SCT toxicity [19]. In

Table 4. GVHD and final outcome.

Patient

#

Acute GVHD Onset of

acute

GVHD (d)

Onset of

CSA

tapering (d)

Chronic

GVHDa
Onset of

chronic

GVHD (d)

First time of

discontinuation of

CSA (m)

Tumor

status at

haplo-SCT

Tumor

status at

day 90

Final outcome

(Follow-up from

transplant)
Skin Gut Liver Overall

1 1 0 0 I 22 194 Severe 56 – PR PR DOD at 16 m, PD

at 9 m

2 2 0 0 I 13 100 Mild 138 – VGPR CR DOD at 23 m,

relapse at 9 m

3 2 0 0 I 6 51 None – 22 PR CR DOD at 29 m,

relapse at 9 m

4 3 1 0 II 11 131 Moderate 103 15 CR CR DOD at 16 m,

relapse at 6 m

5 2 0 0 I 5 47 None – 15 VGPR VGPR Alive at 45 m in

CR, PD at 6 m

6 2 0 0 I 1 54 Mild 42 7 PR PD DOD at 8 m in

PD, PD at 2 m

7 3 0 0 II 3 33 Moderate 180 4 PR PR TRM in PR at 10

m

GVHD, graft-versus-host disease; CSA, cyclosporine; haplo-SCT, haploidentical stem cell transplantation; PR, partial response; DOD, died of disease; VGPR, very good

PR; CR, complete response; PD, progressive disease; TRM, treatment-related mortality.
aChronic GVHD was graded according to the National Institutes of Health consensus criteria.

https://doi.org/10.1371/journal.pone.0225998.t004
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Fig 2. Immune reconstitution after NKI following haplo-SCT. (A) Immune reconstitution after NKI following haplo-SCT in six

patients who completed three scheduled NKIs. Median values for cell numbers are presented. (B) The number of NK cells was higher

until day 60 in the study cohort compared to the reference cohort, who underwent haplo-SCT without NKI.

https://doi.org/10.1371/journal.pone.0225998.g002
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the current study, NKI-related acute toxicities were manageable and included fever, chills, and

hypertension, and there were no allergic reactions or neurologic complications.

The role of NK cells in the development of GVHD is controversial. Previous studies

reported that NK cells had GVT effects without aggravating or inducing GVHD [7,35]. To the

contrary, Shah et al. reported that ex vivo-expanded NK cells may aggravate acute GVHD in T

cell-depleted allo-SCT [36]. In the current study, acute GVHD occurred in all patients; how-

ever, it was mild to moderate and tolerable. In terms of chronic GVHD, we tapered immune

suppression relatively early to enhance GVT if patients could not achieve CR, which may have

resulted in the higher incidence of chronic GVHD in our cohort. It is therefore unclear

whether NKI increases the incidence of chronic GVHD after haplo-SCT. Further studies are

needed to evaluate the association between NKI and development of GVHD.

Fig 3. Changes in granulocyte-derived MDSCs after NKI following haplo-SCT. The number of granulocyte-derived

MDSCs decreased after NKI. In two patients (patient #3 and #4), the number of granulocyte-derived MDSCs increased

from day 90 and tumor relapse/progression had occurred at the six-month tumor evaluation. On the other hand, the

number of granulocyte-derived MDSCs did not increase in patient #7, who remained progression-free.

https://doi.org/10.1371/journal.pone.0225998.g003

Fig 4. Kaplan-Meier curves in the patients with relapse/progression. The median time to relapse/progression in the

current cohort was 7.5 months post-transplant, and that in the reference cohort who underwent haplo-SCT without

NKI was 2.5 months post-transplant.

https://doi.org/10.1371/journal.pone.0225998.g004
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The number of infused NK cells is an important factor in their persistence after infusion

[37]. The optimal doses or times of NKI have not yet been determined. We administered three

weekly NKIs with a dose of 3 × 107/kg cells and found that the number of NK cells was higher

until day 60 in the study cohort compared to the reference cohort, who underwent haplo-SCT

without NKI. Also, it should be noted that the persistence of NK cells was far enhanced as

compared with other clinical trials with NKI, in which allogeneic NK cells persisted for 1 to 2

weeks when administered along with immunosuppressive regimens in order to dampen the

host T-cell response [33,38,39]. Thus, we suggest that our NKI protocol could maintain a high

level of NK cells during the early post-transplant period.

MDSCs can inhibit innate and adaptive immune responses, which may promote tumor

angiogenesis, invasion, and metastasis [40]. We found that the number of MDSCs decreased

after NKI, like in a previous study in which ex vivo-expanded NKI reduced MDSC number

[37]. Our data showed that the number of granulocyte-derived MDSCs increased prior to defi-

nite tumor progression, consistent with previous studies in which an increased number of

MDSCs was associated with tumor progression [41,42]. Overall, our observations that NKI

reduced MDSC populations, and enhanced persistency of NK cells suggest that NKI following

haplo-SCT could be an effective therapy against cancer.

There are several limitations in this study. First, the number of patients was small. Second,

the timing and speed in the tapering of immune suppression were different among patients

according to GVHD and tumor status, making the association between NKI and GVHD

unclear. Third, although the time to relapse/progression was relatively longer in the study

cohort compared to the reference cohort, there was no difference in long-term outcomes

between the two cohorts. Therefore, further efforts will be needed to improve long-term out-

comes without increasing GVHD, such as the use of anti-GD2 antibody with NKI [43], TCRα/

β-depleted [44], CD45RA-depleted grafts [45], or chimeric antigen receptor-modified NK cells

[46]. Fourth, failure of stable NK cell production remains a problem. NK cells from universal

healthy donors, particularly those who have the KIR BX haplotype or mismatched KIR/HLA-

ligand, might be an option in improving transplant outcomes [37].

In summary, our data are supportive of the safety of NKI following haplo-SCT for treating

patients with recurrent neuroblastoma. However, the number of patients in our study was too

small to draw any definitive conclusions. Therefore, further studies are needed with a larger

cohort and new treatment modalities that can improve GVT effects without increasing GVHD

to improve outcomes.
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