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Barth syndrome (BTHS) is a rare mitochondrial disease that
causes severe cardiomyopathy and has no disease-modifying
therapy. It is caused by recessive mutations in the gene tafazzin
(TAZ), which encodes tafazzin—an acyltransferase that re-
models the inner mitochondrial membrane lipid cardiolipin.
To identify novel mechanistic pathways involved in BTHS
and evaluate the effects of gene therapy on proteomic profiles,
we performed a multiplex tandemmass tagging (TMT) quanti-
tative proteomics analysis to compare protein expression pro-
files from heart lysates isolated from BTHS, healthy wild-type
(WT), and BTHS treated with adeno-associated virus serotype 9
(AAV9)-TAZ gene replacement as neonates or adults. 197 pro-
teins with R2 unique peptides were identified. Of these, 91
proteins were significantly differentially expressed in BTHS
compared to WT controls. Cause-effect relationships between
tafazzin deficiency and altered protein profiles were confirmed
through demonstrated significant improvements in expression
levels following administration of AAV9-TAZ. The importance
of TMEM65 in Cx43 localization to cardiac intercalated discs
was revealed as a novel consequence of tafazzin deficiency
that was improved following gene therapy. This study identifies
novel mechanistic pathways involved in the pathophysiology of
BTHS, demonstrates the ability of gene delivery to improve
protein expression profiles, and provides support for clinical
translation of AAV9-TAZ gene therapy.
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INTRODUCTION
Barth syndrome (BTHS) is a rare mitochondrial disorder caused by
X-linked, recessive loss-of-function mutations in Tafazzin (TAZ),
which encodes tafazzin. Tafazzin is a nuclear-encoded acyltransferase
that is trafficked to the inner mitochondrial membrane, where it re-
models monolysocardiolipin (MLCL) back to its fully functional
form, cardiolipin (CL). CL is an inner mitochondrial membrane lipid
that is important for stabilization of electron transport chain (ETC)
proteins. In BTHS, this cycle is impaired and the accumulation of
MLCL causes destabilization of the inner mitochondrial membrane,
abnormal cristae structure, and inefficient ETC-mediated ATP pro-
duction.1–9
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The timing and clinical presentation of BTHS is variable; however,
typical symptoms include impaired muscle bioenergetics; decreased
cardiac reserve; and diminished muscle O2 utilization, neutropenia,
and 3-methylglutaconic aciduria, with cardiomyopathy being the
primary cause of death.10–13 BTHS standard of care currently includes
administration of medications, such as diuretics and angiotensin-
converting enzyme (ACE) inhibitors—there is currently no disease-
modifying therapy for this disorder.12 In addition, previous studies
have indicated that cardiac TAZ mRNA expression is diminished in
several heart failure animal models, chronic human heart failure
patients, and human patients with dilated cardiomyopathy, suggest-
ing that tafazzin expression influences both BTHS and common heart
failure.3,14–18

We recently demonstrated that intravenous administration of adeno-
associated virus serotype 9 (AAV9)-Des-TAZ to either neonatal or
adult BTHS mice significantly improves mitochondrial structure
and function, cardiac function, and whole-body activity levels.19

Previously, an elegant investigation into the proteomic profile of
BTHS was performed by other investigators using two-dimensional
differential gel electrophoresis (2D-DIGE) and isobaric tags for rela-
tive and absolute quantification (iTRAQ) analyses on mitochondrial
lysates isolated from the hearts of BTHS and wild-type (WT) mice.20

The study identified a total of 26 differentially expressed proteins in
BTHS cardiac mitochondria as compared to WT controls. In so do-
ing, several novel mechanisms and compensatory pathways involved
in BTHS pathogenesis were revealed. Specifically, this study demon-
strated disruptions between fatty acid oxidation and ETC interactions
and provided further evidence for ETC supercomplex destabilization.
To expand upon previous BTHS proteomics studies, our present
study provides a deeper investigation into the consequences of
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Figure 1. TMT Experimental Workflow

(A) AAV9-TAZwas administered to BTHSmice as adults (3 months) or neonates (1 or 2 days). (B) Hearts fromWT, untreated BTHS, and treated BTHSmice were collected at

5 months of age. (C) Heart lysates were labeled with unique isobaric labels. (D) The labeled samples were combined and purified (E). (F) LC-MS/MS was performed on the

purified sample, and data were analyzed against the Mus musculus protein database for peptide identification.
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tafazzin deficiency in total heart lysates using a multi-plex tandem
mass tagging (TMT) isobaric labeling quantitative approach. In
addition, cause-effect relationships between tafazzin deficiency and
proteomic profiles are confirmed through our clinically relevant
gene-replacement strategy.19

Although the general utility of TMT multiplex labeling has been
demonstrated in a variety of previously published characterization
studies, our data reveal the full scope of how this technique can be
also be applied to evaluations to determine the broad efficacy of
molecular medicines.21,22 Specifically, we observed successful
normalization of the vast majority of dysregulated protein expression
profiles in the hearts of AAV9-TAZ-treated BTHS mice, regardless of
their treatment age. Our data also identify several novel mechanistic
pathways involved in BTHS that will be interesting to explore in other
cardiac disorders in which tafazzin expression levels are diminished.
In sum, we present pre-clinical data that provide strong support for
further translation of BTHS gene therapy into the clinical realm
and identify novel proteins that contribute to the pathophysiology
of this disorder.

RESULTS
TMT-Based Proteomics Isobaric Multiplex Labeling and

LC-MS/MS Analysis

Multiplex tandemmass tagging (TMT) isobaric-label-based quantita-
tive proteomics comparisons were performed to identify proteins
significantly dysregulated in BTHS heart lysates as compared to
healthy WT controls. AAV9-TAZ gene replacement in adult and
neonatal BTHS mice was also performed to confirm cause-effect re-
lationships between tafazzin deficiency and aberrant protein expres-
sion profiles and to evaluate the potential for gene therapy to broadly
improve cardiac proteomic alterations in BTHS. We labeled heart
lysates from 5-month-old healthy WT, untreated BTHS, BTHS
mice treated as adults (AAV9-TAZAd), and BTHSmice treated as ne-
onates (AAV9-TAZNeo; Figures 1A–1C). Lysates were combined and
purified for QE Orbitrap liquid chromatography-tandem mass spec-
trometry (LC-MS/MS) analysis (Figures 1D–1F). The results were
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then searched against a Mus musculus protein database for
identification.

Identification of Significantly Differentially ExpressedProteins in

BTHS

In total, 197 proteins were identified by TMT-based proteomics as be-
ing represented byR2 unique peptides (Figure 2A). Among those pro-
tein, 91 were identified as being significantly differentially expressed in
untreated BTHS samples as compared to healthy WT control heart
samples (Table S1). A volcano plot was generated to depict the distri-
bution of the 106 unchanged, 12 upregulated, and 79 downregulated
proteins BTHS heart lysate (Figure 2B). A previous study using
2D-DIGE and iTRAQ proteomic analysis to compare mitochondria
isolated fromWT and BTHS mouse hearts identified 26 differentially
expressed proteins.20 Two of the 26 proteins identified in that study
were also identified in our study (cytochrome b-c1 complex subunit
Rieske and myoglobin), 24 were only found in the previous study,
and 89 novel proteins were identified by this TMT study (Figure 2C).

The full list of 91 differentially expressed proteins identified by TMT-
based proteomics was assessed using the Protein Analysis trough
Evolutionary Relationships (PANTHER) ontology classification sys-
tem.23 In total, 78 of the 79 proteins determined to be significantly
downregulated in BTHS and 11 of the 12 proteins determined to be
significantly upregulated in BTHS were recognized by PANTHER
and categorized based upon molecular function, involvement in bio-
logical processes, or specific protein classes (Figure S1). Based upon
this classification system, highly impacted protein classes in both
upregulated and downregulated datasets include nucleic acid binding,
oxidoreductases, transferase, and hydrolase classes (Figure S1A). By
far, the two most highly impacted molecular functions in BTHS are
catalytic and binding activities (Figure S1B). Finally, the biological
processes that are most impacted by BTHS are metabolic, cellular,
and cell organization and/or biogenesis (Figure S1C).

Search Tool for the Retrieval of Interacting Genes/Proteins (STRING)
analysis (online database of known and predicted protein-protein
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Figure 2. Proteins Differentially Expressed in BTHS

(A) Flowchart depicting the study screening process. (B) A volcano plot displaying log 2 fold change ratios of untreated BTHS heart proteins as compared to healthy WT

controls. All proteins above the horizontal dashed line (p = 0.05) display significantly altered expression levels. (C) A Venn diagram comparison of proteins identified as being

differentially expressed in a previous study using isolated heart mitochondrial lysates and this study using whole-heart lysates.
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interactions) enabled generation of a string diagram depiction of as-
sociations between 41 of the proteins that were differentially
expressed (Figure S2), downregulated (Figure S3), and upregulated
(Figure S4) between BTHS andWTmice. These revealed several clus-
ters, including multiple proteins, including those directly or indirectly
involved in mitochondrial electron transport chain function and
those involved in various aspects of transcription or translation.
Further STRING assessment identified multiple functional enrich-
ments within the set of differentially expressed proteins. The stron-
gest hit among biological pathways was the oxidative-reduction
process (Table S2). The top molecular function was oxidoreductase
activity. In addition to the unsurprising links between BTHS and
mitochondrial electron transport chain function, STRING molecular
function analyses also identified strong associations between proteins
in the dataset involved in ion binding, transition metal ion binding,
and small-molecule binding (Table S3). The strongest Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway identified was oxida-
tive phosphorylation (Table S4). Several specific diseases known to
have mitochondrial impairment that were listed among KEGG path-
ways as being heavily associated with this dataset included
Alzheimer’s, Parkinson’s, Huntington’s, and non-alcoholic fatty liver
disease.

Although the vast majority of proteins identified in this study were
downregulated, several were also found to be upregulated in BTHS
(Table S5). Although the mechanistic functions associated with
several of these proteins point toward an upregulation of various
metabolic processes and may suggest the involvement of compensa-
tory mechanisms, there were no obvious links tying these proteins
together to reveal clear upregulation of a precise mechanistic
pathway. Furthermore, there were a total of 9 proteins that were
not rescued following AAV9-TAZ treatment at either age. UniProt
investigations as well as STRING and PANTHER analyses did
not reveal any apparent connections between these proteins to
reveal a particular mechanistic pathway that remains uncorrected
(Table S6).24
Molecul
TMT-Based Proteomics Data Demonstrate the Widespread

Benefits of AAV-Mediated Rescue and further Confirm

Cause-Effect Relationships between Tafazzin Deficiency and

Cardioskeletal Myopathy

To confirm that deficient tafazzin expression was the root cause of the
aberrant protein expression profiles observed by TMT-based prote-
omics and to demonstrate the ability of AAV-mediated TAZ gene
delivery to correct these profiles, we assessed TMT-based proteomics
data generated from the hearts of mice that had been administered
AAV9-TAZ either as neonates or adults. Log2 ratios were calculated
to quantify fold change in expression between untreated BTHS,
BTHSmice treated as adults (AAV9-TAZAd), and BTHSmice treated
as neonates (AAV9-TAZNeo), as compared to healthy WT controls
for each of the 91 differentially expressed proteins (Figure 3). When
plotted against �log10 (p values) in the y axis, volcano plots demon-
strate global improvement in expression in both AAV treatment
groups as compared to untreated controls with an overall shift toward
significantly increased expression levels (Figure 3A). A horizontal line
diagram depiction of log2 fold change for each sample as compared to
WT controls for each of the 91 proteins further demonstrates the dra-
matic improvements observed in AAV9-TAZ-treated BTHS mice
(Figure 3B). In all, the improvements observed in AAV9-TAZ-treated
BTHS mice protein profiles complement the significant improve-
ments in function observed in our previously published study.19

Further evidence demonstrating a significant improvement in protein
expression profiles was shown through volcano plots of protein log2
ratios from healthy WT controls, AAV9-TAZAd, and AAV9-
TAZNeo samples as compared to untreated BTHS expression levels
(Figure 4). An overlay of all three samples (WT, AAV9-TAZAd,
and AAV9-TAZNeo) reveals a highly similar distribution between
the adult treatment group and healthy WT controls (Figure 4A).
Individual plots from mice treated as adults or neonates reveals
more dramatically increased upregulation of differentially expressed
proteins in mice treated as neonates as compared to those treated
as adults (Figures 4B and 4C). Individually, 85% (for AAV9-TAZAd
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Figure 3. Relative Distribution of Proteins from BTHS,

AAV9-TAZAd, and AAV9-TAZNeo Mouse Hearts

(A) Volcano plot showing an overlay of log2 ratio fold

changes in protein expression levels between untreated

BTHS mice, AAV9-TAZneo, and AAV9-TAZad-treated co-

horts as compared to healthy WT control levels clearly

demonstrates improved expression in treatment groups.

(B) Log2 fold change line diagram displaying relative

expression levels for each protein identified as significantly

differentially expressed in BTHS (red) and corresponding

AAV9-TAZAd (green) and AAV9-TAZNeo (blue) levels as

compared to that of healthy WT controls.
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treated) and 92% (for AAV9-TAZNeo treated) of the proteins identi-
fied as being significantly differentially expressed in BTHS showed
improved expression levels. 82% (75) of the differentially expressed
proteins demonstrated significantly increased expression levels in
both neonatal and adult treatment groups (Figure 4D). Evaluations
of those proteins only corrected in mice from either the adult treat-
ment age 3% or the neonatal treatment age 10% did not reveal closely
related pathways or processes (Table S7).

TMT-Based Proteomics Analysis Reveals Proteins Involved in

Heart Failure, Cardiac Development, Carnitine Biosynthesis,

Transcription, and Translation that Are Impacted by BTHS

As previous BTHS studies have demonstrated differential expression
of proteins important for mitochondrial metabolism, we focused
further analyses on 6 novel proteins that were highly downregulated,
improved with gene therapy, and were not previously identified as
being involved in BTHS (Figure 5). Several proteins newly identified
by our study as being differentially expressed in BTHS have been
previously found to be involved in heart failure and cardiac develop-
ment: transmembrane protein 65 (Tmem65) (UniProt: Q4VAE3),
lumican (Lum) (UniProt: P51885), and the 4 1/2 LIM 2 protein
(Fhl2) (UniProt: O70433) were all downregulated in BTHS hearts
but displayed increased expression levels following AAV treatment.
The first enzyme in the L-carnitine biosynthetic pathway, trimethyl-
lysine dioxygenase (Tmlhe) (UniProt: Q91ZE0), also displayed a
significantly reduced expression level in BTHS that was improved
with gene therapy.

Two other interesting proteins that were discovered as being involved
in BTHS and upregulated following gene therapy include (1) the
fat-storage-inducing transmembrane protein 2 (Fitm2) (UniProt:
P59266), which is a multi-pass transmembrane protein localized to
the endoplasmic reticulum, where it plays an important role in
lipid droplet accumulation, the regulation of cell morphology, and
cytoskeletal organization, and (2) the heat shock protein 70 2B
170 Molecular Therapy: Methods & Clinical Development Vol. 13 June 2019
(Hspa12b) (UniProt: Q9CZJ2), which has been
shown to protect against cardiac dysfunction
following myocardial infarction.

Real-time PCR gene expression analyses on tran-
scripts for these 6 hits (Lum, Tmlhe, Hspa12b,
Fitm2, Fhl2, and Tmem65) revealed significantly decreased RNA
transcription levels in BTHS samples as compared to healthy
WT controls (Figure 6). TAZ gene delivery ameliorated the defi-
ciencies in transcript expression levels following at least one if not
both administration ages for each of the proteins evaluated (Figures
6A–6F).

One of the significantly differentially expressed proteins that we
found particularly interesting and relevant to the arrhythmogenic
cardiomyopathy observed in BTHS was TMEM65. Western blot
evaluation of TMEM65 protein expression confirmed TMT-based
proteomics and transcription results and showed downregulation
in untreated BTHS hearts as compared to healthy WT controls as
well as AAV9-TAZAd- and AAV9-TAZNeo-treated BTHS mice
(Figure 7).

As TMEM65 has been shown to bind to Cx43 and play a key role in
the trafficking of Cx43 to the intercalated discs of cardiomyocytes, we
performed immunofluorescence (IF) analyses on mouse heart tissue
sections to evaluate whether there were differences in Cx43 localiza-
tion. IF microscopy revealed distinct localization of Cx43 to the
intercalated discs of healthy WT control cardiomyocytes. In contrast,
disorganized, cytoplasmic Cx43 expression was observed in untreated
BTHS heart sections, indicating deficient trafficking to the interca-
lated discs (Figures 8A and 8B). Both AAV9-TAZ treatment groups
showed normalization of this phenomenon (Figures 8C and 8D).
A cartoon depiction comparing correct and incorrect Cx43 trafficking
on cardiomyocytes is provided (Figures 8E and 8F).

DISCUSSION
This manuscript describes the use of TMT-based proteomics multi-
plex labeling to identify differentially expressed proteins in the hearts
of a BTHS mouse model. Confirmation of the cause-effect relation-
ship between tafazzin deficiency and aberrant proteomic profiles
was demonstrated through significant improvement in the proteomic



Figure 4. AAV9-TAZ Administration Improves

Aberrant Protein Expression Profiles

(A) Volcano plots of log2 fold change ratios of proteins from

healthy WT (black), AAV9-TAZAd-treated (green), and

AAV9-TAZNeo-treated (blue) heart lysate samples as

compared to untreated BTHS. (B) The AAV9-TAZAd-

treated profile is very similar to that of healthy WT controls.

(C) The AAV9-TAZNeo-treated profile shows the overall

highest expression levels. (D) A Venn diagram showing the

total numbers of proteins found to be differentially ex-

pressed in BTHS that display significant improvement in

expression levels in the treated groups.
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profiles of mice treated with AAV9-Des-TAZ at two different ages. As
AAV9 is the most naturally cardiotropic serotype available to date
and, in general, AAV provides stable gene transfer without disruption
of genes by insertional mutagenesis, we are developing this capsid for
future clinical translation of BTHS gene therapy.25–29

It was important to perform comparative analyses between the data-
set generated by this TMT-based proteomics study and that generated
by a previously described study on BTHS mouse hearts using
2D-DIGE and iTRAQ analyses because different proteomic ap-
proaches can yield varying results.20 Even so, both studies identified
two of the exact same proteins as being differentially expressed in
BTHS, which further validates the TMT-based proteomics approach.
Although we feel that both studies provide valuable information and
greatly complement one another, it is important to consider several
differences in how they were designed that led to the differences in
proteins identified. One key point is that, although our study evalu-
ated whole-heart lysates, the previous study was performed on
purified mitochondrial samples. Thus, any mitochondrial proteins
identified in our study were found among the broad melee of non-
mitochondrial proteins that would be present in whole-heart lysate.
Another important difference is the difference in ages of the mice
evaluated. Although the mice in our study were all 5 months of age,
those used in the previous study were 3 months old and at a less
advanced disease state.

Finally, both studies would have been impacted by the effect of BTHS
on mitochondrial numbers due to extensive fragmentation. Although
the outer mitochondrial membrane in BTHS samples remains intact
and any proteins that exist in the mitochondrial matrix will have a
greater amount of space upon which to exist, the cristae or inner mito-
chondrial membrane structures are greatly decreased in BTHS sam-
ples. This likely impacts proteomic results from BTHS mitochondrial
Molecular Therapy: Methods
samples, which may skew toward an increase in
outermembraneormatrix proteins anda decrease
in inner membrane proteins, even though the
total number of mitochondrial proteins being
compared to WT samples may be the equal.

Among those proteins identified specifically in
our study, several interesting protein associations
were revealed. One major cluster highlighted through STRING
analysis consisted of various subunits of ETC proteins. As BTHS
has long been known to be associated with instability of the inner
mitochondrial membrane and a subsequent decrease in ETC super-
complex formation, this was not a surprising result. Other clusters
of differentially expressed proteins (in the context of BTHS) consisted
of those involved in beta-oxidation (Hadh and Decr1), mRNA pro-
cessing (Prpf6, Lsm3, Prpf19, and Cpsf7), proteasome-mediated
degradation (Ngly1, Psmc1, and Psmb1), and protein translation
(Eif3l, Rps29, and Rpl38), suggesting that these functions may play
pivotal roles in the manifestation of BTHS. These data support the
pursuit of future investigations into TMT-based proteomics profiling
of other forms of cardiomyopathy to distinguish BTHS-specific
effects versus those that occur throughout more common forms of
heart disease.

Evaluations into specific proteins found by TMT-based proteomics
analysis as being differentially expressed in BTHS revealed
mechanistic links between well-documented BTHS phenotypes and
decreased function at the protein level. One example is downregula-
tion of the first enzyme in the L-carnitine biosynthetic pathway,
trimethyllysine dioxygenase (Tmlhe). Carnitine levels are low failing
in hearts in general, and a previous BTHS study of patient plasma
samples revealed carnitine and acylcarnitines as being among
metabolites that reveal clear distinctions between BTHS patients
and healthy controls using broad-spectrum NMR metabolomics
and targeted metabolomics.30–32

Previously published reports have described somewhat disparate
functions for one of the novel proteins identified in our study as being
significantly downregulated in BTHS—TMEM65. Originally identi-
fied as a protein of unknown function that was upregulated by the
steroid receptor RNA activator (SRA) ncRNA, TMEM65 has more
& Clinical Development Vol. 13 June 2019 171
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Figure 5. MS2 Spectra for Representative Proteins Identified by TMT

Reporter ions for each are located on the right-hand side of each spectra.
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recently been shown (in separate studies) to be able to localize to the
mitochondrial inner membrane, play a role inmitochondrial function
through maintenance of mtDNA copy numbers, and bind to
connexin 43 (Cx43) and participate in Cx43 localization to the inter-
calated discs of cardiomyocytes.33–36 SRA has also been shown to
have disease association with human dilated cardiomyopathy and
results in dilated cardiomyopathy when genetically knocked down
in zebrafish.37 One study evaluating TMEM65 knockdown in fibro-
blasts revealed its role as an inner mitochondrial membrane protein
and showed that a particular mutation in TMEM65 resulted in a
mitochondrial myopathy with severe neurological manifestations.34

A separate investigation evaluated TMEM65 function using lentiviral
short hairpin RNA (shRNA)-mediated knockdown in mouse cardio-
myocytes and morpholino-based knockdown in zebrafish. This study
172 Molecular Therapy: Methods & Clinical Development Vol. 13 June 2
demonstrated that TMEM65 is an intercalated disc protein required
for correct localization of connexin 43 (Cx43), as its deletion resulted
in Cx43 internalization and deficient cardiac development. Due to its
importance for both Cx43 localization and mitochondrial function as
well as its activation by SRA RNA, TMEM65’s involvement in the
development of cardiomyopathy represents an interesting potential
new therapeutic target for a variety of disorders, which we look for-
ward to investigating in future studies.

Multiple proteins identified as being downregulated in BTHS hearts
are known to be involved in more common forms of heart failure
and/or in cardiac development. Lumican is a proteoglycan that local-
izes to the extracellular matrix (ECM) and has been shown to play a
role in alterations of the cardiac ECM during development of heart
019



Figure 6. Relative Fold mRNA Transcript Levels for 6 Highly Interesting Proteins Identified by TMT as Being Significantly Differentially Expressed in BTHS

(A) Lumican (Lum), (B) Trimethyllysine dioxygenase (Tmlhe), (C) heat shock 70 kDa protein 12B (Hspa12b), (D) fat-storage-inducing transmembrane protein 2 (Fitm2), (E) four

and a half LIM domains protein 2 (Fhl2), and (F) transmembrane protein 65 (Tmem65) (all data are presented as ± SE; *p % 0.05; **p % 0.01; ***p % 0.001).

www.moleculartherapy.org
failure in mouse models and human patients.38,39 Other studies sug-
gested that lumican controls cardiomyocyte growth through regula-
tion of the pericellular ECM and showed that mouse hearts deficient
in lumican display an increase in myocardial tissue without a signif-
icant increase in cell proliferation as well as an increased susceptibility
to aging and isoproterenol-induced myocardiac fibrosis.40,41 Another
differentially expressed protein in our data—the 41/2 LIM 2 protein
(Fhl2) has been shown to act as a repressor of pathological cardiac
growth through suppression of stress-induced calcineurin activa-
tion.42 Fhl2 also interacts with the basic-helix-loop-helix (bHLH) fac-
tor Hand1 to repress Hand1/E12 heterodimer-induced transcription
during healthy cardiac development.43

Of note, the vast majority of proteins that were identified as differen-
tially expressed between WT and BTHS mouse hearts by our TMT-
based proteomics analysis were downregulated. It is possible that
this is partly a consequence of a generalized decrease in translational
activity, as several ribosomal proteins important for translation of
either nuclear or mitochondrial encoded genes were found to be
downregulated.

To both further confirm cause-effect relationships between tafaz-
zin and TMT-based proteomics results and generate strong
pre-clinical data supporting the potential for AAV9-TAZ gene
therapy as a treatment option for BTHS patients, we compared
TMT-based proteomics protein expression profiles from WT and
BTHS mice to those from mice treated with AAV9-TAZ as adults
Molecul
or neonates and found dramatic improvements. The breadth of
proteomic information obtained through TMT-based proteomics
comparisons demonstrates the widespread, positive impact that
AAV-mediated gene therapy can have on BTHS. As TAZ
deficiency has been associated with both BTHS and a variety
of non-BTHS heart diseases and CL abnormalities have been
detected in a range of other disorders (cardiac ischemia, diabetes,
cancer, and Parkinson’s and Alzheimer’s diseases), the identi-
fication of a broad range of proteins involved in this disorder
provides an important contribution to BTHS and more common
maladies.3,14–16,44–46

Our results reveal a multitude of proteins not previously identified as
being involved in BTHS pathophysiology, identify a protein directly
involved in BTHS arrhythmogenic cardiomyopathy (TMEM65),
demonstrate the broadly impactful ability of gene delivery to improve
proteomic profiles, and provide substantial support for a potential
definitive treatment that significantly improves cardiac protein
expression profiles in BTHS whether delivered to very young or fully
grown mice. Further research comparing BTHS proteomic profiles to
those of other forms of heart disease may reveal novel therapeutic tar-
gets (pharmaceutical, molecular, or otherwise) relevant to a wide
variety of cardiomyopathies. As a multitude of AAV-mediated gene
delivery strategies are currently being evaluated for clinical efficacy
in humans to treat a range of genetically inherited disorders, a strong
precedent exists, and our data support this as a strategy to be success-
fully translated into the clinic.47,48
ar Therapy: Methods & Clinical Development Vol. 13 June 2019 173
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Figure 7. Tmem65 Expression Levels

(A) Western blot (WB) analysis confirms decreased

TMEM65 expression in BTHS that is improved with

AAV9-TAZ treatment. (B) Graphical representation of

TMEM65 as compared to GAPDH expression by WB

(n = 5). (C) MS2 spectra identified by TMT with reporter ions

located on the right-hand side (all data are presented as ±

SE; *p % 0.05; ***p % 0.001).
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MATERIALS AND METHODS
BTHS Mice

The Institutional Animal Care and Use Committee from University
of Florida approved all animal studies. WT C57BL/6J female mice
were mated to transgenic males (ROSA26 H1/TetO-shRNA:taz)
CB57BL/129S6 (previously characterized BTHS mouse model) for
5 days.49–52 Females were then separated from males and placed on
a doxycycline (dox) diet containing 200 mg of dox/kg of chow
(TD98186, Envigo). Transgenic pups were identified by PCR geno-
typing of tail genomic DNA and maintained on the dox diet
throughout their lives (BTHS). Non-transgenic WT littermates
were also fed the dox diet and used as controls.
AAV Vector Design and Administration

The AAV used in this study was cloned into a previously described
double-stranded (ds) AAV plasmid sequence kindly provided by
Dr. Xiao Xiao (UNC).53 A previously described desmin (Des) pro-
moter drove expression of the full-length human TAZ transgene
cDNA (CCDS14748.1).54 The dsAAV-Des-TAZ plasmid was pack-
aged into recombinant AAV9 capsids, which were generated at the
University of Florida Vector Core facility. AAV9-TAZ was adminis-
tered intravenously to BTHS mice at a dose of 1 � 1013 vg/kg. Adult
injections were administered through the jugular vein, and neonatal
injections were administered through the superficial temporal vein
as previously described.27 At 5 months of age, mice were euthanized
and necropsies were performed. Hearts were collected and stored
at �80�C.
Protein Extraction, Digestion, TMT Labeling, and LC-MS/MS

Four hearts were used for each sample. A piece of each heart was lysed
by Fast Prep FP120 Cell Disrupter using 2-mL tubes filled with
approximately 200 mL of zirconia/silica (1 mm) beads and 500 mL
of radioimmunoprecipitation assay (RIPA) buffer. The lysate was
centrifuged at 16,000 � g for 10 min at 4�C, the supernatant trans-
ferred to a new tube, quantified, and then 25 mg from each heart
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were combined to generate 100 mg of heart pro-
tein lysate to a final volume of 100 mL in
100 mM triethyl ammonium bicarbonate
(TEAB) as per previous TMT analyses.55 For
each: WT, BTHS untreated, BTHS AAV9-TAZ
treated (neonate), and BTHS AAV9-TAZ treated
(adult) mice. Each lysate was incubated with 5 mL
of 200 mM Bond-Breaker TCEP Solution (Thermo Fisher) at 55�C
for 1 h, 5 mL of 375 mM iodoacetamide at room temperature for
30 min protected from light, and precipitation of protein was
performed overnight using previous described methanol and chloro-
form protocol.56 The samples were centrifuged at 8,000� g for 10min
at 4�C, and the tubes were inverted to decant the methanol and
chloroform and dry the protein pellet. Each protein pellet was resus-
pended with 100 mL of 100 mM (TEAB) and digested overnight with
2.5 mg of trypsin per 100 mg of protein. The peptide labeling was per-
formed following TMT Multiplex (Thermo Fisher) manufacturer’s
instructions. There were four biological replicates pooled together
per cohort as demonstrated in previous studies.55 Each treatment
group and internal control lysate sample was tagged with a unique
isobaric label (126, 127N, 127C, and 128N) and submitted to the
UF Proteomics Core for purification using C18 spin columns and
analysis using high-resolution Q Exactive hybrid quadrupole-
Orbitrap LC-MS/MS (Thermo Fisher Scientific, Bremen, Germany).
WT lysate was labeled with 126, BTHS untreated lysate was labeled
with 127N, BTHS AAV9-TAZ treated (neonate) was labeled with
127C, and BTHS AAV9-TAZ treated (adult) mice was labeled with
128C. The labeled samples were mixed in 1:1:1:1 ratio. Labeled
peptides were desalted with C18-solid phase extraction and dissolved
in strong cation exchange (SCX) solvent A (25% [v/v] acetonitrile,
10 mM ammonium formate, and 0.1% [v/v] formic acid [pH 2.8]).
The peptides were fractionated using an Agilent high-performance
liquid chromatographer (HPLC) 1260 with a polysulfethyl A column
(2.1 � 100 mm2; 5 mm; 300 Å; PolyLC, Columbia, MD, USA).
Peptides were eluted with a linear gradient of 0%–20% solvent B
(25% [v/v] acetonitrile and 500 mM ammonium formate [pH 6.8])
over 50 min followed by ramping up to 100% solvent B in 5 min.
The absorbance at 280 nm was monitored, and fractions were
collected. The fractions were lyophilized and resuspended in LC
solvent A (0.1% formic acid in 97% water [v/v] and 3% acetonitrile
[v/v]). High-energy collision dissociation (HCD) was used in each
MS and MS/MS cycle. The instrument was run in data-dependent
mode with a full MS (300–5,000 m/z) resolution of 70,000 and five



Figure 8. Cx43 Localization Is Impaired in Untreated BTHS Mice

(A–D) IF staining showing DAPI staining of nuclei (blue), MTCO2 expression localized to mitochondria (green), and Cx43 expression (red) in (A) healthy WT control (scale bar =

25 mm), (B) untreated BTHS, (C) BTHS AAV9-TAZ adult, and (D) BTHS AAV9-TAZ neonatal treated heart tissues. (E) A depiction of how Cx43 properly localizes to the polar

ends of healthy cardiomyocytes. (F) A depiction of how Cx43 is mislocalized to the longitudinal sides and more clumped in untreated BTHS cardiomyocytes.
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MS/MS experiments (HCD NCE = 28%; isolation width = 3 Th; first
mass = 105 Th; 5% underfill ratio; peptide match set to “preferred”
and an AGC target of 1e6). Dynamic exclusion for 10 s was used to
Molecul
prevent repeated analysis of the same peptides, and a lock mass of
m/z 445.12003 (polysiloxane ion) was used for real-time internal
calibration. The MS system was interfaced with an automated
ar Therapy: Methods & Clinical Development Vol. 13 June 2019 175
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Easy-nLC 1000 system (Thermo Fisher Scientific, Bremen, Germany).
Each sample fraction was loaded onto an Acclaim Pepmap 100 pre-
column (20 mm � 75 mm; 3 mm-C18) and separated on a PepMap
RSLC analytical column (250 mm � 75 mm; 2 mm-C18) at a flow
rate at 300 nL/min during a linear gradient from solvent A (0.1%
formic acid [v/v]) to 25% solvent B (0.1% formic acid [v/v] for
80 min and to 99.9% acetonitrile [v/v]) for an additional 15 min.

Proteomics Data Processing

The UF Proteomics core facility processed RAW files using Prote-
ome Discoverer (PD version 1.4.0.288; Thermo Fisher Scientific,
Bremen, Germany) with the SEQUEST algorithm.57 Spectrum Prop-
erties filter min. precursor mass: 300 Da and max. precursor mass:
5,000 Da was used with total intensity threshold: 0 and minimum
peak count: 1. Scan event filters of min. collision energy: 0 and
max. collision energy: 1,000 was used. Peak filters: with S/N
threshold (FT-only): 1.5 was used. Precursor mass tolerance: 10
ppm and max. RT difference (min): 1.1 was set to filter. SEQUEST
processing of protein database: uniprot-mouse_20170905.fasta with
full tryptic peptides and maximum missed cleavage sites: 2 was al-
lowed. Peptide scoring options of maximum peptides considered:
500, maximum peptides output: 10, calculate probability scores:
false, absolute XCorr threshold: 0.4, fragment ion cutoff percentage:
0.1, and peptide without protein XCorr threshold: 1.5 were used.
Protein scoring options of maximum protein references per peptide:
100, protein relevance threshold: 1.5, and peptide relevance factor:
0.4 was applied for identified proteins. Precursor mass tolerance
10 ppm and fragment mass tolerance 0.6 Da was used. Neutral
loss of a ions, b ions, and y ions were used with weight of a ions:
0, weight of b ions: 1, weight of c ions: 0, weight of x ions: 0, weight
of y ions: 1, and weight of z ions: 0 used for ion series. N-terminal
modification: TMT10plex/+229.163 Da (any N terminus) and dy-
namic modification: TMT10plex/+229.163 Da (K) with max.
modifications per peptide: 4 were allowed. Static modifications of
carbamidomethyl/+57.021 Da (C) were implemented. All MS/MS
spectra were searched by SEQUEST combined with the Percolator
algorithm (version 2.0) for peptide spectra matched (PSM) search
optimization.58 Input data search with maximum Delta Cn: 0.05
was allowed. Decoy database search with target false discovery
rate (FDR) (Strict): 0.01–0.05 and target FDR (relaxed): 0.05 with
validation based on: q-Value was used.

For quantification of reporter ion, peak integration tolerance of
20 ppm and integration method being most confident centroid was
used. Scan event filters of mass analyzer: FTMS, MS order: MS2,
activation type: HCD with min. collision energy: 0 and max. collision
energy: 1,000 was used. Mass precision of 2 ppm and S/N threshold of
1 was used for event detection. Fold change threshold for up-/down-
regulation was set at 2 with a maximum allowed fold change being
100. Only unique peptides were considered for protein quantification.
There was no experimental bias. Quantification channels like residue
modification TMT10plex/+229.163 Da (K) and any N-terminal
modification: TMT10plex/+229.163 Da was used with 126:
monoisotopic m/z = 126.12773 Da, average m/z = 126.21930 Da;
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127_N: monoisotopic m/z = 127.12476 Da, average m/z =
127.21270 Da; 127_C: monoisotopic m/z = 127.13108 Da, average
m/z = 127.21140 Da; and 128_N: monoisotopic m/z = 128.12812
Da, average m/z = 128.20400 Da. Ratio calculations were performed
with minimum and maximum quan value being 384.4. Ratios
reported were 126/126, 127_C/126, 127_N/126, and 128_N/126 as
well as 127_C/127_N, 127_N/127_N, 128_C/127_N, and 126/127_N.

For processing results, peptide grouping options like true peptide
groups with mass and sequence was used. Shared peptides are dis-
carded. Protein grouping options like considering leucine and
isoleucine as equal, considering only PSMs with confidence and
delta Cn better than: 0.15, was implemented. Strict maximum
parsimony principle was applied. No filters were applied for data
reduction. Result filters like peptide score (peptide score:
SEQUEST [XCorr]; score threshold: 1), peptide rank (maximum
rank: 1), peptide length (lowest peptide length: 6; highest peptide
length: 27), peptide rank (maximum rank: 1), peptide Delta Cn
(maximum delta Cn: 0.1), peptides per protein (minimal number
of peptides: 1; count peptide only in top scored proteins: true)
were used. Distinct proteins with precursor mass (lowest precursor
mass: 600 Da; highest precursor mass: 3,500 Da) and peptides per
protein (minimal number of peptides: 2 with peptide only in top
scored proteins) were considered for quantification to generate a
final list of 91 proteins identified as being differentially expressed
between BTHS and WT mouse hearts. BTHS and AAV-treated
(neo or adult) peptide quantities were normalized to WT and ex-
pressed as log2 fold change, and later, AAV-treated adult and
neonatal proteins were normalized to BTHS to visualize the cor-
rected proteins. Peptide matches that pass the filter associated
with the strict FDR (0.01) possessing a green confidence indicator
were shown in Figures 6 and S3. Volcano plots were generated in
GraphPad Prism.59,60
Common Contaminants

The following proteins were regarded as common contaminants on
the basis of their occurrence and ambiguity in all the samples. These
proteins are trypsin (XP_094996); keratin 1; keratin 2a; keratin 5;
keratin, type II cytoskeletal 6F; keratin 9; similar to keratin, type I
cytoskeletal 10; keratin 10; keratin 14; and keratin 16. They were
confirmed by running through Contaminant Repository for Affinity
Purification (http://www.crapome.org) against H. sapiens.61,62
Proteomics Analyses

STRING version 10.5 was used to identify protein-protein interac-
tions between those hits identified in our TMT study.63 All differen-
tially expressed proteins were included in the assessment. The
minimum required interaction score was set to 0.400 (medium con-
fidence), and disconnected nodes (proteins with no known interac-
tions) were not included in the view. PANTHER version 13.1
ontology classification software was used to group differentially ex-
pressed proteins based upon molecular functions, biological pro-
cesses, and protein classes.23,64
019
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Statistical Analyses

GraphPad Prism (version 7) was used for all data analysis. For the
number of proteins quantified by reporter ion ratios with FDR 0.05
and FDR 0.01 threshold with validation based on q values, p values
were calculated based on Student’s t tests and p % 0.05 was consid-
ered significant.
Real-Time PCR Gene Expression Analyses

Total RNA was isolated using the RNA Extraction kit (Zymo
Research). cDNA was synthesized using the High Capacity RNA-
to-cDNA kit (Applied Biosystems), and real-time qPCR was per-
formed using TaqMan Master Mix (Thermo Scientific) and specific
primers (Table S8; Thermo Scientific) on a StepOnePlus Real-Time
PCR System (Applied Biosystems). All relative fold change expression
levels were calculated using the DDCt method.
Protein Quantification and Western Blot Analyses

Tissues were homogenized in RIPA buffer, and protein lysate concen-
trations were determined using the DC Protein Assay kit (Bio-Rad).
Samples were prepared in 6� loading buffer, boiled for 5 min, and
resolved on SDS-PAGE (12% bis-tris polyacrylamide) denaturing
gels. Proteins were transferred to nitrocellulose membranes. Mem-
branes were blocked and then incubated with primary antibodies
(Table S9) overnight at 4�C. On the following day, membranes
were washed with 1� tris-buffered saline + Tween (TBST), incubated
with secondary antibodies conjugated to horseradish peroxidase
(1:1,000) for 1 h, and washed again with 1� TBST. Bands were de-
tected using the Amersham ECL Prime Western Blotting Detection
Reagent (GE Healthcare Life Science).
Immunofluorescence on Formalin-Fixed Paraffin-Embedded

Tissue

Freshly excised tissue samples were fixed in 10% neutral-buffered
formalin overnight at 4�C. Following fixation, tissues were dehy-
drated, cleared, and embedded in paraffin wax. 50-mM tissue
sections were cut from embedded blocks, floated onto a water
bath at 42�C, and placed on microscope slides. Slides are dried
overnight at 37�C and then dewaxed, rehydrated, and subjected
to antigen retrieval using trypsin-EDTA. The slides were blocked
in PBS + 5% BSA for 1 h at room temperature then incubated in
primary antibodies diluted in PBS + 5% BSA overnight at 4�C.
Following PBS washes, slides were incubated in secondary anti-
bodies diluted (1:200) in PBS + 5% BSA for 1 h at room tempera-
ture. Finally, slides were incubated in PBS + 1 mg/mL DAPI
(Sigma-Aldrich) for 5 min, rinsed in 1� PBS, mounted in
VectaMount (Vector Laboratories), and stored at 4�C. IF images
were acquired within 24 h of immunolabeling.
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