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Behavioural flexibility is often treated as the gold standard of evidence for

more sophisticated or complex forms of animal cognition, such as planning,

metacognition and mindreading. However, the evidential link between

behavioural flexibility and complex cognition has not been explicitly or

systematically defended. Such a defence is particularly pressing because

observed flexible behaviours can frequently be explained by putatively sim-

pler cognitive mechanisms. This leaves complex cognition hypotheses open

to ‘deflationary’ challenges that are accorded greater evidential weight

precisely because they offer putatively simpler explanations of equal explana-

tory power. This paper challenges the blanket preference for simpler

explanations, and shows that once this preference is dispensed with, and the

full spectrum of evidence—including evolutionary, ecological and phylo-

genetic data—is accorded its proper weight, an argument in support of

the prevailing assumption that behavioural flexibility can serve as evidence

for complex cognitive mechanisms may begin to take shape. An adaptive

model of cognitive-behavioural evolution is proposed, according to which

the existence of convergent trait–environment clusters in phylogenetically dis-

parate lineages may serve as evidence for the same trait–environment clusters

in other lineages. This, in turn, could permit inferences of cognitive complexity

in cases of experimental underdetermination, thereby placing the common

view that behavioural flexibility can serve as evidence for complex cognition

on firmer grounds.
1. Introduction
According to the standard view in comparative cognition science, animal cogni-

tion is generally held to consist in the processes that generate flexible adaptive

behaviours in animals [1]. This conception of cognition is motivated by the

prima facie plausible assumption that flexible behaviour is underwritten by cog-

nitive processes, and that the more flexible the observed behaviour, the more

complex the cognitive processes that underlie it are likely to be (e.g. [2]). This

assumption shapes research programmes in comparative cognition, where behav-

ioural flexibility is often treated not only as the gold standard but also as the only

significant source of evidence for cognitive complexity [3–5]. Experiments are

designed to elicit flexible behaviours that respond appropriately to environmental

contingencies, and the observations of such behaviours are, in turn, thought to

license inferences about the presence (or absence) of a cluster of cognitive abilities

that are generally, if problematically (§2), regarded in the literature as being

sophisticated or complex—such as planning, concept formation, metacognition,

mindreading and so on [6].

Despite the received view among comparative cognition researchers and phi-

losophers of comparative cognition science that flexible behaviours can serve as
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evidence of complex cognitive mechanisms, this evidential

link has not been explicitly and systematically defended.

Such a defence is particularly pressing in the light of the fact

that flexible behaviours can often be explained equally well

by adverting to putatively simpler cognitive mechanisms.

That is to say, the choice between alternative hypotheses that

advert to different levels of cognitive complexity is in many

cases underdetermined, in that multiple cognitive explanations

fit a set of observations equally well with no clear guiding

principle for resolving the impasse. As a result, experiments

purporting to show results that support an inference of com-

plex cognition remain open to ‘deflationary’ challenges.

Moreover, these deflationary hypotheses are often accorded

greater epistemic weight because their alternatives are taken

to be more complex—and this complexity is thought to

warrant a higher burden of proof than that accorded to puta-

tively simpler explanations of equal explanatory power.

This methodological state of affairs leaves the evidential con-

nection between flexible behaviour and complex cognition on

tenuous grounds.

This paper argues that once behavioural flexibility and

cognitive complexity are conceptually disentangled, the pre-

ference for simpler explanations is dispensed with, and the

full spectrum of evidence (including evolutionary and eco-

logical data) is accorded its proper weight, an argument

in support of the prevailing assumption that behaviou-

ral flexibility can serve as evidence of complex cognitive

mechanisms may begin to take shape. Section 2 explains

why behavioural flexibility and cognitive complexity must

be conceptually decoupled if the prevailing assumption is

to be empirically tenable. Section 3 shows how this con-

ceptual separation leads to a problem of experimental

underdetermination—one that is exacerbated by a preference

for explanatory simplicity that shapes methodological design

in ways that further attenuate the evidential link bet-

ween behavioural flexibility and forms of cognition that are

commonly regarded as complex. Because this preference

for simpler explanations appears to be unwarranted on con-

ceptual, theoretical and empirical grounds, it does not

adequately resolve the underdetermination problem. Section

4 proposes an adaptive model of cognitive-behavioural

evolution, according to which the existence of convergent

trait–environment clusters in phylogenetically (and hence

developmentally) disparate lineages can serve as evidence

for the same trait–environment clusters in other lineages,

thus permitting reliable inferences of cognitive complexity

in cases of experimental underdetermination. The novelty

of this account lays not so much in its theory of the evolution

of cognitive complexity per se, but in establishing a deeply

convergent regularity that can inform hypothesis testing

and theory adjudication in experimental psychology sett-

ings in which the cognitive capacities of distantly related

organisms are investigated. Because the model identifies a

non-accidental regularity that is robust across body plans

and divergent developmental systems, it can license infer-

ences about the presence of complex cognitive mechanisms

in disparate animal groups. This, in turn, can affect the

choice of null hypothesis and burden of proof allocation in

comparative cognition—a field that traditionally has not

drawn on evolutionary concepts, methods and data in

designing experiments and interpreting results. The pro-

posed model is then applied to case examples and several

objections to its validity are considered.
More broadly, the goal of this paper is to show how evol-

utionary science can inform experimental programmes that

are normally carried out in relative isolation from evolution-

ary concepts and methods. Evolutionary science is often

regarded as a purely historical enterprise, one that is tasked

with reconstructing phylogenies and explaining the origins

and current distributions of traits by adverting to evolution-

ary processes that acted on populations in the distant past.

This might lead one to think that the epistemic tools and

goals of evolutionary biology are orthogonal to psychological

investigations of the present cognitive capacities of animals.

However, evolutionary concepts and methods, such as

those relating to adaptation and homology, can provide

clues about what sorts of cognitive capacities may be present

in the contemporary time slice of a lineage. They also provide

an evolutionary, ecological and phylogenetic context against

which to adjudicate alternative proximate cognitive expla-

nations of observed animal behaviour. In illustrating this, the

proposed model serves as a corrective for a priori methodologi-

cal biases in comparative cognition, such as the preference for

simpler cognitive explanations, which appear to systematically

undervalue the evidential weight of behavioural flexibility.

Employing a more diverse range of epistemic resources could

allow behavioural flexibility to serve (under certain conditions)

as reliable evidence of cognitive complexity, thus placing the

received view in comparative cognition on firmer footing.

Just as importantly, it reveals a rich and largely untapped

source of evidence external to the laboratory (in particular, from

evolutionary biology) that can be drawn upon to support—or

deflate—complex cognition hypotheses.
2. Problems of concept and evidence
Although cognition is not typically defined in terms of behav-

iour, it is often equated with the proximate mechanisms that

produce flexible behaviour. For instance, as philosopher of

cognitive science Kristin Andrews describes it in the Stanford

Encyclopedia of Philosophy entry on the subject, ‘animal cog-

nition is constituted by the processes used to generate . . .

flexible behaviour in animal species’ [1]. Yet, by building be-

havioural outputs into the definition of cognition, the link

between behavioural flexibility and particular cognitive

mechanisms is established by definition. This conceptual

coupling is common not only in comparative cognition but

also in philosophical action theory (e.g. [7]), where behaviour

is often distinguished from mere movement in terms of its

proximate cognitive drivers. The problem with this, however,

is that such a coupling is only appropriate in cases where the

proximate causes of behaviour have already been established

a posteriori. Initially, observations of some phenomenon P

may serve as evidence for the existence of a particular mech-

anism M that is hypothesized to be a cause of P; as the

evidence base for M grows to the point that M is shown to

be a cause of P beyond any reasonable doubt, then M will

not only come to figure in received explanations of P, but

may also become incorporated into the very definition

of P. For example, consider the concept of ‘adaptive

match’—the functional fit between the traits of an organism

and the ecological design problems it needs to solve. Adap-

tive match was not always understood as the product of

natural selection; non-Darwinian evolutionary theories as

well as creationist ones were initially offered to explain
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biological design. As evidence that the mechanism of natural

selection was the only plausible cause of adaptive match

accumulated and achieved ‘beyond a reasonable doubt’

status in biological science, the concepts of adaptation and

function in biology came to build in the mechanism of natural

selection. Traits which are now regarded as ‘adaptations’ are

those that have been subject to a history of selection for their

effects, and these effects are known as their ‘functions’ [8].

In short, it is inadvisable to build specific mechanisms

into the definition of a biological trait if that trait is multiply

realizable or if its proximate causes are unclear [9]. Although

natural selection remains on secure epistemic footing as the

only known mechanism for producing complex functional

design, the cognitive mechanisms that produce behavioural

flexibility are precisely what are at issue in comparative cogni-

tion, and there is reason to believe that behavioural flexibility

may be multiply realizable (i.e. produced by both sophisticated

cognitive mechanisms and putatively simpler ones). Given this

enduring controversy in the field of animal cognition, it would

clearly be premature to incorporate any particular proximate

cognitive mechanisms into the definition of behavioural flexi-

bility or, conversely, to incorporate particular behavioural

outputs into the definition of cognition (or complex cognition).

Even more problematically, such a coupling prevents obser-

vations of behavioural flexibility from serving as evidence for

the presence of complex cognition.

For these reasons, it is preferable to have a working

definition of cognition (and complex cognition) that does

not incorporate behavioural outputs. This may seem like an

obvious desideratum from the standpoint of biologically

oriented approaches to cognition; however, as discussed

above, incorporating specific types of behavioural outputs

into the definition of cognition or, conversely, delineating cer-

tain types of behaviour in terms of the cognitive mechanisms

that produce them, is commonplace in comparative cognition

and the philosophy of action. There are many definitions

of cognition on offer in the literature, which separate cogni-

tion from behavioural outputs. For present purposes, we

will presume the least controversial and most biologically

applicable account among these: namely, the notion that

cognition is a form of information-processing and ‘refers to

the mechanisms by which animals acquire, process, store

and act on information from the environment’ [10, p. 4].

This ‘big tent’ approach to cognition grants minimal forms

of cognition to a wide variety of organisms with very different

neurological capacities, sensory modalities, and lifeways (for

defences of such an account, see [11,12]). At the same time, it

rejects narrow ‘top-down’ approaches that restrict cognition

to a small range of organisms by presuming that cognition

entails some highly atypical property, such as the possession

of language or reason. Restrictive accounts of cognition are

generally built around the intuition that some entities (e.g.

microbes, plants, termites, cruise missiles, etc.) are paradigma-

tically non-cognitive while others (e.g. average adult humans)

are paradigmatically cognitive, with the success of a given

account gauged by how well it conforms to these intuitions.

For instance, after honeybees were discovered to be capable

of marked and rapid learning, the criterion of learning as a

mark of intelligence was discarded. As Chittka et al. [13,

p. 2678] note, ‘there may be good reasons not to equate learning

speed with intelligence, but the fact that humans do not top the

chart should not be one of them.’ Big tent accounts of cognition,

by contrast, such as the one adopted here, are phylogenetically
inclusive in that they focus on some widely and continuously

distributed property that permits cross-species comparisons

and generates evolutionary hypotheses. On the present

account, cognition includes any information processing that

occurs in the organism and enables it to interact with its

environment. This encompasses not only centralized infor-

mation processing that occurs in brains, but also information

processing that takes place in peripheral nervous systems, per-

ceptual modalities and non-neural cellular systems of

representation.1

Such a phylogenetically inclusive account is controversial.

Many cognition theorists have attempted to distinguish cog-

nition from perception, for instance, by restricting cognition

to certain types of information processing, formats of rep-

resentation or degrees of encapsulation [14]. Nevertheless,

an information-processing account is broad enough to cap-

ture many or all types of cognition, and can fit into an

evolutionarily ecological framework that explains why cogni-

tion exists in the forms and taxonomic distributions that it

does without ruling out the possibility that more complex

forms of cognition may be found in organisms that are dis-

tantly related to humans. Such a big tent conception of

cognition does not, however, provide us with the conceptual

resources to distinguish intuitively simpler from intuitively

more complex forms of cognition, because information pro-

cessing is a continuous phenomenon that encompasses both

higher-level and lower-level processes. What the big tent

conception does provide is a phylogenetically inclusive theor-

etical foundation that stands the best chance of unifying and

explaining the assorted mechanisms and processes that are

plausibly characterized as cognitive and which enable organ-

isms to interact successfully (and often flexibly) with their

environments. ‘Phylogenetically inclusive’ here means more

than the mere methodological injunction to keep an open

mind with respect to in which branches of the tree of life par-

ticular cognitive mechanisms may be found. It means

understanding cognition as ubiquitous in the living world,

much like replication and metabolism—even if varieties of

cognition, like forms of metabolism and replication, vary

widely across the whole of life. This big tent account of cog-

nition can serve as a unifying framework for explanations

of all cognitive forms, from ‘simple’ to ‘complex’, and the

behaviours to which they give rise—a framework that under-

pins the model of cognitive-behavioural evolution proposed

in §4.

At present, it is unclear whether the types of cognition

typically identified in the comparative cognition literature as

comparably complex—and on the basis of this supposed com-

plexity accorded a weightier burden of proof in hypothesis

adjudication (§3)—have any common properties by virtue of

which they can meaningfully be classified as ‘complex’. It is

possible—though far from definitive—that the represen-

tational forms underwriting cognitive mechanisms intuitively

considered complex differ from putatively simpler forms

of information processing (such as perception) in terms of

their degree of stimulus-independence, recombinability and/

or encapsulation [15]. Such cognitive properties may be

especially important in generating flexible behaviour, as

more significant than the sheer amount of information an

organism is capable of processing is how that information is

packaged or encoded [16,17] and made accessible to other

cognitive processes. Not only do some coding formats make

it possible to process a greater total quantity of information,
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but they also allow for qualitatively different representational

forms—such as planning, concept-formation, causal reason-

ing, intentionality, mindreading, metacognition and episodic

memory—processes that may underwrite important types of

behavioural flexibility observed in the field and elicited in the

laboratory [6].

Much more could obviously be said about information

processing accounts of cognitive mechanisms standardly

identified by the comparative psychology community as com-

plex. For present purposes, we remain agnostic as to whether

any unifying theory of such mechanisms—and more particu-

larly, of what makes them comparably complex—can be

found. There are serious difficulties confronting attempts to

conceptualize and operationalize biological complexity in gen-

eral—difficulties that are only magnified in the cognitive realm.

Yet despite these manifest difficulties with complexity talk, this

paper retains the term because it does substantive theoretical

and methodological work in comparative cognition research.

As will be discussed in more detail shortly, it is precisely

because the cognitive abilities mentioned above are typically

regarded as relatively complex that they are treated as requir-

ing higher burdens of proof than supposedly simpler

hypotheses, particularly in the context of non-linguistic organ-

isms (including developing humans). When this paper refers to

‘cognitive complexity’, therefore, it merely intends to pick out

this intuitive usage. It remains neutral as to whether the cluster

of cognitive abilities typically identified as complex (i) falls

along a continuum of complexity or is structured by discrete,

scalar jumps, (ii) is theoretically unifiable or represents a natu-

ral kind class [6,18], and (iii) is underpinned by a notion of

complexity that is operationalizable in the cognitive case.

Indeed, it is scepticism about the last point that will motivate

our suggestion that the preference for simplicity be modified

or abandoned (§3).

Unlike cognition, which has a wide-ranging and dedi-

cated literature, far less has been written about the nature

of behaviour, and even less about behavioural flexibility.

One might initially question whether behaviour can fruitfully

be described in a-cognitive terms. That is, even if one heeds

our recommendation not to build complex cognitive mechan-

isms into the definition of behavioural flexibility, the problem

remains that many behaviours are commonly delineated in

reference to their underlying cognitive mechanisms. This is

true not only for intentional actions in adult humans, but

also for many non-human animal behaviours that are com-

monly described in loosely intentional terms. For example,

when describing behaviour, we often say that an animal

is ‘reaching for X’ rather than ‘extending a limb and touch-

ing X’. The prevalence of the former type of description of

animal behaviour, which appears to incorporate particular

cognitive mechanisms, is explicable in two ways—neither of

which poses a problem for our view that complex cognition

and behavioural flexibility should be definitionally distinct.

First, the former behavioural description may simply serve

as shorthand for the latter less economical one, in which

case the former description could be cashed out in purely

behavioural terms. Alternatively, the former behavioural

description may very well incorporate particular cognitive

mechanisms, but do so out of the general recognition

among animal behaviour scientists that scientific objectivity

no longer requires a behaviourist’s exclusive commitment

to observation-statements. What is crucial is not that behav-

iour be described in wholly behaviourist terms, but that the
specific cognitive mechanisms under investigation are not

incorporated into behavioural descriptions if the latter are

to serve as evidence for those mechanisms.

What, then, do we mean by ‘behavioural flexibility’? For

present purposes, behavioural flexibility shall be understood

as a distinct type of behavioural plasticity, which in turn is a

distinct type of phenotypic plasticity.2 Nearly all behaviours

are minimally plastic in the sense that they are produced in

response to particular stimuli, and these stimuli are only

sometimes present in the environment. For instance, male

fruit flies universally initiate a rigid sequence of courtship

behaviours only when they detect pheromones emitted by a

receptive female [20]. There is an important sense in which

an organism that can perform a half-dozen behaviours,

even if it does so rigidly in response to stimuli, is more plastic

or versatile than an organism that performs fewer rigid beha-

viours. If we conceive of cognition in information processing

terms, then we can already see the beginnings of a robust theor-

etical connection between cognition and behavioural plasticity.

However, only a subset of behaviours are properly plastic—

that is, governed by conditions of expression that allow the

behaviour to be modified in response to environmental

input, and only a subset of properly plastic behaviours are flex-
ible, or modifiable throughout the lifetime of the organism

based on experience.

In essence, then, behavioural flexibility is a special type of

behavioural plasticity in which the rules governing behaviour-

al expression, and thus the behaviours themselves, can be

modified in accordance with environmental input throughout

ontogeny [21].3 It is the alterability of the rules governing

the expression of a behaviour, more so than the fact of

environmental sensitivity per se, that allows organisms to

respond in robustly flexible ways to the vagaries of their

selective environment.4 This notion of behavioural flexibility

is broader than those occasionally found in the literature

(some of which are limited to, e.g. reversal learning),5 and

includes behavioural repertoires that are often elicited in

experiments to probe for complex cognitive abilities such as

vocal learning and causal reasoning.

Not all experiments designed to probe for complex cogni-

tion in animals appear to elicit flexible behaviour in the sense

defined above. For instance, mindreading and self-recognition

experiments do not seem to test for learning abilities at all.

Although some metacognition experiments do not test for

behaviours that exhibit learning in the course of the experiment,
they do test for capacities that are likely to have been learned

through complex interactions with the social and physical

world, and that derive from cognitive mechanisms causally

implicated in flexible behaviours, such as perception-indepen-

dent representations [24] and a sense of agency [25]. We may

therefore regard the behaviours elicited in these experiments

as flexible in an aetiological (diachronic) sense. Nevertheless,

this paper does not intend to establish necessary and sufficient

conditions for the presence of cognitive complexity, nor to pro-

vide an exhaustive account of complex cognition and its

behavioural correlates; rather, its less ambitious aim is to pro-

vide a useful organizing schematic for investigating the link

between cognition and flexible behaviour, which plays an

important evidential role in animal cognition research.

The conceptual decoupling of behavioural flexibility and

cognitive complexity allows the former to serve as meaning-

ful evidence of the latter. Yet this leads directly to another

obstacle that impedes an unproblematic inference from
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3. Underdetermination and the simplicity
programme

Some philosophers of science have suggested that the under-

determination problem is primarily a philosophical concern,

not one that is commonly borne out in the practice of science

[26]. And yet, instances of apparent underdetermination are

common in comparative cognition, with existing behavioural

data appearing to be equally well confirmed by multiple

incompatible cognitive explanations. For present purposes,

it is not necessary to assert that this underdetermination is

permanent or that it will remain unshaken by all possible

sources of experimental evidence. It is enough to show that

underdetermination exists relative to the actual evidence in

hand, that it is pervasive in the science, that it is recurrent

in the sense that equally well-confirmed alternatives are fre-

quently available, and that this undermines our justification

for believing that even our most well-confirmed hypotheses

are true (see [27]).

Consider a well-known example from primatology: the

case of chimpanzee mindreading. Chimpanzees are excellent

predictors of conspecifics’ behaviour, leading researchers to

wonder whether chimpanzees understand that others have

beliefs and desires (i.e. that they are capable of ‘mindreading’).

Decades of studies, however, have resulted in a stalemate:

while some interpret the experimental data as suggesting

that chimpanzees are mindreaders, others note that the data

are consistent with a putatively simpler ‘behaviour-reading’

explanation [28]. For example, according to Vonk & Povinelli

[28], chimpanzees are merely responding to shallow behav-

ioural cues without inferring mental states. Further, they

reason that the experimental data support both mindreading

and behaviour-reading hypotheses equally well, but that the

behaviour-reading hypothesis is simpler, and therefore

better. Philosophers reflecting on this stalemate have expressed

scepticism that it can be resolved empirically (e.g. [29]).

Some comparative cognition theorists reject the assertion

that both mindreading and behaviour-reading hypotheses are

on equal epistemic footing in chimpanzee cognition research.

For instance, Halina [30] argues that mindreading hypotheses

are well tested, whereas behaviour-reading hypotheses are

not actually probed by mindreading experiments. To represent

genuine threats to the mindreading hypothesis, behaviour-

reading hypotheses require independent sources of evidence;

and yet they tend to be offered up ad hoc and then placed on

equal or superior epistemic footing than the mindread-

ing alternative. Halina’s criticism is reminiscent of Gould &

Lewontin’s [31] classic critique of adaptationism, which tar-

geted several argument strategies attributed to the so-called

‘adaptationist programme’. These include (inter alia) the

tendency to readily replace one failed selectionist explana-

tion with another, to have an unwarrantedly low evidential

bar for accepting adaptationist explanations when compa-

red with non-adaptationist ones, and failing to consider

non-adaptationist alternatives at all.

Explanations that advert to lower-level cognitive mechan-

isms substitute for selectionist explanations in the critical

analogy: just as ‘the range of adaptive stories is as wide as

our minds are fertile, (and thus) new stories can always be
postulated’ [31, p. 153], so too can lower-level cognitive expla-

nations be invented for any behavioural datum. Likewise, just

as consistency with natural selection is an inadequate basis for

accepting adaptationist explanations, so too is consistency with

lower-level cognitive explanations an insufficient basis for

rejecting higher-cognitive ones. The key here, as in the evol-

utionary biological context, is to distinguish explanations

that are on strong epistemic footing from among the sizable

set of possible but less well-grounded explanations.

Nevertheless, there is one important element of Gould &

Lewontin’s critique of adaptationism that does not transfer to

the present context: whereas the adaptationist programme

was accused of ignoring non-selectionist explanations, lower-

cognitive explanations are designed specifically to deflate (if

not refute) higher cognitive ones by generating a situation of

underdetermination. This problem of underdetermination is

significantly exacerbated by a general preference for simpler

explanations in comparative cognition, which poses a further

methodological hurdle to establishing an evidential link

between flexible behaviours and complex cognitive mechan-

isms. By a ‘preference for simpler explanations’, we mean the

tendency in comparative cognition to reject higher-level cogni-

tive explanations simply because lower-level ones cannot be

ruled out [32]. In the context of the adaptationist programme

discussed above, the analogous practice would be to reject

any non-selectionist explanation no matter how well supported

unless and until all plausible selectionist explanations have

been excluded. In the ‘simplicity programme’ that is widely

(though not universally) embraced in comparative cognition,

putatively simpler hypotheses are treated as theoretical

defaults that experiments must be able to exclude before

more complex cognitive hypotheses can be accepted. In other

words, explanations positing putatively simpler cognitive

mechanisms should, all else being equal, be preferred over

explanations that posit putatively more complex ones—an

idea that is embraced in both comparative cognition [1,33]

and in the psychological sciences more broadly [34]. This

a priori preference for simplicity ‘resolves’ the problem of

underdetermination by offering a clear strategy for choosing

among empirically adequate hypotheses—one that places the

burden of proof on the supposedly more complex hypothesis.

In practice, however, this burden of proof is impossible to meet,

as deflationary cognitive hypotheses—like their selectionist

analogues—can rarely be ruled out definitively. Thus, the sim-

plicity programme appears to require an unreasonably high

standard of evidence for establishing complex cognitive expla-

nations, and an unwarrantedly low standard of evidence for

accepting putatively simpler ones.

What justifies the simplicity programme in comparative

cognition? Typically, the preference for simpler explanations

is justified by appealing to what is known as ‘Morgan’s

Canon’—a brief passage in a founding text of comparative

psychology by C. Lloyd Morgan, which states:
In no case may we interpret an action as the outcome of the exer-
cise of a higher psychical faculty, if it can be interpreted as
the outcome of the exercise of one which stands lower in the
psychological scale (1894: 53).
This textbook passage is frequently, though incorrectly, inter-

preted as a version of Occam’s Razor, holding that one ought

to prefer the simplest explanation consistent with the observed

behaviour, barring compelling evidence to the contrary.6

By advising experimenters to select the simplest hypothesis

as the ‘null’, the simplicity preference in effect elides the
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problem of underdetermination by shifting the burden

of proof onto explanations that postulate more complex

cognitive mechanisms.

It is far from clear that this is the right way of resolving

the underdetermination problem in comparative cognition,

however, given that the simplicity preference—and thus the

simplicity programme—appears to rest on shaky conceptual,

theoretical and empirical grounds [38,40–46]. Conceptually,

there is no such thing as simplicity simpliciter. Rather, different

scientific contexts call for different approaches to simplification

and, consequently, different justifications of those approaches.

Moreover, simplicity vis-à-vis explanation is very different

from simplicity vis-à-vis the entities referred to in those expla-

nations. The fact that a hypothesis is simple (on some

operational semantic metric) does not entail that the entities

that the hypothesis describes are also simple (on some oper-

ational ontological metric). The simplicity of semantic

structures (as measured, e.g. by description length or maxi-

mum compressibility as described in Kolmagorov complexity

theory) need not entail simplicity in the physical structures,

causes or mechanisms postulated by those explanations (as

measured, e.g. by the number of entities or entity types they

feature). Because there appear to be numerous, mutually irre-

ducible ways to simplify the world and our descriptions of it,

we cannot expect all forms of simplification to yield equally

desirable results from a methodological standpoint [46].

Thus, any broad-based preference for simplicity is likely to

be too coarse-grained to be of scientific use.

Theoretically, the operative assumption that biological out-

comes will tend to have simple rather than complex causes

seems particularly ill-suited for the biological world. If natural

selection is more like a historically constrained Rube Goldberg-

style tinkerer, rather than an elegant optimizer [47], then we

should expect functional complexity to be the norm and simpli-

city the exception at all levels of the biological hierarchy.

Models of functional gene regulatory networks, for example,

are typically daunting in their baroque mechanistic complex-

ity. In such cases, causal simplicity is, quite rightly, typically

not a key factor in model adjudication; in fact, the elegance of

biological models will often undermine their real-world appli-

cability [48]. Likewise, in studies of large-scale evolution,

‘stochastic’ models that postulate numerous complexly config-

ured causes have for decades served as the null hypothesis

against which so-called ‘deterministic’ models—those that

postulate a single cause or a few major causes—are tested

[49]. Although optimality models are commonly deployed in

evolutionary biology, they typically serve as idealizations

that allow us to measure the influence of non-selective forces

in evolution [50], rather than arising from a broad ontological

commitment to functional streamlining in nature. As animal

cognition is an evolutionary outcome, it is incumbent on the

defender of the simplicity programme to provide some empiri-

cal justification as to why we should treat cognitive systems

differently from other biological systems in this respect.7

How might such an empirical case proceed? One poten-

tial empirical justification for the simplicity preference

might appeal to the relative evolvability of simpler versus

more complex cognitive solutions. One form of this argu-

ment, which has rarely been made explicit, is what might

be called the ‘metabolic argument’. This holds that natural

selection will, ceteris paribus, tend to favour the most meta-

bolically frugal biological structures among those structures

that can realize the same (or a sufficiently similar) function;
further, because complex cognitive mechanisms are more

metabolically demanding than less complex ones (because

they necessitate more metabolically expensive neuroanato-

mical structures), we should err on the side of explanations

that advert to simpler cognitive mechanisms in cases of

underdetermination. Thus, the metabolic argument moves

from an ontological claim that natural selection will tend

to favour metabolically frugal structures among functio-

nally equivalent (or sufficiently similar) alternatives, to the

methodological claim that we should prefer a scientific meth-

odology that biases against findings of cognitive complexity

in circumstances of apparent underdetermination—which,

in effect, is what the simplicity programme in comparative

cognition is designed to do.

The metabolic argument demonstrates one way that

evolutionary theory could potentially inform methods in com-

parative cognition. The argument is problematic, however,

because it relies on claims about evolution in general—and

cognitive evolution in particular—that are either unwarranted

or underdetermined. At the most general biological level, it is

clear that fitness trade-offs associated with the evolution of

more energetic structures often favour metabolic increases.

Indeed, the history of life on Earth is characterized by a

robust trend toward increasingly energetic metabolisms,

structures and lifeways [52]. More to the point, we know that

metabolically costly brains have evolved independently in

a wide range of taxa and that these metabolically costly

structures have been retained in many of the taxa in which

they evolved; further, it is generally presumed that these

metabolically demanding neural structures subserve cognitive

functions. Thus, the selective trade-off between a metabolically

demanding substrate and the perceptual and cognitive gains

it affords is often a favourable one. It follows that simpler cog-

nitive solutions in many cases are not forthcoming because

either (i) they are not more metabolically efficient than complex

cognitive ones or (ii) they are more metabolically efficient

but are not functionally equivalent (or sufficiently similar)

alternatives to cognitively complex solutions. We suspect that

both of these factors play a role in the evolution of complex

cognitive mechanisms.

First, it is far from clear that increases in cognitive function

require increases in brain tissue and, correspondingly, increa-

ses in metabolic expenditure. Higher-cognitive solutions

may be achieved simply by repurposing relevant areas of the

brain for novel tasks, leaving the total neural metabolic

budget unchanged. Furthermore, some apparently simple

cognitive tasks, such as association, may require significant

computational and neurological power [53], while some

increases in informational capacity (especially qualitative

ones) may actually reduce per capita metabolic cost. Second,

even if cognitively simpler mechanisms were on average less

metabolically demanding than more complex ones, there is

no reason to suppose that simpler solutions will be functionally

equivalent to more complex ones—and if they are not function-

ally equivalent, then there is no basis for claiming that selection

would prefer simpler over complex cognitive mechanisms

in any given case. Although we can conceive of plausible

lower-cognitive explanations for many observed instances of

behavioural flexibility, this does not mean that the competing

complex and simple cognitive mechanisms that could account

for these instances of behavioural flexibility are themselves

functionally equivalent. This is because each competing cogni-

tive mechanism will be associated with a range of behaviours
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that impact on fitness, and these fitness impact ranges may not

be equivalent. In other words, a behaviour witnessed in an iso-

lated experimental setting may be part of a wide repertoire of

behaviours underwritten by a complex cognitive mechanism,

and taken as a whole this behavioural output range may have

a higher relative fitness value than that produced by a compar-

ably simpler cognitive mechanism. Therefore, the fact that a

simpler cognitive mechanism can explain an isolated case of be-

havioural flexibility as competently as a more complex

cognitive mechanism does not mean that, from an evolutionary

standpoint, the two solutions are functionally equivalent—and

thus there is no sound evolutionary basis for preferring the sim-

pler one. In sum, there are simply too many unanswered

questions and too many unfounded evolutionary assumptions

here for a metabolic rationale to support a robust, context-insen-

sitive, course-grained methodological bias against explanations

that advert to more complex cognitive mechanisms.

However, the metabolic argument is not the only evolutio-

nary argument that could support the simplicity programme.

Another, which might be called ‘the fast and the frugal’ argu-

ment, focuses on the comparative performance advantages of

simple over more complex forms of cognition irrespective of

their metabolic requirements. For example, simple strategies

have been shown to outperform more complex cognitive strat-

egies in decision-making and problem-solving contexts in

terms of both speed and accuracy [54]. These fast and frugal

strategies work when the environment is structured such that

it can be easily exploited for the rapid retrieval of ecologically

relevant information. This is the case, for example, when the

environment contains stable and relatively simple patterns

that organisms are capable of detecting and which support

simple heuristics; it may also be the case in unpredictable,

noisy and/or complexly configured environments (such as

stock markets) in which tracking a small set of salient cues

(such as the behaviour of well-known stocks) may be a superior

strategy to complex optimizing models that search for patterns

among all available information [55]. If fast and frugal

strategies are adaptive, then at least when environments are

appropriately structured, we should expect organisms to

evolve such cognitive shortcuts, rather than investing in

slower and perhaps less reliable general-purpose mechanisms.

Taken to its methodological conclusion, the fast and the frugal

argument asserts that scientists ought to privilege explanations

that advert to simple heuristics (such as feature extraction) over

those that postulate more complex cognitive mechanisms

whenever experimental evidence supports both explana-

tions equally well. This, in turn, would allow the simplicity

preference to act as a rational tie-breaker in cases of underdeter-

mination, and provide a strong corrective even in cases where

the evidence in favour of a more complex cognitive mechanism

begins to mount.

As with the metabolic argument, the fast and the frugal

argument cannot justify a blanket preference for simpler

explanations. First, the argument only holds for lineages

whose environment is appropriately informationally struc-

tured; at present, however, we do not know how pervasive

such informational ecologies are—or how applicable some

of the human-focused cases, such as the stock market, are

to the ecologies of other organisms. Thus, our current state

of knowledge does not support a sweeping preference for

simpler cognitive explanations by way of the fast and the

frugal rationale. Second, even if an animal tends to make

use of simple heuristics in some cases, it may still be capable
of switching to a more cumbersome cognitive strategy that it

keeps in reserve for situations in which simple heuristics fail

or are silent. For instance, while a student may not typically

reason using predicate logic, she may switch to logical

reasoning when faced with writing a philosophy paper.

Similarly, a rat may toggle between simple rules and

metacognitive strategies, or a bee may toggle between

feature extraction and template matching. In sum, while it

may be reasonable to say that ceteris paribus, natural selec-

tion will tend to favour simpler cognitive mechanisms, so

many evolutionary, ecological and developmental assump-

tions are packed into the ‘ceteris paribus’ clause that the

statement is, if not vacuous, then far too course-grained to

license an evidential burden of proof in any given case.

Not all empirical justifications of the simplicity preference

will appeal to evolutionary considerations, however. It might

be argued, for example, that simpler explanations (e.g. behav-

iour reading) are on stronger epistemic grounds than their

more complex alternatives (e.g. mindreading) because we

already know that the animals in question have the simpler

ability but we are not certain that they have the more complex

one. This line of reasoning is, in fact, circular: it draws upon

an evidence base that was itself established by methods that

may have privileged the simpler hypothesis [38]. In other

words, because many experiments have followed the simpli-

city programme, much of the evidence for cognitive abilities

may be skewed toward simpler explanations, and this

possibility should weaken our confidence in the simpler

alternative. In any case, this rationale turns not on comparative

simplicity, but on pre-existing evidence that some explanato-

rily adequate capacity is present in a given lineage while the

existence of another explanatorily adequate capacity is less cer-

tain. Thus, on this empirical rationale, simplicity does none of

the adjudicatory work.

For all these reasons, a strong a priori simplicity preference

is not a preferable solution to the underdetermination

problem. As Elliott Sober [56] and Simon Fitzpatrick [42,57]

have argued, the only legitimate tie-breaker when experimen-

tal data cannot adjudicate among competing hypotheses is

more evidence. The burden of proof should favour not the

simplest hypothesis, but the best evidenced hypothesis.

This can be accomplished by modifying the null hypothesis

so as to build into it probability-conferring evidence [58].

Such evidence would include not only prior experimental

evidence but also evolutionary, phylogenetic, ecological,

neurobiological, developmental and behavioural data about

the species in question. Thus, a more promising solution to

the underdetermination problem in comparative cognition—

and the most plausible way of establishing an evidential link

between flexible behaviour and complex cognition—involves

looking to evidence outside of the experimental context. Put

differently, it entails shifting our focus from the ‘context of dis-

covery’, in which external evidence has no power to adjudicate

among hypotheses, to the ‘context of justification’, in which all

relevant bits of evidence are factored into the null hypothesis

(or prior probability) that bears on a given conclusion. In

essence, comparative cognition would benefit by diversifying

its methodology, drawing upon disparate streams of evidence,

and correcting for a priori biases toward simplicity that have

biased experimental work against findings of complex cogni-

tion and thus shaped all-things-considered judgements about

the nature of cognition and its phylogenetic distribution.

What would this extra-experimental evidence base look like,
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in what ways can it inform experimental practice, and how

might it substantiate a link between behavioural flexibility

and complex cognition? Sketching a preliminary answer to

this three-part question is the task of the next section.
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4. Beyond the experiment: an adaptive triadic
model of cognitive-behavioural evolution

Our aim in this section is to outline a model that demonstrates

how evidence in evolutionary biology can support the infer-

ence from behavioural flexibility to cognitive complexity,

and thereby bear on theory adjudication in comparative

cognition science. A broad-scale picture of macroevolution

suggests that the emergence of increasingly flexible behaviour

in animals is closely tied to the evolution of complex infor-

mation processing mechanisms realized by nervous systems.

On the most plausible reconstructions of metazoan evolution,

cognitive complexity has arisen independently in groups as

developmentally diverse as vertebrates, molluscs and arthro-

pods [59]—clades that boast complex image-forming sensory

capabilities and central nervous system functions that support

rich sensorimotor information flows, which in turn under-

write the most rapid, sophisticated and flexible behavioural

repertoires in the living world.

The theoretical foundations of this non-accidental regu-

larity can be found in Godfrey-Smith’s [21] ‘environmental

complexity thesis’, which holds that the evolutionary function

of cognition is to enable organisms to interact in fitness-enhan-

cing ways with a heterogeneous environment (see also [60]).8

Cognitive processes do this, on Godfrey-Smith’s account, by

exploiting ecologically relevant information. Cognition only

gets its purchase, therefore, when there is both heterogeneity

in the environment and reliable cues of ecologically relevant

variations. Despite its theoretical plausibility, the environ-

mental complexity thesis is difficult to test, in part because

the concept of heterogeneity is difficult to define and opera-

tionalize. As Godfrey-Smith concedes, it is unlikely that we

will be able to articulate a general definition of environmental

heterogeneity that is both testable and permits cross-taxa

comparisons. For example, we may be able to compare the

relative environmental heterogeneity for honeybees to that

of mosquitos, because both are flying insects, even if we

cannot do so between more distantly related species such

as monitor lizards and hummingbirds. In this respect, the

environmental complexity thesis is akin to the principle of

natural selection: an organizing schematic that helps to

unify (and thereby explain) a wide range of cases, but one

that is not testable until lineage-specific ecological, develop-

mental and evolutionary parameters are filled in [8]. For

present purposes, we will rely on the following provisional

understanding of environmental heterogeneity:
Environment A of evolving lineage X is more heterogeneous than
environment B of evolving lineage Y only if A contains more
fitness-relevant informational cues in relation to X (given the
developmental parameters of X) than B does in relation to Y
(given the developmental parameters of Y).
Here, ‘fitness-relevant informational cues’ refers to informa-

tional cues that would, if detected and acted upon, have

some net statistical effect on organismic fitness. For example,

an animal’s social environment is more heterogeneous the

more types of calls, postures and conspecific interactions it

needs to keep track of. Fitness-relevant informational
cues are indexed to the evolutionary developmental par-

ameters of particular lineages to acknowledge a degree of

organism–environment codetermination, wherein the orga-

nismic features of lineages actively shape their selective

environments [8,62].

On the adaptive model of cognitive-behavioural evolution

that we propose, complex cognitive mechanisms will fail to

evolve, or, if they already exist, begin to degrade due to the

relaxation of stabilizing selection, in environments where

either: (i) there are few fitness-relevant informational cues,

(ii) there are many fitness-relevant informational cues, but

cheaper solutions (such as camouflage or simple cogni-

tive heuristics) are readily accessible, or (iii) there are many

fitness-relevant informational cues but some evolvability con-

straint (resulting, e.g. from the lack of a nervous or motor

system, a prohibitive trade-off, or a complexly configured/

dynamic informational environment that makes it difficult to

extract relevant cues) prevents the requisite phenotypic vari-

ations from arising. Conversely, we may expect that, ceteris

paribus, behavioural flexibility will arise when animal lifeways

incentivize the detection and processing of a wide range

of informational cues whose natures and sources vary substan-

tially over space and time. For instance, if a generalist predator

is confronted with prey types that vary widely over time and

geographical range, they will, barring constraints, tend to

develop flexible strategies of predation, which will sometimes

be underwritten by more complex cognitive mechanisms. By

contrast, lineages that utilize only one or a few stable environ-

mental resources—such as many grazing herbivores, be they

arthropods or vertebrates—can be expected to process compar-

ably less information about their environment, and as a result

will tend to exhibit more rigid behaviours and comparably

simple neural machinery (e.g. grasshoppers, sauropods,

bovids, koalas, etc.).

On Godfrey-Smith’s view, the environmental complexity

thesis serves as a model that can be applied on a case-

by-case basis and, if it provides a successful account of the

evolution of cognition in numerous instances, then it may

be generalized to a still broader range of cases. We propose

something similar in working toward an account of the

wider evidential context in which competing hypotheses in

comparative cognition may be adjudicated. According

to what we will call the ‘adaptive triadic model’ of

cognitive-behavioural evolution (henceforth ‘ATM’), three

elements—behavioural flexibility, environmental heterogen-

eity and the neuroanatomical structures associated with

increasingly sophisticated information processing—serve as

conceptually independent and mutually reinforcing sources

of evidence that indicate the presence of cognitive mechan-

isms generally regarded as complex. This information can

then be incorporated into the null hypothesis or prior prob-

abilities against which experimental data are weighed.

When taken in isolation, observations of behavioural flexi-

bility have limited evidentiary power; once other

components of the ATM are included, however, the weight

of behavioural flexibility as a source of evidence for cognitive

complexity increases substantially. The effect of incorporating

these other sources of evidence is not to lighten the evidential

load that behavioural flexibility is expected to bear, but rather

to strengthen it. In other words, the ability of behavioural

flexibility to serve as strong evidence of complex cognition

is context-sensitive, and this context is provided by other

components of the ATM. Behavioural flexibility continues
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to play a special evidential role, however, as inferences of

cognitive complexity will generally be untenable if they are

not supported by any behavioural observations whatsoever

(though neurological and ecological data could provide

grounds for further behavioural investigation).

While elements of the ATM serve as conceptually indepen-

dent sources of evidence for cognitive complexity, they are not

causally independent of one another—indeed, it is precisely in

virtue of their evolutionary casual interdependence that they

have predictive power. More precisely, what gives the ATM

traction is the idea that the convergent evolution of trait–

environment pairings in phylogenetically disparate groups of

organisms can constitute ‘natural experiments’ [63] that sup-

port the existence of non-accidental (or law-like) regularities,

which in turn can be used to inform work in comparative cog-

nition. Convergent evolution is considered among the

strongest evidence for adaptive hypotheses [64]: for instance,

the fact that both ichthyosaurs (Mesozoic marine reptiles)

and dolphins independently evolved dorsal and tail fins in a

fully aquatic environment strongly suggests that these struc-

tures are adaptive and that they have similar evolutionary

functions in each case. Currie [65,66] provides a helpful sche-

matic for such an inference, according to which a known

pattern of convergence enables us to project a certain trait com-

bination observed in a ‘model’ lineage onto a ‘target’ lineage

that is known to exhibit some (but not all) of the traits in the

model cluster. What allows for this projectibility, Currie

suggests, depends on the relation between the model and

target lineages. In the case of homology (ancestral similarity)

relations, trait inferences are justified by the reliable inheritance

of developmentally interconnected characters: if certain com-

plex cognitive mechanisms are shown to be present in one

lineage, then they may be inferred to exist in a closely related

lineage, unless additional evidence suggests otherwise. In the

case of convergence, trait inferences are justified by a biological

regularity caused by a shared selection regime or other

common forces that are ‘external’ to the lineages in question.

Given this inferential schematic, convergent regularities

enable us to infer certain traits on the basis of particular selective

environments, certain selective environments from the presence

of particular traits, and certain traits from the existence of other

traits in a non-accidental trait cluster given a particular selective

environment. For instance, say we know that dorsal fins and tail

fins form an iterated (convergent) trait cluster in connection

with fully aquatic vertebrate lifestyles, such that we can

expect to find dorsal fins in a new species of marine vertebrate

if we know that it has tail fins. The ATM is premised on a simi-

larly robust convergent regularity, in this case one that includes

broadly defined behavioural traits, their proximate cognitive

causes, the neural signature of these proximate causes described

at an appropriate grain of resolution,9 and a heterogeneous

selective environment that poses design problems to which

behavioural flexibility is a solution.

The fact that elements of the ATM are historically causally

interdependent does not mean that they are conceptually

intertwined in a way that undermines their ability to support

inferences concerning synchronic cognitive capacities. For

instance, how heterogeneous an environment is will be

determined in part by the sensory modalities, cognitive

capacities and neurological structures of the lineage in ques-

tion. As lineages evolve in cognitive (including perceptual)

sophistication, so too does the extent and type of envi-

ronmental heterogeneity they encounter. Acknowledging
that the developmental parameters of lineages shape their

selective environments does not pose conceptual or methodo-

logical problems for assessing environmental heterogeneity

[8] or for allowing neurological and ecological data to serve

as evidence of cognitive complexity by way of the ATM clus-

ter. In fact, elements of the ATM are likely to evolve in

feedback with one another: the emergence of novel cognitive

abilities may open up ecological opportunities that increase

the total number of fitness-relevant informational cues,

which in turn drive the evolution of more sophisticated

neural structures and cognitive mechanisms in ratchet-like

fashion (see [43]).

The more the ATM regularity holds across distant animal

groups with disparate developmental plans, the less likely it

is to be the product of chance or quirky features of particular

groups, and the greater the likelihood that the traits cluster

together non-accidentally due to forces or constraints that are

external to the converging lineages. Unlike projections based

on homology relations, which are generally limited to closely

related taxa, the ATM permits inferences across large expanses

of the tree of life. This is particularly important in the case of

comparative cognition, because centralized or otherwise mas-

sively augmented information processing centres have arisen

independently numerous times in protostomes and deuteros-

tomes, and thus any regularities that subsume these cases

cannot be grounded in (or solely in) homology. Although

these iterated outcomes are produced in part by conserved

developmental resources, such as deep homologues, cell

types and/or patterning mechanisms that were likely present

in the ancestor of Bilateria, the neural proliferation and much

of the architectural organization that characterizes these

events is convergent [69].

If the ATM is correct, then we should find evidence of

the hypothesized trait–environment cluster across phylo-

genetically distant linages. Indeed, there is a growing body of

evidence linking the enlargement and/or increase in neuron

density of brain regions that are causally associated with infor-

mational integration in mammals (the cortex including the

neocortex and striatum), birds (the telencephalon including

the neostriatum and hyperstriatum ventrale), octopuses

(the vertical lobe) and insects (the mushroom bodies) to

problem-solving abilities that evolved in the context of hetero-

geneous selective environments (table 1) [4,87,88]. Further

phylogenetically broad evidence, gathered in table 1, supports

these findings.

An additional source of evidence for the ATM comes from a

similar regularity in ontogeny: cases where complex cognition,

flexible behaviour and neuroanatomical complexification

correlate with fluctuations in environmental heterogeneity

within the lifetime of an organism. For instance, London taxi

drivers who must navigate a spatially heterogeneous environ-

ment enjoy better-than-average spatial navigation abilities, and

have been found to have a correspondingly larger posterior

hippocampus relative to average humans [89] (for other

examples see [90–102]). Although this pattern is ontogenetic,

it supports the ATM for two reasons. First, it shows that hetero-

geneous environments call for more flexible behaviours and

that these, in turn, require additional neuronal growth. If this

link is present in ontogeny, we can expect natural selection to

also exploit the link over evolutionary time. Second, the mech-

anisms through which the ATM is established at evolutionary

scales could exploit some of these ontogenetic effects.

This could occur, for example, through a process of ‘genetic



Table 1. Support for the adaptive triadic model from examples where similar data were collected on closely related species. Species that demonstrate better
problem-solving abilities had more opportunities to learn from previous experience ( flexibility; italics) through a more heterogeneous environment (bold
italics), and show enlargements in causally related brain structures (bold).

taxa species description of species comparison

mammal Pan troglodytes, Papio anubis chimpanzees are better at solving spatial and tool use tasks, have a larger

neocortex relative to their total brain size, and their arboreal lifestyle

results in a more heterogeneous environment than ground-dwelling olive

baboons [70 – 72]

mammal Crocuta crocuta, Parahyaena brunnea, Hyaena hyaena,

Proteles cristata

spotted hyenas can solve a puzzle box that striped hyenas cannot, and they

have the most complex social system, hunt the largest prey, and

have the largest anterior cerebrum volume ( part of the frontal cortex)

[73,74]

bird Molothrus bonariensis, M. rufoaxillaris, M. badius brood parasitic screaming and shiny cowbirds have larger hippocampuses

than non-brood parasitic bay-winged cowbirds, probably because brood

parasites need better spatial memory to remember where host nests

are and when they might be ready for parasitic eggs to be laid.

Female shiny cowbirds had larger hippocampuses than male shiny

cowbirds, probably because only the female searches for nests in this

species. There were no sex differences in hippocampuses or search

behaviour in screaming cowbirds [75]

bird Ailuroedus crassirostris, Scenopoeetes dentirostris,

Prionodura newtonia, Ptilonorhynchus violaceus,

Chlamydera nuchalis

bower building species had larger telencephalons (minus the

hippocampus) than the non-bower building catbird. Among bower

building species, bower complexity increased with cerebellum size

(responsible for motor learning [76]). Catbirds feed their offspring fruit

(mostly figs) rather than insects as the other species do, and the fruits

the bower building species rely on are patchily distributed in the non-

breeding season [77]

fish Bathygobius cocosensis, B. krefftii, Favonigobius

lentiginosus, Istigobius hoesei

rock dwelling gobies (Cocos frillgoby and Krefft’s goby) learned a spatial

task faster, made fewer errors [78], and have larger telencephalons

[79] than sand-dwelling gobies (eastern long-finned goby and Hoese’s

sandgoby)

fish Labroides dimidiatus, compared with 24 other species

in the same order

the cleaner wrasse fish engages in complex social interactions driven by

repeat interactions with the same clients (fish that the cleaner wrasse

clean), and has one of the largest diencephalons (one of the brain

regions responsible for social decision-making) compared with 24 other

species in the order Perciformes [80,81])

insect Apis melifera, Bombus impatiens bumblebees originated in the temperate latitudes where flowers are more

patchily dispersed than in the tropics where honeybees originated.

Bumblebees socially learn about nectar robbing and can adaptively

reverse a previously learned preference, while honeybees do neither [82].

Bumblebees have larger relative mushroom bodies than honeybees

[83]

cephalopod Nautilus pompilius, octopus, cuttlefish octopus and cuttlefish have excellent spatial navigation abilities, short and

long-term memory in associative learning tasks, their brains have

vertical lobes (where learning and memory are processed), and they

are highly mobile and pursue mobile, patchily distributed prey when

compared with the nautilus which has poor long-term memory, lacks

vertical lobes, and forages by scavenging [84 – 86]
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assimilation’ whereby plastic phenotypic variation becomes

environmentally canalized so that it comes to be produced

without the environmental stimulus.

If the ATM is borne out empirically, then behavioural flexi-

bility could serve as evidence of cognitive complexity for

lineages that evolved in heterogeneous selective environments

and exhibit relevant neural structural variations. The ATM

could also justify treating a cognitively complex hypothesis

as the null against which putatively simpler cognitive expla-

nations bear the burden of proof. By contrast, where critical

traits in the cluster are lacking—such as the relevant neuroana-

tomical correlates, environmental heterogeneity or behavioural

flexibility—inferences to or methodological biases in favour

of cognitive complexity will be on shakier grounds. In con-

junction with inferentially rich homology data [103], the

ATM offers a promising source of evidence beyond the labor-

atory that can inform methods and theory adjudication in

comparative cognition research.

There is a potentially important disanalogy, however,

between the evidential schematic presented by Currie [66]

and the kind of inference-making contemplated here. In Cur-

rie’s model of inference, observed phenotypic traits of a model

lineage are projected onto a target lineage on the basis of their

homologous or convergent relations to the target. By contrast,

the present case involves traits—cognitive mechanisms—that

have never been directly observed in any animal lineage.

Thus, we are projecting an unobservable trait inferred in a

model lineage onto a target lineage. This is appropriate, how-

ever, because the projectibility of a given trait in any trait

cluster–environment regularity hinges not on direct observabil-

ity of the trait, but rather on our epistemic warrant for believing

that the trait exists in model lineages. The fact that cognitive

sophistication is not directly observable need not be a problem

for our model, so long as cognitive complexity has been reliably

inferred in a sufficiently large number of cases.

Another concern may be that the ATM is viciously circular

insofar as each source of evidence lends independent weight to

the others. How can trait X be evidence of trait Y, Y be evidence

of trait Z, and Z be evidence of X, without circularity? The

answer is simple: what grounds inferences such as ‘If X, then

(probably) Y’ where X and Y are non-accidentally clustering

traits is that they both stem from a common cause. In some

cases, this common cause is inheritance from a common ances-

tor. In the case of the ATM, the common cause is selection in a

broadly common ecological regime, along with structural and

physiological constraints on the ways that complex cognitive

solutions can be realized [69,104]. For the same reason, the

inference ‘If X, Y and Z then (probably) environment E’ may

be justified where E is a common cause of X, Y and Z.

There are two additional circularity worries that are not dis-

patched by the above common cause argument. The first is that

the ATM may be used to generate evidence in its own favour,

leading to a circularity problem analogous to that of the simpli-

city programme (§3), wherein the results of a biased method

are used to justify the method’s bias. The worry is that if

future research employs the ATM in order to identify complex

cognition, then it will bias findings in favour of cognitive com-

plexity, which could then illicitly be used to bolster the ATM

regularity. However, the ATM does not bias research in

favour of complex cognition attributions; to the contrary, it

can serve as evidence both for and against findings of complex

cognitive abilities on a case by case basis, depending on which

features of the cluster are present (or absent). For instance,
where flexible behaviour is found in the absence of a hetero-

geneous environment and relevant neural underpinnings, the

ATM cautions against hasty attributions of complex cognition.

The model therefore does not import a context-insensitive bias

in favour of cognitive complexity in the way that the simplicity

programme does for simpler cognitive mechanisms. Another

circularity worry is that findings of cognitive complexity

involve inferences to unobservable entities, and these unobser-

vables are not directly supported by the ATM, as the latter

only licenses inferences from one observable feature of the

cluster to another. This concern can be put to rest as well by

noting that the evidence drawn upon in support of the ATM,

which is enough to get the model off the ground, is derived

not from ATM-licensed inferences, but from experimental

findings that were arrived at in an epistemic environment

that was, methodologically speaking, quite hostile to find-

ings of complex cognition. Thus, support for the ATM does

not come from the ATM itself, and hence the model is not

problematically circular.

One might further query whether an evolutionary account

like the ATM, which identifies an aetiological regularity, sits at

the wrong level of explanation when it comes to identifying

the proximate mechanisms at work in animal cognition. It is

true that if we had a full understanding of the synchronic

causal structure of cognition and could reliably infer this struc-

ture from neural anatomy and/or behaviour, we would have

no need to draw upon diachronic information provided by

evolutionary regularities like the ATM. But such an under-

standing, if attainable, lies well beyond the horizon of our

present knowledge. Disciplines working under conditions of

substantially incomplete information—which is the case with

comparative cognition/neuroscience as much as it is with

historical sciences like palaeontology—should engage in

what Currie [105] calls ‘methodological omnivory’. This entails

making use of all epistemic resources at our disposal to develop

theories about phenomena that are not directly observable. In

the case of comparative cognition, methodological omnivory

involves looking beyond the epistemic confines of behavioural

experiment, and drawing on evolutionary concepts and

methods to make inferences, inform hypothesis testing, adjudi-

cate theories and delineate the functions of brain structures.

This is precisely what the ATM is designed to do.

While the preliminary evidence in table 1 supports the

ATM, there are also cases that appear to contradict it. For

instance, the giant panda enjoys a monotonous foraging

ecology that requires relatively little information processing,

suggesting that panda brains should be proportionally small

and simple; yet, the panda boasts a larger than predicted

brain size for its body size [106]. Such cases may present as

counterexamples to the ATM until one realizes that (i) the

ATM describes only statistical, not absolute, regularities,

(ii) some putative counterexamples, on closer inspection, turn

out to be consistent with the ATM, and (iii) the ATM obtains

at courser grains of phylogenetic and neuroanatomical resol-

ution and may break down at finer grains because it becomes

swamped by historical factors (such as phylogenetic inertia,

as discussed below).

The first point is that, as with other postulated mechanisms

and regularities in evolutionary biology, the ATM is a statistical

thesis rather than an invariant, exceptionless law—and thus it

is not refuted by a small number of counterexamples. The key

question is not one of existence but of relative significance [47].

The second point is that some glaring counterexamples to



Box 1. Case example. Hunting behaviour of the Portia jumping spider.

Goal: Suppose that we wish to understand how Portia fimbriata succeeds in hunting a larger web-building spider, Zosis genicularis.
Selecting a null hypothesis: We must first select a ‘contextual null’ hypothesis—i.e. one that draws on background theoretical

and empirical knowledge [58,115]. This requires looking beyond controlled experimental data to consider what the ATM pre-

dicts in the case of Portia. In this case, we know that jumping and wolf spiders have the largest supraesophageal ganglions

(where learning and memory occur) of the arachnids ([116] in [117]), and that they operate in a heterogeneous environment

because they primarily hunt other spiders, which have diverse behavioural routines and are patchily distributed. This gives

us reason to expect them to exhibit behavioural flexibility underwritten by complex cognitive abilities. We also know that jump-

ing spiders have excellent vision compared to other spiders [118] and that Portia is the most versatile spider genus in terms of its

predatory behaviour: it hunts in the open, makes prey-capture webs, and, unique among spiders, it can use others’ webs to hunt

spider prey [119]. We also know something about the predatory behaviour of P. fimbriata: namely, that it waits until Z. genicularis
is busy wrapping up an insect prey before moving across the web to attack it [118]. When Z. genicularis is wrapping its prey, it is

less responsive to external movements on its web as well as to tactile stimulation, and P. fimbriata capitalizes on this unrespon-

siveness. Using vision to detect when Z. genicularis is wrapping prey, it times its approach with the prey wrapping behaviour,

attacking the Z. genicularis when it is most vulnerable [118].

Null hypothesis and burden of proof: The traditional null hypothesis is insensitive to background evolutionary and ecological

information and recommends selecting the simplest plausible hypothesis as the default. Here, this may mean assuming that

Z. genicularis prey wrapping behaviour cues P. fimbriata to move (approach and attack) and that the association between prey

wrapping behaviour and walking is nothing more than simple cue-recognition. However, this choice of null ignores predictions

made by the ATM. Instead, we may propose a contextual null hypothesis, on which P. fimbriata tracks not simple cues but the atten-

tional states of Z. genicularis, allowing it to time its movements with prey wrapping behaviour. Knowing when Z. genicularis is

distracted would allow P. fimbriata to update its movement behaviour flexibly (e.g. detect and predict when the prey wrapping

behaviour will finish and switch tactics if prey wrapping ends when P. fimbriata is in the middle of the web) and in different

contexts (e.g. not only during prey wrapping behaviour). Because there is reason to suspect relatively complex forms of cognition

in P. fimbriata, the contextual null hypothesis shifts the burden of proof onto the ‘simpler’ explanations, which may posit innate

rules or learned behaviours that do not involve tracking attentional states of their prey.

Testing the contextual null hypothesis: The rationale behind selecting a contextual null hypothesis is that it is the best evidenced,

and hence most likely to be true. For this reason, it is unnecessary to rule out alternatives to the contextual null even when these

alternatives are simpler, though it does of course remain necessary to put the hypothesis to experimental test. In our example,

one would need to test whether it is simply the onset and end of prey wrapping movements that initiate and terminate P. fimbriata
movements. If initiation and termination of walking and prey wrapping are coordinated significantly more than expected by the

contextual null, then this should decrease our confidence in the truth of the contextual null. On the other hand, if initiation and

termination events are not significantly coordinated, then the contextual null hypothesis should be retained.

Simplicity and the contextual null: Although the contextual null hypothesis for the P. fimbriata in this example is arguably

more complex than the traditional null hypothesis, the ATM may have issued a different recommendation had the back-

ground information been different. For instance, if P. fimbriata had been known to inhabit a homogeneous environment

and had relatively small supraesophageal ganglions, the ATM would have recommended a simpler hypothesis, such as

cue-recognition, as the null.
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the ATM turn out to support it. Take, for instance, the social

brain hypothesis [107], which predicts that heterogeneous

social structures tend to lead to evolutionary increases in

brain size that underwrite behavioural flexibility, which

enables organisms to navigate their complex, variable social

landscapes. Although there is empirical support for this

hypothesis,10 there are also apparent counter-examples.

Consider the surprising finding that highly social ants and

bees are no more encephalized than their solitary wasp ances-

tors [108]. We can infer from phylogenetic and fossil data that

the markedly encephalized mushroom bodies of hymenop-

tera evolved many millions of years prior to the emergence

of eusociality in these groups [109]; similar patterns are

seen in the evolution of eusocial termites, which exhibit

significant reductions in brain complexity as compared to

their asocial, generalist-foraging cockroach ancestors [110].

These findings seem to cut against the social brain hypothesis

and by implication the ATM, until one realizes two things.

First, encephalized mushroom bodies in hymenopterans

arose in central-place foraging parasitoid wasps whose

heterogeneous ecology required greatly expanded spatial
memory and learning capacities—enhanced information-

processing capacities that may have been subsequently

coopted for the complexities of eusocial living and, as a

result, did not require additional encephalization. Second,

the evolution of highly specialized eusocial insect colonies

reflects the emergence of a new evolutionary individual,

which in some cases will entail reduced ecological heterogen-

eity for members of specialized castes and, thus, not result in

an increase in neural architecture [111]. Indeed, the evolution

of individuality is characterized by the specialization of parts

within the individual (via, e.g. epigenetic modification),

which results in a reduction of functional complexity within

those parts because many functions can now be offloaded

onto the larger collective [112]. So what looks initially like

an exception to the ATM can in fact be accommodated by

the model.

The third point is that other apparent exceptions to the

ATM can be explained by ‘phyletic inertia’, or constraints

on future evolutionary directions imposed by earlier body

plan adaptations [31]. For example, the panda’s anomalously

large brain size (mentioned above) is probably due to the
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evolutionary recentness with which the panda—a clade within

Ursidae—adopted its derived, ecologically homogeneous life-

style. We might expect a similar anomalous pattern for other

secondarily herbivorous clades, such as therizinosaur thero-

pod dinosaurs and the jumping spider Bagheera kiplingi. This

example illustrates another way in which diachronic evolution-

ary theory can help inform synchronic understandings of

animal cognition: the panda’s homogeneous environment,

coupled with the principle of phyletic inertia, allows us to pre-

dict that the giant panda may not be utilizing its large brain in

the same way its ancestors did, even if some neural (and per-

haps cognitive) vestiges of that evolutionary history remain

due to homology. Thus, neurobiological evidence alone, at

least in anything approaching its current grain of resolution,

does not provide high powered predictions of the extant cogni-

tive abilities of clades—we need to supplement these data with

aetiological and ecological information.

Another concern about the model proposed here is that

it is too abstract, or the regularity it describes too course-

grained, to inform any specific cases in comparative

cognition. It is true that the ATM does not, on its own

accord, provide evidence for the presence of particular cogni-

tive mechanisms. Nor does it predict precisely which sorts of

flexible behaviours were selected for in any given case.

Although the selective pressures underlying the convergent

evolution of neural circuits that subserve specialized sensory

functions may readily be identified, it is difficult to determine

the selective causes of convergent elaborations of neuro-

anatomy that could subserve functions for complex

cognition. However, this is not the evidential use to which

the model is intended to be put. Rather, the ATM merely

licenses the inference that some complex cognitive mechan-

isms have evolved; this then supports, over rival simpler

cognitive explanations, the complex cognitive mechanism

that best explains the behavioural data in any given case,

which then informs the choice of a null hypothesis.

Finally, one might worry that too little is known about com-

parative neuroanatomy to make any bold claims about the

physical substrates of cognitive complexity. We agree that

one must be cautious when drawing on apparent neuroanato-

mical analogies, as data are indeed sparse for many species and

the means of mapping cognition onto brains is notoriously

difficult.11 However, the ATM will hopefully stimulate

further research and is open to adjustments in its neuroanato-

mical parameters as novel data are incorporated and concepts

and methods are refined. Where enough is known about the

organism in question, the ATM may aid experimental work

in comparative cognition by informing the choice of an

appropriate null hypothesis, as illustrated in box 1.
5. Conclusion
The convergent coevolution of flexible behaviours and

higher brain architectures—and perhaps similar cognitive mech-

anisms—in distant phyla in response to broadly similar selection

regimes, suggests that there may be a limited number of ways

that nervous systems can be configured so as to produce flexible

behaviour as a means for coping with heterogeneous, informa-

tionally demanding selective environments [104]. If the ATM

proves to be robust, then it may serve as a theoretical buttress

for the common and consequential assumption that flexible

behaviour is evidence of complex cognition, while helping to
overcome underdetermination problems and a priori simplicity

preferences in comparative cognition in a way that is conducive

to knowledge production. Establishing the presence of complex

cognitive mechanisms in phylogenetically diverse lineages

requires that we look beyond controlled experiment—and

even beyond behavioural data—to draw upon a more diverse

set of scientific methods and evidential sources. In short, it

requires bringing the field of comparative cognition and its

underlying subject matter—cognition itself—further under the

ecological and evolutionary umbrella of biology.

Competing interests. We declare we have no competing interests.

Funding. R.P. is grateful to Templeton Foundation grant no. 43160, and
C.L. thanks the SAGE Center for the Study of the Mind at the Univer-
sity of California Santa Barbara, the Leverhulme Trust and the Isaac
Newton Trust for a Leverhulme Early Career Research Fellowship,
for support of this research.

Acknowledgements. We are grateful to Adrian Currie, Marta Halina,
Dieter Lukas, audiences at Washington University in St Louis,
University of Cambridge, Northeastern University, and Boston
University, as well as three anonymous referees, for helpful
discussions and comments on earlier drafts of this paper.
Endnotes
1Although Shettleworth’s account of cognition posits domain-specific
cognitive architecture, there is nothing inherent to an information
processing account that requires domain specificity; to the contrary,
such accounts are consistent with some types of cognition involving
domain-general information processing.
2‘Phenotypic plasticity’ refers to the developmental modifiability of
organismic traits in response to environmental inputs. For mor-
phology, developmental sensitivity to environmental inputs is
generally limited to earlier phases of ontogeny and has largely irre-
versible effects. By contrast, behaviours can retain their flexibility
throughout ontogeny. As West-Eberhard [19, p. 30] puts it, there
is more potential for ontogenetic reorganization of behavioural
subunits than there is for morphological or physiological ones.
3This view broadly maps on to Godfrey-Smith’s [21] useful distinc-
tion between ‘first-order plasticity’, which he defines as
changeability in the organism’s state, and ‘second-order plasticity’,
which he defines as changeability of ‘the rules or conditionals that
govern the organism’s changes of state’.
4For example, subordinate chimpanzees competing with dominants
for food flexibly adjust their behaviour according to the knowledge
state of the dominant [22]. Subordinates preferred food items that
the dominant had not seen placed in the experimental room during
baiting, as well as items that were moved after the dominant saw
their initial placement. Subordinates were also sensitive to which
dominant watched the baiting process: if the knowledgeable domi-
nant was replaced with an uninformed dominant, subordinates
preferred to take food items in front of the uninformed rather than
the informed dominant. Chimpanzees showed behavioural flexibility
because they learned to modify their behaviour in a new context
based on their previous experience with hierarchical relationships
in the group. This demonstration of behavioural flexibility and
others like it have been taken as evidence of complex cognition [2].
5The account of behavioural flexibility in this paper differs from com-
monly used species-level proxies of flexibility, such as innovations
(the number of anecdotally novel foraging techniques used per
species; e.g. [23]) and generalist versus specialist foraging strategies.
These proxies are measured at the species level, whereas behavioural
flexibility as understood here is measured at the individual level.
6For a review of the many of meanings of Morgan’s Canon, see
Thomas [35]; for analyses and critiques of specific interpretations,
see [36–39].
7We suspect that the unduly strong emphasis on simplicity in com-
parative cognition is a vestige of the initial psychological rather
than biological orientation of the field—for as Godfrey-Smith [51]
notes, the preference for the Occamist null hypothesis is endemic in
and largely peculiar to psychological science.
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8Note that when Godfrey-Smith refers to ‘cognition’, he may have in
mind a more restrictive account of information processing than the
big-tent account of cognition presupposes, as he uses the term
‘quasi-cognitive’ to describe non-mental information processing in
organisms [61].
9Although we expect neural structures to robustly correlate with
other traits in the cluster, many different types of neural architecture
may give rise to cognitive complexity [67], and thus the regularity
will break down if our descriptions of the neural correlates of cogni-
tive complexity are either too fine-grained or too broad. This explains
why increased absolute or relative brain size is not an adequate basis
by which to infer the existence of cognitive complexity in the context
of observations of behavioural flexibility. In particular, it explains
why an evolutionary increase in size or connectivity of any given
brain region is neither necessary nor sufficient for inferring the evol-
ution of cognitive complexity. It is not sufficient because although an
observation of neuroanatomical growth or complexification does
increase the subjective probability of cognitive complexity, there are
many possible selective functions reflected by such changes that
involve less complex forms of information processing, such as
enhanced perception capabilities. It is not necessary because
cognitive complexity could arise through the repurposing of existing
brain structures without any measurable increase in neural tissue
mass [68]. Without the additional observations of behavioural
flexibility, a heterogeneous selective environment, and more fine-
grained analyses of brain changes, the inference from neural
complexification to cognitive complexity will be weak.
10While current empirical support for the social brain hypothesis is
correlational rather than directly causal, the absence of causal data
does not necessarily mean that the hypothesis is under-evidenced.
Correlational data may be the best evidence we can expect to find
given the tandem coevolution of neurological and social complexity.
Just as increasingly complex motor capacities co-evolve with increas-
ingly complex perceptual capacities, complex social arrangements
may evolve in tandem with increasingly complex brains, and
the causal evolutionary interactions between them may be too
fine-grained to resolve.
11For instance, volumetric comparisons of the brain are difficult to
interpret as enlargement of a brain region does not necessarily corre-
late with an increase in the number of neurons, and neuronal density
may decrease as brains grow larger as has been found for some
mammals and birds [113,114].
0121
References
1. Andrews K. 2011 Animal cognition. In The Stanford
encyclopedia of philosophy (ed. N Edward). See
https://plato.stanford.edu/archives/sum2016/entries/
cognition-animal/.

2. Emery NJ, Clayton NS. 2004 The mentality of crows:
convergent evolution of intelligence in corvids and
apes. Science 306, 1903 – 1907. (doi:10.1126/
science.1098410)

3. Overington SE, Morand-Ferron J, Boogert NJ,
Lefebvre L. 2009 Technical innovations drive the
relationship between innovativeness and residual
brain size in birds. Anim. Behav. 78, 1001 – 1010.

4. Lefebvre L, Reader SM, Sol D. 2004 Brains,
innovations and evolution in birds and primates.
Brain Behav. Evol. 63, 233 – 246.

5. Clayton NS, Bussey TJ, Dickinson A. 2003 Can
animals recall the past and plan for the future? Nat.
Rev. Neurosci. 4, 685 – 691.

6. Buckner C. 2015 A property cluster theory
of cognition. Philos. Psychol. 28, 307 – 336.
(doi:10.1080/09515089.2013.843274)
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