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Human pathophysiology is occasionally too complex for unaided

hypothetical-deductive reasoning and the isolated application of additive or

linear statistical methods. Clustering algorithms use input data patterns and

distributions to form groups of similar patients or diseases that share distinct

properties. Although clinicians frequently perform tasks that may be enhanced

by clustering, few receive formal training and clinician-centered literature

in clustering is sparse. To add value to clinical care and research, optimal

clustering practices require a thorough understanding of how to process

and optimize data, select features, weigh strengths and weaknesses of

di�erent clustering methods, select the optimal clustering method, and apply

clustering methods to solve problems. These concepts and our suggestions

for implementing them are described in this narrative review of published

literature. All clustering methods share the weakness of finding potential

clusters even when natural clusters do not exist, underscoring the importance

of applying data-driven techniques as well as clinical and statistical expertise

to clustering analyses. When applied properly, patient and disease phenotype

clustering can reveal obscured associations that can help clinicians understand

disease pathophysiology, predict treatment response, and identify patients for

clinical trial enrollment.
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Introduction

Human pathophysiology is extraordinarily complex. There

are ∼68,000 diagnostic codes in the 10th revision of the

International Statistical Classification of Diseases (ICD) system,

and more than 10,000 Current Procedural Terminology (CPT)

treatment codes. Individual patients may have any combination

of diagnoses, treatments, and treatment responses that are

influenced by any combination of behavioral, social, and genetic

determinants of health. Unsurprisingly, clinical decision-

making based solely on hypothetical-deductive reasoning is

error-prone and patient outcomes vary substantially (Wolf et al.,

1985; Kirch and Schafii, 1996; Graber et al., 2005; Bekker, 2006;

Dijksterhuis et al., 2006).

The inherent weaknesses in hypothetical-deductive

reasoning for diagnosing and treating complex pathophysiology

are addressed partially by clinical decision support systems

(Hunt et al., 1998). The algorithms underlying decision support

influence their efficacy. For example, efforts to represent the

complex pathophysiology of frailty or sepsis using rule-based,

additive or linear statistical methods have yielded suboptimal

results, though linear models can also function effectively as

data mining techniques (Lipsitz and Goldberger, 1992; Singer

et al., 2016; Bertsimas et al., 2018; Loftus et al., 2019). In contrast,

machine learning techniques, like clustering, learn from data

(Schwartz et al., 1987; Hashimoto et al., 2018). Patient and

disease phenotype clustering can elucidate pathophysiology, can

predict treatment response, and has the potential to augment

clinical trial enrollment (Calfee et al., 2014, 2018; Famous

et al., 2017; Sinha et al., 2018; Seymour et al., 2019). Although

clinicians perform these tasks frequently in routine, clinical

practice (e.g., establishing differentials) and in research, few

receive formal training necessary to apply clustering methods,

and clinician-centered literature in clustering is sparse.

This narrative review of published literature endeavors to

impart understanding of phenotype clustering in health care for

clinicians by reviewing basic data processing and optimization

steps; describing the concepts, strengths, and weaknesses of

prominent clustering methods; suggesting a framework for

choosing a clustering method; noting instances in which

cluster phenotyping can elucidate pathophysiology and predict

treatment response; and identifying opportunities to enhance

clinical trial enrollment.

Overview of phenotype clustering in
health care

Figure 1 illustrates a framework for phenotype clustering

in health care. Clustering algorithms use input data patterns

and distributions to form groups of patients or diseases that

are similar to one another and different than others. Common

input features include clinical data, biomarkers, and genomic

data. There are six major methods for clustering, each with

unique conceptual approaches, similarity metrics, and grouping

techniques. Each algorithm has unique strengths andweaknesses

depending on its specific application, but they all apply the

same high-level methodology. First, the notion of similarity

between two data points must be defined. This is often done

by determining geometric distances between points, such that

adjacent objects share similar characteristics, while objects with

the greatest distances between them have the least similarity.

This is commonly performed by calculating the Euclidean

distance between two points, as illustrated in Figure 2.

Here, Euclidean distance is illustrated in two dimensions

(x and y), though the same approach can be extended to any

number of dimensions. Next, objects are grouped with other

objects according to similarity relationships, forming clusters.

Every dataset object is assigned membership to a group. This

approach returns clusters even if there are no natural groups

in the data. Finally, since clustering is often performed for data

exploration or pattern discovery without establishing ground

truth, validation often requires deriving or predicting cluster

labels in a separate dataset and comparing cluster characteristics

between development and validation cohorts. The fundamental

concepts, strengths, and weaknesses of six major clustering

methods are summarized in Table 1 and described in greater

detail in the “Clustering methods” section.

Clustering input data processing,
and optimization

The raw clinical data that is typically available to clinicians

often cannot be applied directly to clustering algorithms. This

section describes data processing and optimization steps that

are intended to produce optimal clustering results, primarily

using terms and descriptions that are familiar to clinicians. For

more technical descriptions of data processing and optimization

steps, interested readers are referred to more technical work by

Ankerst et al. (1999) and Yu et al. (2015).

Handling outliers

Clustering-based phenotyping in health care has been

performed using routine clinical data, biomarker values, and

genomic data, each of which often contain outliers (Eisen et al.,

1998; Seymour et al., 2019). If the clustering method is sensitive

to outlier values, as described below, outliers may be clipped at

predetermined percentiles (e.g., removing the top and bottom

1% of all values or values more than 3 times the interquartile

range beyond the 25th or 75th percentile), but this approach

risks losing important information from true values that deviate

substantially from the rest of the data. Therefore, we recommend

Frontiers in Artificial Intelligence 02 frontiersin.org

https://doi.org/10.3389/frai.2022.842306
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Loftus et al. 10.3389/frai.2022.842306

FIGURE 1

Phenotype clustering in health care applies clustering algorithms to clinical data, biomarkers, or genomic data to form unique groupings that

can elucidate pathophysiology, predict treatment response, or augment clinical trial enrollment.

handling outliers on a variable-by-variable basis according to

statistical knowledge and clinical expertise.

Handling missing data

Data missing at random should be imputed (replaced

with a substituted value), ideally with a method that accounts

for statistical uncertainty in the imputations, such as MICE

(multiple imputation by chained equations; Van Buuren et al.,

1999). When data are missing not at random (e.g., bilirubin

levels are missing because there was no clinical concern for

hepatic dysfunction), there is currently no consensus regarding

how to handle the missing data appropriately; it may be

favorable to use binary missingness indicators (indicators of

whether the variable is missing) or other techniques that

preserve potentially informative missingness patterns (Jakobsen

et al., 2017).

Scaling data

When continuous variables within the same dataset have

different ranges or magnitudes of change, those with wider

distributions will dominate cluster assignments. For example,

one may wish to include both serum creatinine and platelet

count values as clustering input variables. Two patients with

serum creatinine values of 1.0 vs. 4.0 mg/dL have substantially

different renal function; two patients with platelet counts of

101 vs. 104 x 109/L have no meaningful difference in platelet

counts. This issue of scale is addressed by normalizing the data

(transforming each variable into a common range such as 0–

1). On a scale from 0 to 1, serum creatinine values of 1.0 and

4.0 mg/dL might be represented as 0.30 and 0.80, respectively,

while platelet counts of 100 vs. 104 x 109/L might be represented

as 0.33 and 0.34, respectively. In this case, the normalized

values more accurately represent differences in creatinine values

and similarity between platelet values. Other normalization

techniques calculate a z-score for each value, scaling the data by

mean and standard deviation.

Handling categorical variables

Common distance metrics like Euclidean and Manhattan

distance apply only to continuous variables, but many

potentially important clinical variables (e.g., sex) are categorical,

with no ordinal mathematical interpretation. There are several

methods for addressing this challenge. Most simply, clustering

may be performed on continuous variables only, ignoring

categorical variables. Categorical variables can be converted into

continuous variables by several methods (e.g., n binary features

or value difference metrics; Grabczewski and Jankowski, 2003).

An alternative distance metric can be used, like Gower distance,

which calculates distance between entities composed of both

continuous and categorical variables. Finally, one can apply k-

modes clustering, which defines clusters by matched categories

(Huang, 1998).

Performing data transformation

Clustering on continuous variables tends to be very effective

on normally distributed data. Therefore, it is often advantageous

to perform natural log or power transformations on non-

normal variables prior to clustering (Seymour et al., 2019).
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FIGURE 2

Similarity of elements in clustering algorithms is inversely

proportional to distance. This is often derived by applying the

Pythagorean theorem to calculate Euclidean distance. We

illustrate this approach in two-dimensional space, though similar

calculations apply for data points of arbitrary dimensionality.

To preserve the original data distributions, one may perform

density-based clustering, which makes no assumptions about

data distributions (this is described below in the “Clustering

methods” section).

Performing feature selection

When clustering a dataset containing many features

(variables), some features have greater importance in cluster

assignments, while others introduce distracting noise. To

mitigate the impact of noisy features, one may select a

subset of features on which to perform clustering. In some

cases, there may be a clinical precedent for selecting features.

For example, the sequential organ failure assessment (SOFA)

score is a well-validated metric of organ dysfunction. To

identify organ dysfunction clusters, one may simply select

variables used to calculate SOFA scores. When there is no

such clinical precedent, feature selection can be performed

by dimensionality reduction techniques such as principal

component analysis (PCA) to derive underlying, lower-

dimensional data signatures from combinations or mixtures

of complex, high-dimensional data. Alternatively, one may

perform clustering on all available features, rank their

importance in determining cluster assignments, and then

select only the most important features for subsequent

analyses. Decisions involving feature selection methods and the

inclusion or exclusion of specific features must be carefully

considered since feature selection can inadvertently eliminate

meaningful features along with noisy features, thereby biasing

clustering results.

Types of clustering algorithms

This section describes clustering methods that have been

applied in healthcare, and corresponds to a summary of

clustering algorithms in Table 1. For a robust description of

other important clustering methods that have not yet been

applied in healthcare, such as possibilistic clustering, interested

readers are referred to work by Krishnapuram and Keller (1993),

Pal et al. (2005), Antoine et al. (2018), and Koutsibella and

Koutroumbas (2020).

Centroid-based clustering

Centroid-based methods, sometimes called partitioning

methods, minimize distance between points within a cluster

while maximizing the distance between cluster centroids, or

the geometric center of each cluster. K-means clustering is the

most prominent example of centroid-based clustering. First,

one chooses a number of clusters, k. The algorithm randomly

selects k data points as centroids. Next, the algorithm calculates

similarity between each point and each centroid, as described in

the “Overview of phenotype clustering in health care” section.

Each point is grouped with its nearest centroid. Then, each

centroid’s position is updated by calculating the geometric mean

among its constituent data points, and cluster memberships

are again reassigned based on centroid distances. The process

is repeated until centroid positions and cluster assignments

remain constant. Centroid-based clustering has relatively simple

implementation and interpretation, which likely contributes to

Frontiers in Artificial Intelligence 04 frontiersin.org

https://doi.org/10.3389/frai.2022.842306
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Loftus et al. 10.3389/frai.2022.842306

TABLE 1 Summary of clustering methods.

Method Examples Concept Strengths Weaknesses*

Centroid-based or

partitional clustering

K-means, k-medians Minimize the distance between

points within a cluster while

maximizing the distance between

cluster centroids

Simple implementation and

interpretation

Number of clusters must be

assigned a priori; sensitivity to

outliers

Centroid-based

variation: fuzzy

clustering

Fuzzy c-means, rough or

soft k-means

Points are assigned to one or more

clusters based on membership

coefficients representing similarity

to other points in each cluster

Useful for datasets and applications

with substantial overlap like image

segmentation or genomic

clustering

Number of clusters must be

assigned a priori; slow convergence

for large datasets; sensitivity to

outliers

Hierarchical clustering DIANA, AGNES Generate a dendrogram using

distance metrics and then cut the

dendrogram to group its

components

Obviates defining the number of

clusters a priori; dendrograms are

easy to interpret

Cumbersome for large datasets;

sensitivity to outliers

Distribution-based

clustering

Gaussian mixed models,

DBCLASD

Points are assigned to clusters with

similar probability distributions for

metrics like mean and variance

Flexible, adapts to inherent

distributions of the data, if present

Tends to overfit noisy data,

complex algorithm runs slowly on

large datasets

Density-based clustering DBSCAN, Mean shift,

OPTICS

Clusters are identified as the

densest region in a data space,

separated from other clusters by

low-density areas

Adapts to non-linear data; obviates

spatial and shape constraints of the

clusters; insensitivity to outliers

Performs poorly with sparse data;

sensitive to hyperparameters;

complex algorithm runs slowly on

large datasets

Supervised or

constraint-based

clustering

Random forest, gradient

boosting, deep learning

Certain properties of the clustering

result are defined a priori, like

cluster number, size, dimensions,

or elements

Incorporates prior knowledge of

biology; generates a perfect

decision boundary

Greater risk of overfitting

compared with unsupervised

methods

Spectral or graph-based

clustering

STING, CLIQUE Use a standard (e.g., k-means)

clustering method on special

vectors (eigenvectors) or densities

within a matrix that represents a

graph

Effective for high-dimensional

spectral data that contains

substantial noise and outliers

Cumbersome for large graphs,

interpretation requires

understanding of vector spaces and

linear transformation

DIANA, Divisive ANAlysis; AGNES, AGlomerative NESting; DBCLASD, Distribution-Based Clustering of LArge Spatial Databases; DBSCAN, density-based spatial clustering of

applications with noise; OPTICS, ordering points to identify the clustering structure; STING, statistical information grid; CLIQUE, Clustering In QUEst.

*All clustering methods share the weakness of finding clusters even when natural clusters do not exist.

its popularity in health care applications. The optimal number

of clusters is usually unknown in advance, and is found

instead via trial-and-error experimentation; different k-values

are ranked by within-cluster similarity and pairs of clusters

are compared to determine whether they should be merged

into one cluster (Altman and Krzywinski, 2017). Centroid-

based clustering is sensitive to outliers; this limitation can be

leveraged for outlier detection (Nowak-Brzezinska and Lazarz,

2021). When computational power allows, experimentation

with different k-values and clustering iterations can provide

unique advantages for exploratory classifications. For example,

k-means clustering was used to build 500 models with 500

unique clustering solutions to classify the physiologic states of

septic patients (Komorowski et al., 2018). This approach allowed

another algorithm to learn associations among intravenous

fluid doses, vasopressor doses, patient physiologic states, and

patient outcomes to generate recommendations for resuscitation

strategies. Subsequent analyses demonstrated that mortality

was lowest when clinician actions aligned most closely

with algorithm recommendations, suggesting opportunities to

augment clinical decision-making.

Fuzzy clustering, a variation of centroid-based clustering,

lets points belong to more than one cluster, offering potential

advantages for clustering datasets that contain natural overlap

among groups. Points are assigned to one or more clusters

based on membership coefficients representing similarity to

points in each cluster. Mathematically, this is accomplished by

relaxing the constraint of assigning binary (yes or no) cluster

membership. Instead, cluster membership values are assigned

along a continuum from 0 (no) to 1 (yes). Biologically, this

approach aligns with observations that boundaries between

classes of patient and disease phenotypes are often indistinct.

For example, there is substantial overlap in gene expression

data across cancer types. Fuzzy clustering methods applied to
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gene expression data for leukemia, lymphoma, adenocarcinoma,

and melanoma patients, along with dimensionality-reduction

techniques, have demonstrated improved performance in

associating genes with cancer types (Avogadri and Valentini,

2009). Fuzzy clustering is typically performed as a variant of

centroid-based clustering, like k-means. As such, it shares the

k-means disadvantages of sensitivity to outliers and requirement

that investigators predetermine the number of clusters.

Hierarchical clustering

Hierarchical methods use iterative merging of points based

on pair-wise distances. In each step, the most similar points are

merged into a single branch of a dendrogram. With each step,

branches merge into progressively larger branches containing

greater numbers of points, eventually forming a single branch

containing all points. The dendrogram is then cut at a prescribed

distance; cuts at longer distances result in fewer branches,

or clusters. The prescribed distance can be determined by

choosing a cut that (a) visually fits the natural distribution

of the data, (b) optimizes cluster-wise distance metrics (e.g.,

Dunn’s index), or (c) reflects underlying biology (e.g., a

diagnostic threshold value). Hierarchical clustering methods

have been used to identify groups of countries with similar labor

market regulations, allowing analysis of important associations

between socioeconomic conditions and public health that

would remain hidden from traditional indicators like Gross

National Product per capita (Muntaner et al., 2012). Visual

interpretation of dendrograms and the absence of pre-specified

cluster numbers facilitated these analyses; relative to other

clustering methods, dendrograms are easy to interpret both

conceptually and visually. Unlike centroid-based clustering, the

number of clusters need not be assigned a priori; like centroid-

based clustering, hierarchical clustering is sensitive to outliers.

In addition, hierarchical clustering can be cumbersome for

large datasets.

Distribution-based clustering

Distribution-based methods assign points to clusters that

have similar probability distributions for measures of center or

spread like mean or variance. At the center of a cluster, the

probability that a point belongs to that cluster is highest; with

progressive distance from the cluster center, the probability of

group membership decreases. For simulated data, this approach

mimics the distribution sampling methods that generated

the dataset and adapts well to natural distributions in the

data. Therefore, Gaussian mixed models (GMM) are popular

implementations of distribution-based clustering. In health

care applications that use real, noisy data that do not fit

Gaussian distributions, there is greater potential for overfitting

(generating an algorithm that does not perform well on new

data because it too closely reflects a limited training data set),

especially when model complexity is unrestrained. Distribution-

based clustering can adapt to non-Gaussian distributions, as

previously demonstrated for associations between age and

comorbidities, which do not follow normal distributions

(Alhasoun et al., 2018).

Density-based clustering

Density-based methods identify clusters as the densest

regions in a data space that are separated from other clusters

by low-density areas. The resulting cluster shapes adapt well to

non-linear data. By design, outliers are not assigned to clusters.

Therefore, unlike centroid-based and hierarchical clustering,

density-based methods are insensitive to outliers. Outlier

insensitivity offers unique advantages for clustering tasks related

to complex pathophysiologic processes like neurodegenerative

disease. The Density-Based Spatial Clustering of Applications

with Noise (DBSCAN) algorithm identified noisy features

outside cluster density boundaries in the more than 20,000 gene

vectors that represent neurodegenerative disease-associated

methylation processes (Mallik and Zhao, 2020). Removing

noisy features allowed identification of 229 differentially

methylated genes associated with Alzheimer’s disease, bringing

focus and clarity to subsequent analyses. Yet, these potential

advantages are realized only when density-based clustering

approaches are well-matched with the input dataset. Dense

areas in data space are difficult to identify in sparse data.

Additionally, the density-based clustering algorithms tend to

be complex, rendering them slow on large datasets. Finally,

density-based clustering algorithms are particularly sensitive to

hyperparameters (parameters whose value is set by the user),

underscoring the importance of search methods that identify

sets of hyperparameters yielding optimal performance.

Supervised clustering

Supervised clustering, sometimes called constraint-based

clustering, involves user input regarding cluster properties like

number, size, dimensions, or elements. By imposing these

constraints, users can ensure that clustering results incorporate

prior knowledge of biology (Lee and Hemberg, 2019). For

example, CellAssign (Zhang A. W. et al., 2019) and Garnett

(Pliner et al., 2019) use lists of marker genes for each cluster

to perform automated cell-type annotation based on single-cell

RNA sequencing data, on a new set of cells. Garnett (Pliner

et al., 2019) uses defined cell markers to form an immune

cell type hierarchy, trains a classifier to identify sets of cell

marker thresholds for each cell type, then classifies cells via

hierarchical clustering. After training on mouse lung samples,
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this approach annotated new data from a human lung tumor.

CellAssign (Zhang A. W. et al., 2019) uses raw expression count

data for a cell population, along with a set of known marker

genes mapped to cell types as inputs in a Bayesian model, to

calculate the probability that a cell belongs to one of the groups

represented by the marker gene mapping. Therefore, injecting

human knowledge of biology can steer a clustering algorithm

toward an intended output. However, if performed carelessly,

injecting human knowledge can increase risk of overfitting

by enforcing so many rules and constraints that the result

resembles statistical approaches rather than an algorithm that

learns from data.

Spectral or graph-based clustering

Spectral or graph-based clustering uses standard clustering

methods (e.g., k-means) on specialized vector types called

eigenvectors or on densities within a matrix (rectangular

array of data) that represents a graph (Zhong et al.,

2015). While standard graph-based methods like STING

(Statistical Information Grid) and CLIQUE (Clustering In

QUEst) use cell densities for cluster assignments, spectral

clustering requires derivation of eigenvectors that can perform

dimensionality reduction, rendering spectral or graph-based

clustering especially effective for high-dimensional data

containing noise and outliers. This approach has shown

efficacy in grouping similar medical codes into clinically

relevant concepts (Zhang L. W. et al., 2019). Similarly,

dimensionality reduction with latent class analysis followed

by k-means clustering has shown efficacy in representing

complex medical conditions like frailty, cardiovascular

complications, and psychiatric illness (Grant et al., 2020).

Realizing the potential advantages of spectral clustering

requires advanced understanding of vector spaces and linear

transformations, and methods may be difficult to interpret for

many clinicians.

Consensus clustering

Consensus clustering, sometimes called aggregated

clustering or clustering ensembles, uses multiple clusterings

derived from (a) different clustering algorithms, (b) multiple

permutations of a single algorithm, or (c) multiple iterations

of a single algorithm on subgroups of a dataset to derive

one, final set of cluster assignments. Consensus clustering

has the theoretical advantages of minimizing overfitting and

optimizing stability of cluster assignments, as has been shown

for hierarchical clustering on genomic datasets from disparate

sources and for identifying subgroups of heterogeneous

intensive care unit patients (Vranas et al., 2017; Hulot et al.,

2020).

How to choose a clustering
approach

Health care datasets can contain natural groupings, like

apples and oranges that may be placed in separate bushels,

or can contain a single mass of data, like a pizza that may

be partitioned (cut) into slices. The former implies utility for

a bottom-up, non-partitioning approach in which objects are

grouped with others that have similar characteristics; the latter

implies utility for a top-down partitioning approach in which

one large group is divided into subgroups. Natural groupings

or single masses of data can be visualized by a density-based

algorithm called ordering points to identify the clustering

structure (OPTICS; Ankerst, 1999). This approach generates a

reachability plot illustrating the inherent structure of data. A

jagged reachability plot suggests natural groupings amenable to

non-partitioning methods; a smooth reachability plot suggests a

single mass of data amenable to partitioning (cutting) methods,

sometimes referred to as centroid-based clustering (e.g., k-

means). Alternatively, when the reproducibility plot is smooth,

users may recognize that there are no physiologically significant

subgroups, and the single mass of data should be analyzed as a

single group.

Beyond the natural groupings in data that may be apparent

with OPTICS clustering, one must understand and apply the

known strengths and weaknesses of different clustering methods

described above and listed in Table 1.

Cluster validation

Clustering algorithms always return results, but those results

may not be reproducible. To test the reproducibility of the

clustering approach, it is necessary to perform validation, ideally

on an independent, external dataset. Cluster validation should

be considered an essential final step for phenotype clustering

in health care. A substantial body of literature from Bezdek

supports a three-step process of first determining the optimal

number of clusters, then performing portioning, and then

performing validation (Bezdek, 1973, 2013; Bezdek and Harris,

1978; Pal and Bezdek, 1995). For instances in which attempts

at validation fail to reproduce in independent, external datasets,

one may wish to determine whether the failure is attributable

to overfitting or to different distributions and patterns within

the underlying data, suggesting that phenotypes themselves vary

between datasets.

Potential disadvantages or harms of
clustering

All clustering methods share the weakness of finding

potential clusters even when natural clusters do not exist. This
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underscores the importance of applying data-driven techniques

as well as clinical and statistical expertise to clustering analyses.

We quote Preud’homme and colleagues (Preud’homme et al.,

2021) as they discuss an extraordinary effort to provide

data-driven guidance for selecting clustering methods for

heterogeneous data: “Despite the immense progress enabled

by artificial intelligence in recent years, human experience and

intuition remain the best judge in cluster analysis.” When

human experience and intuition are suboptimal or are bent to

fit a hypothesis, clustering analyses can distract from underlying

patterns in data rather than reveal them.

Opportunities for clustering to
enhance health care delivery and
research

Revealing obscured associations in
disease pathophysiology and predicting
treatment response

Clustering can be used to pursue a deeper understanding

of disease pathophysiology by revealing obscured associations,

especially for syndromes with substantial depth, breadth,

and complexity for which broad disease classification

systems sacrifice precision. Few oncologists would stage

all solid tumors as metastatic or non-metastatic alone,

undermining the precision of clinical and research efforts

by omitting pathologic grade, depth and anatomic level

of local invasion, regional lymph node status, and the

presence of locally advanced disease. Yet, similarly broad,

imprecise classification systems are still used for other

complex diseases. For example, secondary analyses of

several acute respiratory distress syndrome (ARDS) trials

have consistently identified both a hyper-inflammatory

ARDS phenotype, featuring greater levels of circulating

inflammatory cytokines and incidence of shock, and a hypo-

inflammatory phenotype, featuring a favorable prognosis

(Calfee et al., 2014, 2018; Famous et al., 2017; Sinha et al.,

2018). Importantly, hyper- and hypo-inflammatory ARDS

phenotypes may have different responses to targeted treatments.

ARDS phenotypes were identified by latent class analysis:

a probabilistic, distribution-based classification method.

Similar work has been performed with partitioning or

centroid-based clustering.

Similarly, Seymour et al. (2019) applied consensus k-

means clustering to 29 routine, clinical and laboratory variables

among sepsis patients, identifying four distinct phenotypes with

unique pathophysiologic biomarker signatures and outcomes.

Recognizing that nearly all targeted sepsis treatments have failed,

they applied the four sepsis phenotypes to data from three

randomized controlled trials that evaluated the efficacy of a

toll-like receptor 4 inhibitor, early goal-directed therapy, or

activated protein C. In a series of post-hoc trial simulations, they

varied the proportions of each phenotype, yielding significant

differences in treatment benefits and harms. For example, the

original ProCESS trial demonstrated 0% chance of benefit

from early goal-directed therapy, 15% chance of harm, and

85% chance of having no effect (Pro et al., 2014). Post-

hoc simulations by Seymour and colleagues demonstrated

that if all ProCESS trial patients had the alpha phenotype,

characterized by fewer laboratory measurement abnormalities

and less organ dysfunction, then early goal-directed therapy

would have a 35% chance of benefit and a 65% chance of

no effect. In other simulations performed exclusively with the

other three phenotypes (beta: older patients with more chronic

illness and renal dysfunction; gamma: more inflammation

and pulmonary dysfunction; delta: more liver dysfunction and

septic shock), early goal-directed therapy had a 0% chance of

benefit and a >60% chance of harm. Seymour and colleagues

also performed simulations for the PROWESS trial comparing

activated protein C and placebo for patients with severe

sepsis, which reported an 82% chance of a positive effect

for activated protein C (Bernard et al., 2001). Xigris R©, a

recombinant form of human activated protein C, received

FDA approval after the PROWESS trial but was withdrawn

from the market when subsequent randomized trials showed

no benefit (Abraham et al., 2005; Ranieri et al., 2012).

In the simulations performed by Seymour and colleagues,

when the alpha phenotype was increased to compose the

majority of the study population, 50% of the simulations

showed no difference for activated protein C. Collectively,

these findings suggest that clustering analyses can reveal

obscured associations that may be important to underlying

pathophysiology, especially for instances in which conventional

analyses are designed and powered to detect differences between

treatment groups, and not between pathophysiological subsets.

Clustering with simulation has the potential to generate

hypotheses about pathophysiological subsets that can be tested

in subsequent trials.

Clinical trial enrollment

Clustering has the potential to augment the process of

identifying patients for clinical trial enrollment, addressing

a major challenge in producing high-level evidence that

evolves the standard of care. In one review of randomized

trials published in prominent journals, approximately

60% failed to meet recruitment targets or required

extended recruitment periods (Puffer and Torgerson,

2003). Publication bias may have caused many more

randomized trials with suboptimal enrollment to fail to

achieve worthwhile impact. Inadequate enrollment can render
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a study underpowered, conferring increased risk for type

II errors (not detecting a significant difference when it is

present) and increased costs and resource use for an extended

recruitment period.

To optimize clinical trial enrollment, a priori inclusion

criteria and real-time screening must be robust; both processes

can be augmented by clustering. Secondary analyses of clinical

trial data suggest that treatment effects vary substantially

across patient phenotypes that can be readily identified by

clustering methods (Calfee et al., 2014, 2018; Famous et al.,

2017; Seymour et al., 2019). Before enrollment begins, it may be

advantageous to assess treatment responses across phenotypes

in existing retrospective or prospective observational data

and use these results to sharpen inclusion criteria. Once

enrollment begins, screening often depends on the vigilance

of clinicians and research coordinators to review hundreds or

thousands of health records and ascertain whether patients

meet enrollment criteria. Screening for a cluster phenotype-

based clinical trial could, in the future, be automated across

all participating institutions that use compatible electronic

health record data models and variable names, but only in

the context of further refining emerging technologies for

real-time machine learning applications using electronic

health record data (Ren et al., 2022). To improve the

generalizability of this approach, data can be mapped to

interoperable data models such as the open-source OMOP

(Observational Medical Outcomes Partnership) common

data model.

Conclusions

Clustering methods offer important opportunities to

mine data to discover natural structures and patterns that

represent complex human pathophysiology. To add value

to clinical care and research, optimal clustering practices

require a thorough understanding of how to process and

optimize data, select features, weigh strengths and weaknesses

of different clustering methods, select the optimal clustering

method, and apply clustering methods to solve problems.

All clustering methods share the weakness that they find

clusters even when natural clusters do not exist, underscoring

the importance of applying data-driven techniques like

OPTICS alongside statistical knowledge and clinical expertise.

Iterative processes for optimizing clustering parameters

and critical analysis by clinician experts is necessary to

improve the efficiency and impact of phenotype clustering

in health care. Applied properly, patient and disease

phenotype clustering can reveal obscured associations that

can help clinicians understand disease pathophysiology,

predict treatment response, and identify patients for clinical

trial enrollment.
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