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Abstract

Background

Epidemiological studies have found that triple-negative breast cancer (TNBC) and TN

inflammatory breast cancer (IBC) are associated with lower frequency and duration of

breast-feeding compared to non-TNBC and non-TN IBC, respectively. Limited breast-feed-

ing could reflect abrupt or premature involution and contribute to a “primed” stroma that is

permissive to the migration of cancer cells typical of IBC. We hypothesized that gene

expression related to abrupt mammary gland involution after forced weaning may be

enriched in the tissues of IBC patients and, if so, provide a potential correlation between lim-

ited breast-feeding and the development of aggressive breast cancer.

Methods

We utilized the Short Time-series Expression Miner (STEM) program to cluster significant

signatures from two independent studies that analyzed gene expression at multiple time-

points of mouse mammary gland involution. Using 10 significant signatures, we performed

gene ontology analysis and gene set enrichment analysis (GSEA) on training and validation

sets from human breast cancer gene expression data to identify specific genes that are

enriched in IBC compared to non-IBC and in TN compared to non-TN in IBC and non-IBC

groups.

Results

Examining the combined data, we identified 10 involution gene clusters (Inv1-10) that share

time-dependent regulation after forced weaning. Inv5 was the only cluster significantly
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enriched in IBC in the training and validation set (nominal p-values <0.05) and only by unad-

justed p-values (FDR q-values 0.26 and 0.46 respectively). Eight genes in Inv5 are upregu-

lated in both the training and validation sets in IBC. Combining the training and validation

sets, both Inv5 and Inv6 have nominal p-values <0.05 and q-values 0.39 and 0.20, respec-

tively. The time course for both clusters includes genes that change within 12 hours after

forced weaning.

Conclusions

Results from this in silico study suggest correlation between molecular events during abrupt

involution and aggressive breast cancer. Specifically, candidate genes from Inv5 merit func-

tional investigation regarding the role of limited breast-feeding in IBC development.

Introduction

The mammary gland undergoes various stages of development during the embryonic, puber-

tal, reproductive, and post-reproductive stages of life. Involution is a term that has been

described as the reverse of development [1]. Post-lactational involution is a complex multistage

process characterized by regression of the mammary gland epithelium to its non-lactating

state through apoptosis and tissue remodeling [2]. Clarkson et al. [3] and Stein et al. [4] con-

ducted gene expression profiling studies of these changes in the mouse mammary gland with

the induction of forced weaning at the peak of lactation. Results of these two studies highlight

distinct molecular characteristics between the virgin, pregnant, lactating, and involuting states

of the mammary gland. It has been shown that the mammary gland microenvironment under-

going tissue remodeling during post-lactational involution mimics that of pathological condi-

tions like wound healing and tumorigenesis [5]. Inflammation and would-healing responses

have been found to be associated with tumor growth and progression [6]. Findings from sev-

eral animal and in vitro studies indicate that involution may create a microenvironment that

promotes breast cancer growth and progression [7–12].

Breast cancer is the most common cancer and the second leading cause of cancer mortality

among women in the United States [13]. In the absence of estrogen receptor (ER) expression,

progesterone receptor (PR) expression, and HER2-neu amplification, breast cancer is termed

triple-negative breast cancer (TNBC). TNBC accounts for approximately 15% of all breast can-

cer incidents and has the lowest survival rates among all subtypes of breast cancer [14]. Inflam-

matory breast cancer (IBC) is a distinct subtype of breast cancer characterized pathologically

by the presence of tumor emboli in the dermal lymphatics and clinically by its rapid and dif-

fuse onset with erythematous and edematous presentation of the breast [15]. IBC accounts for

approximately 1–5% of all breast cancers but at all stages has significantly lower 5-year survival

rates than that for non-IBC [15–17]. Little-to-no breast-feeding has been found to correlate

with an increased risk of developing aggressive breast cancer subtypes [18, 19]. In Gaudet et al,

TNBC was associated with a shorter duration of breast-feeding in a cohort of 890 young (�56

years) breast cancer patients [18]. Atkinson et al found also that in a cohort of 224 women

with IBC, those that did not breast-feed were more likely to develop TN IBC and luminal IBC

[19]. Furthermore, Lyons et al. showed that TN ductal carcinoma in-situ (DCIS) cells exposed

to the involuting mammary microenvironment formed large, invasive tumors characterized

by abundant fibrillar collagen and high COX-2 expression, which both correlate with a poor

prognosis [10]. Additionally, both luminal and myoepithelial lineages in the mammary gland
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contain long-lived stem cells and stem-like cells, and pregnancy leads to a transient 11-fold

increase in their habitation there throughout lactation [11, 12, 20]. In particular, parity-induced

mammary epithelial cells (PI-MECs) are an epithelial subpopulation that arise from differentiat-

ing cells during the first pregnancy and persist after postlactational remodeling. They later serve

as committed alveolar progenitors along the luminal epithelium during subsequent pregnancies

and exhibit two important features of multipotent stem cells: self-renewal and contribution to

diverse epithelial populations in the ducts and alveoli [20, 21]. PI-MECs have been identified as

primary targets of malignant transformation [22]. Thus, it is possible that abrupt involution

leaves persistent, likely receptor-negative stem cells or PI-MECs within the mammary gland

microenvironment, increasing the chance of an initiating TNBC and TN IBC event.

Given the correlation between minimal breast-feeding and aggressive breast cancers, we

hypothesized that gene expression signatures of the abrupt post-lactational involution stage of

mammary gland development persist, are complicit in the development and progression of

these cancers, and are therefore enriched in TNBC and IBC bulk tumor samples. To test our

hypothesis, we identified gene expression signatures for the abrupt post-lactational involution

stages of mammary gland development using gene expression data from post-natal mouse

mammary gland development and evaluated whether or not these gene expression signatures

were enriched in IBC versus non-IBC as well as TNBC versus non-TNBC. We found signifi-

cant enrichment of one post-lactational involution gene signature in IBC compared to non-

IBC. This enriched signature represents genes showing initial up-regulation and later down-

regulation during the involution process and significant overlap with genes upregulated in vas-

cular smooth muscle cells (VSMC) by c-Jun N-terminal protein kinase (JNK1). Specifically, we

identified 3 genes–Involucrin (IVL), Cluster of Differentiation 79B (CD79B), and leptin

(LEP)–that were significantly enriched in IBC compared to non-IBC. Thus, it is possible that

these genes play a role in IBC development and progression.

Materials and methods

Development of involution-specific gene signatures

Gene expression dataset on mouse mammary gland involution. In the study by Clark-

son et al. [3], genome-wide expression profiles were measured with Affymetrix GeneChip

MGU74ver2a arrays at the 12 stages of adult mouse mammary gland development (virgin, 8

week; pregnancy days 5, 10 and 15; lactation days 0, 5 and 10; and involution hours 12, 24, 48,

72 and 96 after forced weaning at 10 days of lactation). In the study by Stein et al. [4], gene

expression profiles were measured at the 17 stages of adult mouse mammary gland develop-

ment (virgin, 10 and 12 weeks; pregnancy days 1, 2, 3, 8.5, 12.5, 14.5 and 17.5; lactation days 1,

3 and 7; and involution days 1, 2, 3, 4 and 20 after forced weaning at 7 days of lactation). The

gene expression data for both studies can be downloaded from the webpage of the Mammary

Apoptosis and Development Group at the University of Cambridge and from the NCBI Gene

Expression Omnibus (GSE12247).

Preprocessing of gene expression data. Raw gene expression profiles were preprocessed

using Guanine Cytosine Robust Multi-Array (GCRMA) analysis [23] with quantile normaliza-

tion, and probeset-level signals were summarized in log base 2 scale. We selected a custom

Chip Definition File (CDF) MGU74Av2_Mm_ENTREZG version 18 for more accurate probe

mapping to the genome [24]. There are 7952 probe sets with a CDF MGU74Av2_Mm_EN-

TREZG version 18 representing 7882 genes as per the annotation database available for a CDF

MGU74Av2_Mm_ENTREZG version 18 at the BrainArray. After preprocessing gene expres-

sion data, further analyses were conducted using information available for 7882 probe sets rep-

resenting 7882 genes with a one probe set–one gene relationship.

Post-lactational gene expression and aggressive breast cancers
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Identification of differentially expressed genes across time points. Tests of differences

in expression were performed with the limma package (version 3.22.1) [25] from the Bioconduc-

tor project. The limma package uses the moderated t-statistic. A total of 1,055 genes were identi-

fied as the most significantly differentially expressed genes across time points (q-value<0.05)

with greater than two-fold changes in at least one pair comparing time points.

Clustering analysis of time-series expression data. Ernst et al. presented an algorithm

specifically designed for clustering time-series expression data [26] and developed the

Short Time-series Expression Miner (STEM) program for analysis of time-series gene

expression data [27]. The STEM program was obtained from the website of the Systems

Biology Group of the School of Computer Science of Carnegie Mellon University. The

STEM program first defines a set of representative model profiles that correspond to possi-

ble patterns of gene expression across the conditions examined in the experiment. Each

gene is, then, assigned to the closest profile on the basis of correlation coefficients. The

expected number of genes for each profile is also computed using random permutation,

renormalization, and assignment of original values for each gene to profiles with over 500

repeated permutations. This serves as a basis for the calculation of the statistical significance

of each profile. Statistically significant profiles represent the dominant expression profiles

in the data set. The parameters used for STEM clustering were set at a maximum of 50

model profiles, a maximum unit change between time points of 3 and a minimum correla-

tion for clustering similar profiles >0.7. Significant expression profiles were identified with

a false discovery rate (FDR) <0.05.

Ontology analysis of significant clusters. An ontology-based analysis was performed on

genes of significant clusters identified through the STEM program. We used gene ontology

(GO) annotations for Mus musculus gene products available from Mouse Genome Informatics.

Enrichment analysis for GO annotations was performed using a hypergeometric distribution

in the STEM program, and multiple hypothesis correction was done using a randomization

test. For gene-ontology enrichment with this program, p-values were corrected with 500 ran-

domizations and were considered significant with an FDR of<0.05.

Gene set analysis of involution-specific gene signatures

Gene expression dataset on IBC and non-IBC cases. Gene expression data for IBC and

non-IBC cases were obtained from the NCBI Gene Expression Omnibus (GSE22597) and the

EBI ArrayExpress (E-MTAB-1006 and E-MTAB-1547) and collected through the World IBC

Consortium [28]. These databases include the largest series of IBC samples ever reported, and

tumor samples were obtained from patients treated in three institutions: the Institut Paoli-

Calmettes (IPC, Marseille, France: 71 IBC and 139 non-IBC cases), the MD Anderson Cancer

Center (MDA, Houston, TX, USA: 25 IBC and 58 non-IBC cases), and the General Hospital

Sint-Augustinus (TCRU, Antwerp, Belgium: 41 IBC and 55 non-IBC cases) [28].

We also examined benign-appearing breast tissues from both IBC and non-IBC patients, 44

in total (19 with IBC and 25 with non-IBC) for further analysis. All were treated with neoadju-

vant chemotherapy and mastectomy from March 2004 –May 2012. Clinical details for all

patients was recorded as part of an institutional database or prospective tumor registry. All

patients gave written informed consent to banking surplus tissue for future research prior to

study enrollment. This specific study was separately approved by the appropriate institutional

review board of The University of Texas MD Anderson Cancer Center to examine these

banked tissues and correlate findings to clinical demographics.

Preprocessing of gene expression data. Raw gene expression profiles were preprocessed

using GCRMA analysis [23] with quantile normalization, and probeset-level signals were

Post-lactational gene expression and aggressive breast cancers
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summarized in log base 2 scale. We selected custom Chip Definition Files (CDFs) HGU133A_

Hs_ENTREZG version 18 for preprocessing GSE22597 data and HGU133Plus2_Hs_EN-

TREZG version 18 for preprocessing E-MTAB-1006 and E-MTAB-1547 data [24]. There are

12,135 probe sets with a CDF HGU133A_Hs_ENTREZG version 18 with 12,064 probe sets

representing 12,064 genes as per the annotation database available at the BrainArray. There

are 19,674 probe sets with a CDF HGU133Plus2_Hs_ENTREZG version 18 with 19,544 probe

sets representing 19,544 genes as per the annotation database available at the BrainArray. After

preprocessing gene expression data, all 3 data sets were merged using common informative

probe sets (n = 12,129). To remove the batch effect, we used the removeBatchEffect function

from the limma package from the Bioconductor [25]. This function fits a linear model to the

data and removes the components due to the batch effects. The principal component analysis

plots were generated prior and after removing the batch effect to of the removeBatchEffect

function (data not shown). The final merged dataset consisted of 388 samples (137 IBC cases

and 251 non-IBC cases) with 12,129 probe sets with 12,063 probe sets representing 12,063

genes with a one probe set–one gene relationship.

Non-tumor breast gene expression

We employed the previously described methods for gene expression studies from normal adja-

cent breast tissue [29, 30]. Briefly, RNA was isolated using TRIzol (Invitrogen, Carlsbad, CA,

USA) and the RNeasy kit (Qiagen, Valencia, CA, USA). A flouorescently labeled T7 RNA poly-

merase promotor was used to synthesize cDNA. Reverse transcription was performed and fol-

lowed by RNA labeling. The labeled RNA samples were hybridized onto U133 Plus2

GeneChips (Affymetrix, Santa Clara, CA). dChip analyzer software was used to estimate

expression values, as previously described [29, 30].

Involution-specific gene signatures. Involution-specific gene signatures were identified

from the results of STEM cluster analysis conducted on post-natal mouse mammary gland

development as previously described here. We identified orthologous genes for genes that

were found to form significant clusters in STEM cluster analysis by using ENSEMBL gene id

on the orthologous data downloaded from the ENSEMBL website. Involution-specific gene

signatures have also been reported in the study by Stein et al. [9]. We downloaded those signa-

tures and identified orthologous genes for each signature (S1 Table) and used them to evaluate

their enrichment in IBC versus non-IBC and TN versus non-TN subtypes.

Gene set enrichment analysis (GSEA) of involution-specific signatures. We used GSEA al-

gorithm as mentioned in [31] to evaluate enrichment of involution-specific gene signatures in IBC

cases compared to non-IBC cases and TN BC cases compared to non-TN BC cases. We ranked

genes in the GSEA using the student’s t-test, and all other options in the GSEA were kept as default.

Training and validation data. A training set is a set of data used to discover potentially

predictive relationships, and a validation set is used to assess the strength and utility of said

predictive relationships. We divided the merged dataset into the training set to run the GSEA

and into the validation set to validate the GSEA results for reproducibility. We used the strati-

fied random sampling method with inclusion of information on IBC status, TN status, and age

at diagnosis (<50 years or > = 50 years) to divide the merged dataset into the training and val-

idation sets (Table 1).

Results

Development of involution-specific gene signatures

Differentially expressed genes across time points. We used the limma package [25]

from the Bioconductor project to identify differentially expressed genes across time points

Post-lactational gene expression and aggressive breast cancers
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from lactation day 10 to involution day 4. We identified 1,055 differentially expressed genes

across time points from lactation day 10 to involution day 4 in the data from Clarkson et al.

[3]. To verify our results, we conducted an analysis for differentially expressed genes using

data from Stein et al. [4] and identified 2,567 genes differentially expressed across time points

from lactation day 7 to involution day 20. 79% of the genes identified as differentially

expressed in the data from both studies. Fig 1 shows the Venn diagram of the overlap and dis-

crepancies between genes differentially expressed in [3] and [4].

Clusters of differentially expressed genes. Given the limited overlap between the two

datasets, we sought to identify relevant gene clusters over time from the two published studies

together. We used the STEM algorithm developed by Ernst et al. [26, 27] to cluster genes iden-

tified as differentially expressed between the last day of lactation and the last time point of

involution. We used c = 3 and m = 50 for input parameters, where c indicates units of change

and m the number of candidate profiles. This run significantly clustered 774 genes out of 1,055

differentially expressed genes (73.4%). Table 2 lists the patterns, size, and p-value of significant

clusters out of 50 possible cluster profiles. Patterns indicate the log2 fold change in expression

of genes in clusters compared to the lactation day 10 levels. Fig 2 shows the log2 fold change in

gene expression profiles for the ten significant clusters.

Involution-specific gene signatures. To use the involution-specific gene signatures to

conduct gene set analysis on human IBC and non-IBC gene expression profiles, we identified

human orthologous genes for genes of significant clusters identified through STEM (S1

Table 1. Final merged dataset and training and validation sets.

Total

cases

IBC� Non-IBC�

Total TN Non-TN Total TN Non-TN

Merged Dataset 388 137 20 101 251 34 197

Training Set 195 68 10 50 127 18 99

Validation Set 193 69 10 51 124 16 98

�16 cases in IBC and 20 cases in non-IBC groups did not have information available on TN status.

https://doi.org/10.1371/journal.pone.0192689.t001

Fig 1. Venn diagram showing the overlap and discrepancies between genes differentially expressed in Clarkson

et al. [3] and Stein et al. [4].

https://doi.org/10.1371/journal.pone.0192689.g001
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Table). Ortholog data were downloaded from the ENSEMBL website and orthologous genes

were identified using ENSEMBL gene id. See Table 2 for a list of the number of human ortho-

logous genes identified for each of 10 significant clusters.

Gene set analysis of involution-specific gene signatures

Results of GSEA of involution-specific signatures in IBC versus non-IBC. Out of 10

gene signatures developed through the STEM clustering using data from Clarkson et al. [3], 7

signatures have a normalized enrichment score (NES) >1 in the training set of IBC phenotype

with 2 signatures, Inv5 and Inv6, having nominal p-values <0.05. In the validation set, we

found 9 gene signatures with NES >1 in IBC cases with Inv5 having a nominal p-value of

<0.05. Three signatures had NES >1 in non-IBC phenotype with nominal p-values >0.05 and

no gene signatures significant at FDR <25% in the training set (Table 3). In the validation set,

1 gene signature had NES >1 in non-IBC phenotype with no gene signature significant at

FDR<25% (Table 3). When comparing the results in the training and validation sets, we

found that 6 out of 10 gene signatures were enriched in IBC in both training and validation

sets. In the merged analysis repeated using the entire data set, we found that 2 out of 10 gene

signatures (Inv5 and Inv6) were significantly upregulated in IBC versus non-IBC phenotype at

nominal p-value of 0.05 (Table 4). Fig 3 represents the enrichment plot from the GSEA for

Inv5 signature in IBC versus non-IBC and Table 5 shows the list of genes in the Inv5 signature

as well as genes enriched in IBC. For the involution specific signatures reported by Stein et al.

[4], we found that no gene signature was significantly enriched in IBC or non-IBC at FDR

<25% or nominal p-value of 0.05 in both the training and validation sets (Table 3) or in the

total data set (Table 4).

Results of GSEA of involution-specific signatures in TN subtype versus non-TN subtype

in IBC and non-IBC. Out of 10 gene signatures developed through STEM clustering using

data from Clarkson et al. [3], we found that no gene signature was significantly enriched in TN

subtype versus non-TN subtype in IBC cases at FDR<25% or nominal p-value of 0.05 in both

the training and validation sets. For involution specific signatures reported by Stein et al. [4],

we also did not find any gene signature that was significantly enriched in TN subtype versus

non-TN subtype in IBC cases at FDR<25% or nominal p-value of 0.05 in both the training

and validation sets. We found similar results when comparing gene signatures in TN subtype

versus non-TN subtype in non-IBC cases.

Table 2. Patterns, size and p-values of significant clusters identified through the STEM algorithm using data from Clarkson et al. [3]. The far right column indicates

Involution Specific Gene Signatures through the STEM clustering using data from Clarkson et al. [3].

Cluster Pattern� Size p-Value Number of human orthologous genes identified Signature name

#1 0,1,2,3,4,5 270 1.30E-234 256 Inv1

#2 0,-1,2,1,1,1 120 1.10E-54 118 Inv2

#3 0,-1,-2.-3.-4.-5 74 3.00E-26 69 Inv3

#4 0,-3,-1,-1,0,1 50 5.10E-11 47 Inv4

#5 0,3,0,-3,-3,-2 46 7.30E-08 43 Inv5

#6 0,-3,-4,-2,-3,-3 77 1.20E-07 76 Inv6

#7 0,-3,-4,-5,-6,-3 40 2.30E-05 39 Inv7

#8 0,-2,1,2,4,1 32 1.10E-04 31 Inv8

#9 0,2,1,0,2,5 39 5.70E-04 37 Inv9

#10 0,2,5,3,6,3 26 7.30E-04 26 Inv10

�Pattern indicates the log2 fold change in gene expression levels of lactation day 10 and involution days 0.5, 1, 2, 3 and 4 days compared lactation day 10.

https://doi.org/10.1371/journal.pone.0192689.t002
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GSEA results of involution-specific signatures in IBC versus non-IBC normals. Unfor-

tunately there are not additional samples from which to validate the findings beyond the report

above. Nevertheless, we speculated that the relevant signatures might be expressed in gene

expression data from histopathologically normal breast isolated from IBC (N = 19) and non-

IBC (N = 25) mastectomy patients given our hypothesis that the unique normal tissue changes

influence the symptoms of IBC.

Fig 2. The log2 fold change in gene expression profiles for the ten significant clusters identified through the

STEM Clustering. Y-axis represents the relative gene expression levels of involution days 0.5, 1, 2, 3 and 4 days

compared lactation day 10 in log base 2 scale. X-axis represents the time points (L10, lactation day 10; I12h, involution

day 0.5; I24h, involution day 1; I48h, involution day 2; I72h, involution day 3; I96h, involution day 4). SOCS3,

suppressor of cytokine signaling 3; IGF1, insulin-like growth factor 1 (somatomedin C); STAT3, signal transducer and

activator of transcription 3 (acute-phase response factor); TGFB3, transforming growth factor, beta 3; ATF4, activating

transcription factor 4; IGFBP5, insulin-like growth factor binding protein 5; MMP3, matrix metallopeptidase 3.

https://doi.org/10.1371/journal.pone.0192689.g002
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Out of 10 gene signatures developed through STEM clustering using data from Clarkson

et al. [3], we found that one gene signature (Inv1) was significantly enriched in IBC versus non-

IBC Normal samples and one gene signature (Inv5) was significantly enriched in non-IBC nor-

mal versus IBC samples at FDR<25% (0.202 and 0.249, respectively). For involution-specific

signatures reported by Stein et al. [4], no gene signature that was significantly enriched in IBC

versus non-IBC normal samples and in non-IBC normal versus IBC samples at FDR<25%.

This again demonstrates enrichment of involution signatures in human breast tissues from

women with breast cancer, but the significant enrichment pattern is different in normal versus

tumor. Again, this is limited by a small sample size (19 IBC and 25 non-IBC normals). Of the

three genes mentioned from Inv5 tumor data as upregulated, only Leptin is upregulated in

IBC in normal breast tissue. Of note, Inv1 genes with 2-fold enrichment are the following:

CYP4B1, ACADL, PCK1, RASA3, CDO1, ABCA1 (see S4 Table for details). Interestingly,

ABCA1, the primary cholesterol transporter in HDL trafficking previously described by our

group as important in mediating the beneficial effects of HDL in IBC patients and pre-clinical

studies is upregulated in IBC [32].

Ontology analysis for significant clusters. We also conducted ontology analysis on genes

of significant clusters identified through the STEM using GO annotations for mus musculus

Table 3. GSEA results of involution-specific signatures in IBC versus non-IBC in the training and validation sets.

Gene

Signature

Results on Training Set Results on Validation Set

Enriched in IBC vs

non-IBC

Size ES NES Nominal p-

value

FDR q-

value

Enriched in IBC vs

non-IBC

Size ES NES Nominal p-

value

FDR q-

value

Involution specific signatures developed through STEM clustering using data from Clarkson et al. 2004

Inv1 IBC 205 0.360 1.064 0.415 0.443 IBC 205 0.212 0.643 0.912 0.927

Inv2 Non-IBC 100 -0.139 -0.552 0.933 0.976 IBC 100 0.169 0.674 0.849 1.000

Inv3 Non-IBC 57 -0.299 -0.917 0.625 1.000 IBC 57 0.322 1.030 0.403 0.836

Inv4 IBC 33 0.392 1.108 0.360 0.469 IBC 33 0.307 0.907 0.581 0.835

Inv5 IBC 30 0.514 1.492 0.014 0.263 IBC 30 0.492 1.436 0.028 0.433

Inv6 IBC 62 0.402 1.399 0.043 0.222 IBC 62 0.326 1.122 0.258 1.000

Inv7 IBC 36 0.295 0.843 0.719 0.650 Non-IBC 36 -0.284 -0.810 0.790 0.709

Inv8 Non-IBC 24 -0.294 -0.883 0.647 0.897 IBC 24 0.294 0.878 0.621 0.774

Inv9 IBC 33 0.611 1.363 0.131 0.184 IBC 33 0.409 0.915 0.592 0.975

Inv10 IBC 21 0.296 0.897 0.583 0.654 IBC 21 0.339 1.030 0.414 1.000

Involution specific signatures reported in Stein et al. 2009

S.C1 IBC 182 0.42 1.16 0.274 0.818 IBC 182 0.35 0.94 0.522 1

S.C2 Non-IBC 205 -0.27 -0.78 0.737 0.746 Non-IBC 205 -0.2 -0.63 0.945 0.962

S.C3 IBC 252 0.2 0.74 0.766 0.922 Non-IBC 252 -0.22 -0.81 0.695 1

S.C4 IBC 258 0.18 0.74 0.753 0.832 Non-IBC 258 -0.29 -1.25 0.215 0.718

S.C5.I3VL7 IBC 117 0.21 0.8 0.743 0.906 IBC 117 0.23 0.83 0.672 1

S.C6 Non-IBC 100 -0.25 -0.94 0.534 0.905 Non-IBC 100 -0.26 -1 0.438 0.715

S.C7 IBC 225 0.29 1.17 0.19 1 IBC 225 0.24 0.97 0.504 1

S.C8 Non-IBC 153 -0.25 -1.01 0.413 1 IBC 153 0.29 1.17 0.171 1

S.C9 Non-IBC 66 -0.25 -0.8 0.818 0.952 Non-IBC 66 -0.39 -1.24 0.149 0.365

S.I1VL7 IBC 495 0.19 0.85 0.693 1 Non-IBC 495 -0.16 -0.7 0.962 1

S.I2VL7 IBC 612 0.21 0.87 0.647 1 IBC 612 0.2 0.79 0.784 0.977

S.I3VL7 IBC 648 0.2 0.83 0.708 0.968 IBC 648 0.19 0.75 0.836 0.779

S.I4VL7 IBC 894 0.23 0.91 0.579 1 IBC 894 0.2 0.78 0.777 0.835

ES, enrichment score; NES, normalized enrichment score.

https://doi.org/10.1371/journal.pone.0192689.t003
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gene products available from the Mouse Genome Informatics to understand biologically rele-

vant processes. We did not find any significant biologic processes by the method for the IBC-

enriched involution signature (S2 Table).

Discussion

We reanalyzed the previously published expression profiling data set obtained from mammary

glands derived from mice at various stages of post-lactational mammary gland involution (12

gene expression profiles with two hybridizations for each of 10 day lactation time points, and

12, 24, 48, 72 and 96 hour involution time points). We focused on genes that were differentially

expressed during time periods spanning from the last day of lactation (day 10) to the fourth

day of involution by greater than 2-fold (p<0.05) and performed STEM cluster analysis to dis-

cern time-varied expression patterns. We identified 10 time-based gene clusters that represent

this time period, Inv1-10. Broadly, many are enriched versus depleted in IBC samples, but

only Inv5 is significantly enriched in both the training and validation set based on nominal p-

values, and note that FDR adjusted p-values are not significant for this cluster. Nevertheless,

given the limitations of the data and the lack of larger datasets or similar extensive gene array

studies of the involuting human breast, these hypothesis-generating findings may merit further

study.

Table 4. GSEA results of involution-specific signatures in IBC versus non-IBC in the merged 3 breast cancer data sets.

Gene Signature Merged 3 breast cancer data sets

IBC = 137 and non-IBC = 251

# Genes = 12064

Enriched in IBC versus non-IBC Size ES NES Nominal p-value FDR q-value

Involution specific signatures developed through STEM clustering using data from Clarkson et al. 2004

Inv1 IBC 205 0.29 0.88 0.584 0.869

Inv2 IBC 100 0.13 0.52 0.97 0.988

Inv3 IBC 57 0.25 0.81 0.807 0.902

Inv4 IBC 33 0.32 0.94 0.541 0.873

Inv5 IBC 30 0.51 1.47 0.03 0.392

Inv6 IBC 62 0.42 1.47 0.021 0.204

Inv7 IBC 36 0.26 0.75 0.867 0.896

Inv8 Non-IBC 24 -0.3 -0.92 0.573 0.541

Inv9 IBC 33 0.54 1.22 0.279 0.407

Inv10 IBC 21 0.43 1.34 0.122 0.298

Involution specific signatures reported in Stein et al. 2009

S.C1 IBC 182 0.4 1.08 0.379 0.614

S.C2 Non-IBC 205 -0.25 -0.77 0.735 0.902

S.C3 Non-IBC 252 -0.19 -0.72 0.783 0.849

S.C4 Non-IBC 258 -0.21 -0.89 0.568 1

S.C5.I3VL7 IBC 117 0.29 1.1 0.315 0.818

S.C6 Non-IBC 100 -0.26 -0.99 0.48 1

S.C7 IBC 225 0.28 1.13 0.26 1

S.C8 Non-IBC 153 -0.22 -0.88 0.717 0.835

S.C9 Non-IBC 66 -0.37 -1.21 0.189 0.847

S.I1VL7 IBC 495 0.19 0.83 0.717 0.639

S.I2VL7 IBC 612 0.21 0.87 0.671 0.798

S.I3VL7 IBC 648 0.21 0.84 0.694 0.729

S.I4VL7 IBC 894 0.23 0.9 0.591 0.882

https://doi.org/10.1371/journal.pone.0192689.t004
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Fig 3. Enrichment plots form GSEA for Inv5 signature for IBC versus non-IBC in the training and validation sets.

nIBC, non-Inflammatory breast cancer.

https://doi.org/10.1371/journal.pone.0192689.g003
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Up to now, the two most comprehensive studies examining global gene expression on the

post-lactational mammary gland have been conducted by Clarkson et al. [3, 5] and Stein et al.

[4]. Clarkson et al. [3] used the K means clustering method and Stein et al. used the self-orga-

nizing map in [4] and the hierarchical ordered partitioning and collapsing hybrid (HOPACH)

method in [9] to find the patterns among differentially expressed genes in the post-lactational

involution period. They discovered that apoptotic pathways and immunomodulatory signals

are induced during the process of post-lactational involution. During our reanalysis, we used

the STEM clustering method on the dataset by Clarkson et al. [3] to find the time-varied pat-

terns among differentially expressed genes in the post-lactational involution period. We identi-

fied 10 separate and significant time-varied expression patterns from 774 genes out of 1,055

significantly differentially expressed genes. Gene ontology analyses of these clusters showed

that cluster 1, which represented genes showing gradual up-regulation during the first 4 days

of involution, had over-representation of numerous biological processes whereas relatively few

are noted in other clusters. Representation of fatty acid oxidation and ER and membrane

Table 5. List of genes in Inv5 signature and genes enriched in IBC versus non-IBC.

Gene

Symbol

Gene Name Enrichment in IBC

(Training Set)

Enrichment in IBC

(Validation Set)

CD79B CD79b molecule, immunoglobulin-associated beta Yes Yes

IVL involucrin Yes Yes

KIF2C kinesin family member 2C Yes Yes

NOP2 nucleolar protein 2 Yes Yes

LDHB lactate dehydrogenase B Yes Yes

LEP leptin (obesity homolog, mouse) Yes Yes

AVIL advillin Yes Yes

DKK2 dickkopf homolog 2 (Xenopus laevis) Yes Yes

ARAP3 ankyrin repeat and PH domain 3 Yes Yes

YBX2 Y box binding protein 2 Yes No

CEP250 centrosomal protein 250kDa Yes No

RPS6KB2 ribosomal protein S6 kinase, 70kDa, polypeptide 2 Yes No

STX3 syntaxin 3 Yes No

NFKBIE nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, epsilon Yes No

GSTO1 glutathione S-transferase omega 1 Yes No

WT1 Wilms tumor 1 Yes No

DYNC1I1 dynein, cytoplasmic 1, intermediate chain 1 Yes No

RET ret proto-oncogene (multiple endocrine neoplasia and medullary thyroid carcinoma 1,

Hirschsprung disease)

Yes No

TIPIN TIMELESS interacting protein Yes No

LLGL2 lethal giant larvae homolog 2 (Drosophila) No Yes

TG thyroglobulin No Yes

DDIT4 DNA-damage-inducible transcript 4 No Yes

HPCA hippocalcin No Yes

GRAMD3 GRAM domain containing 3 No No

PAX4 paired box gene 4 No No

KCNJ4 potassium inwardly-rectifying channel, subfamily J, member 4 No No

NPY neuropeptide Y No No

CHRNA6 cholinergic receptor, nicotinic, alpha 6 No No

FRAT2 frequently rearranged in advanced T-cell lymphomas 2 No No

ERBB4 v-erb-a erythroblastic leukemia viral oncogene homolog 4 (avian) No No

https://doi.org/10.1371/journal.pone.0192689.t005
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biology in Inv6 may be noteworthy given the nominal significance of Inv6 in analysis of the

full data set and relevance of these systems in published IBC studies [28]. The over-representa-

tion of biological processes that we found are in general agreement with findings by Clarkson

et al. [3], who used a different analytical approach, and with findings by Stein et al. [4, 9], who

used a different mouse system and a different analytical approach.

We examined the enrichment of post-lactational mammary gland involution gene expres-

sion patterns in TNBC and IBC using the GSEA method. First, we used 10 significant time var-

ied gene expression patterns that we found in the dataset from Clarkson et al. (3). We found

that only one gene expression pattern was enriched in IBC compared to non-IBC in both

training and validation sets at the nominal p-value. None of these gene expression patterns

was enriched in TNBC compared to non-TN BC for both IBC and non-IBC groups in both

training and validation sets. Second, we used 13 gene expression patterns on post-lactational

involution as reported by Stein et al (9) and found that none of these gene expression patterns

was significantly enriched in IBC compared to non-IBC and TN BC compared to non-TN BC

in both training and validation sets. To investigate further, we examined the overlap between

the involution-specific signatures and the IBC-like signature (79 genes) [28]. We found that

there was minimal overlap between the involution-specific signatures and the IBC-like signa-

ture, and no gene overlapped between the Inv5 signature and the IBC-like signature (S3

Table).

One gene signature that showed nominal enrichment in IBC compared to non-IBC, Inv5,

contained genes that showed initial up-regulation and later down-regulation during the invo-

lution process. This might suggest that genes that upregulate during an initial phase of involu-

tion after abrupt weaning might not be turning off and, therefore, could be responsible for

facilitating an IBC-like phenotype after a tumor-initiating event. We examined the overlap of

this gene expression pattern with the existing gene signatures using the Molecular Signatures

Database (MSigDB) v4.0 [28]. We found that the genes up-regulated in VSMC by JNK1 [33]

showed the most significant overlap (FDR q value = 6.07E-5). Among these overlapped genes,

3 genes–Involucrin (IVL), Cluster of Differentiation 79B (CD79B), and leptin (LEP)–were sig-

nificantly enriched in IBC compared to non-IBC in both training and validation data sets in

our analysis. Involucrin is a transglutaminase substrate protein present in keratinocytes of epi-

dermis and other stratified squamous epithelia [34]. Tsuda et al [35] investigated the expres-

sion of Involucrin in breast cancer and found that Involucrin expression was detected in 27%

of breast cancer cases and was associated with high-grade atypia, a solid-nest pattern, cancer

cell necrosis on histology, and negative ER status. Leptin is a product of the obese (OB) gene,

an important regulator of energy balance and necessary for normal mammary gland develop-

ment [36]. In ER-positive breast cancer cell lines, leptin has been shown to stimulate cell

growth through activation of multiple signaling pathways including the Janus Kinase/Signal

Transducer and Activator of Transcription (JAK/STAT) pathway [37]. Thus, our results along

with the published functions of the above-mentioned genes indicate that they play a role

within the tumor microenvironment and may merit functional study of their role in promot-

ing IBC development and progression.

A major strength of our study is the use of the largest series of IBC samples ever reported by

the World IBC Consortium. Furthermore, this work is novel in part due to the use of updated

Chip Definition Files from the BrainArray [25] during preprocessing of gene expression data

for accurate probe mapping to the genome. Also, we used the GSEA [31] to examine enrich-

ment of involution signatures in IBC and TNBC phenotype. The GSEA gives more statistical

power to detect smaller changes in genes of a gene set compared to other methods of enrich-

ment analysis.

Post-lactational gene expression and aggressive breast cancers

PLOS ONE | https://doi.org/10.1371/journal.pone.0192689 April 4, 2018 13 / 17

https://doi.org/10.1371/journal.pone.0192689


Major limitations of our study include the cross-sectional analysis of enrichment of involu-

tion specific signatures in breast cancer and array-based measurement of gene expression pro-

files, which limit the detection of differentially expressed genes with lower levels of expression.

Also, although having the parity status of the patients within the World IBC consortium would

be valuable to our study, that information is not recorded or available to us and, as such, we

cannot determine or comment on whether parity-related effects persist or were present prior

to the time of analysis. Further, there are surprisingly few TNBC in the cohort given the estab-

lished over-representation of these subtypes in IBC which may influence the findings overall

and regarding TNBC versus non-TNBC. Additionally, the studies by Clarkson et al (3) and

Stein et al (4) did not include a corresponding group that underwent non-abrupt involution or

that was not force weaned, as the authors did not distinguish between abrupt involution versus

the normal involution process. Thus, the correlation between limited nursing and abrupt invo-

lution signatures remains unstudied here. Although inclusion of such a control group in these

studies would be useful to our analysis, we can speculate that Inv5 and IVL, CD79B, and LEP
in particular may play in role in IBC development after abrupt or involution. Given the limita-

tions of this study, however, additional research is warranted before a concrete conclusion can

be made.

In conclusion, our results provide some evidence that molecular events after abrupt involu-

tion are identifiable in IBC patient tissues from the uninvolved breast and tumor; however,

they are hypothesis-generating given the potential for false discovery after multiple compari-

sons as well as the other noted limitations of our study. Whether or not Inv5 or Inv6 related

genes or signaling are upregulated in the normal tissues around IBC tumors, and if breast-

feeding or abrupt cessation of breast-feeding contributes to the persistence of related genes in

the normal breast will be investigated in future studies.
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