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Abstract: In this study, compressive strength (CS) of fiber-reinforced nano-silica concrete (FRNSC)
was anticipated using ensemble machine learning (ML) approaches. Four types of ensemble ML
methods were employed, including gradient boosting, random forest, bagging regressor, and Ad-
aBoost regressor, to achieve the study’s aims. The validity of employed models was tested and
compared using the statistical tests, coefficient of determination (R2), and k-fold method. Moreover, a
Shapley Additive Explanations (SHAP) analysis was used to observe the interaction and effect of
input parameters on the CS of FRNSC. Six input features, including fiber volume, coarse aggregate to
fine aggregate ratio, water to binder ratio, nano-silica, superplasticizer to binder ratio, and specimen
age, were used for modeling. In predicting the CS of FRNSC, it was observed that gradient boosting
was the model of lower accuracy and the AdaBoost regressor had the highest precision in forecasting
the CS of FRNSC. However, the performance of random forest and the bagging regressor was also
comparable to that of the AdaBoost regressor model. The R2 for the gradient boosting, random
forest, bagging regressor, and AdaBoost regressor models were 0.82, 0.91, 0.91, and 0.92, respectively.
Also, the error values of the models further validated the exactness of the ML methods. The average
error values for the gradient boosting, random forest, bagging regressor, and AdaBoost regressor
models were 5.92, 4.38, 4.24, and 3.73 MPa, respectively. SHAP study discovered that the coarse
aggregate to fine aggregate ratio shows a greater negative correlation with FRNSC’s CS. However,
specimen age affects FRNSC CS positively. Nano-silica, fiber volume, and the ratio of superplasticizer
to binder have both positive and deleterious effects on the CS of FRNSC. Employing these methods
will promote the building sector by presenting fast and economical methods for calculating material
properties and the impact of raw ingredients.

Keywords: concrete; fiber-reinforced concrete; nano-silica; nano-silica modified concrete; compressive
strength

1. Introduction

Concrete is an extremely popular building material [1–5]. To reduce the brittle behav-
ior of concrete, researchers have been interested in fiber-reinforced concrete (FRC), which
has much more ductility than standard concrete [6–10]. Concrete failure begins with the
appearance of cracks. The purpose of introducing FRC, composed of several fibers like
glass, steel, and polypropylene, is to enhance the mechanical performance and energy
absorption capability of concrete by restricting the crack growth so that the structural ele-
ments can endure greater distortions following the development of the early cracks [11–15].
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Nanoparticles, such as nano-silica (NS), have been proven to fill the voids of cement paste
and increase the durability and mechanical performance of concrete [16–19]. Hence, the
usage of nanoparticles in FRC might result in a material with better performance that is
ideal for the building of long-lasting, high-performance structures. The initial and final
setting times of the concrete were decreased by NS, and its early age strength was enhanced.
An essential aspect of NS is its nanostructure, which offers an extraordinarily larger specific
surface area (SSA) and thus functions as a cement-aggregate binder [20]. Nanoparticle
size is responsible for NS’s strong pozzolanic action [21,22]. The interfacial transition zone
(ITZ), which is considered to be a weak point in concrete, is also enhanced [23] due to
the fact that these nanoparticles fill all gaps and voids [24], hence reducing permeability.
It has been demonstrated that NS is a very effective element that speeds up the hydra-
tion process of concrete [25] and creates more calcium-silicate-hydrate (C-S-H) gel [26,27],
which is responsible for the strength of a material [28,29]. In cementitious materials, the
fraction of portlandite-Ca(OH)2 reduces as NS mixes with Ca(OH)2 to produce a denser
product [30]. Certain earlier research indicates that replacing NS for up to 4% of the ce-
ment can increase its durability and strength under unfavorable conditions like corrosion
and high temperatures [31,32]. Although several research studies have proven the usage
of NS for specific applications of concretes, it has been found to be extremely effective
when used at a percentage of 0.5 to 4% as a cement replacement. The excessive quantity
of NS may result in particle accumulation due to non-uniform dispersal, thus reducing
workability [33]. Numerous nanoparticles are used as additives in concrete to enhance
their macroscopic properties and performance, and NS has become commonplace amongst
these nanoparticles. Nonetheless, the limited practical applications of NS in the building
are due to their higher expenses, which are roughly 1000 times more costly than regular
cement [34,35].

Several experiments are conducted to evaluate the concrete performance, but com-
pressive strength (CS) is commonly considered extremely critical [36]. CS of concrete
provides valuable information about its many properties. Concrete’s CS is directly or
indirectly linked to a range of mechanical and durability characteristics [37]. To reduce
unnecessary experimentation and resource waste, forecasting models for the strength of
materials are now being established. Numerous standard models, including best-fit curves,
are used to mimic the characteristics of concrete (formed on regression analysis). Due
to the nonlinear nature of cement-based composites [6,38], regression approaches devel-
oped in this approach may not effectively signify the material’s fundamental performance.
Moreover, regression methods might exaggerate the significance of particular factors [39].
Methods based on artificial intelligence (AI), such as supervised machine learning (ML),
are amongst the highly innovative modeling techniques employed in the current subject
domain [40–44]. These approaches model responses utilizing input features, and the re-
sultant models are backed by testing. ML approaches are used to predict the features of
concrete and bituminous mixes [45–52].

In addition to experimental research, the application of various ML algorithms to
forecast the fresh and hardened characteristics of concrete mixes has been proven to pro-
vide considerable benefits [53,54]. Using AI technology, a previous study suggested a new
data-driven formulation for estimating the CS of foam cellular concrete. The generated
model can estimate CS and beats all empirical models [55]. Other similar studies explored
the capability of an AI system to forecast the characteristics of concrete. The AI technique
was suggested as an alternative to an experimental program for modeling the fresh and
hardened characteristics of concrete [56,57]. Behnood et al. [58] examined the model tree
as an AI technique for predicting the CS of separate data records of normal and high-
performance concrete. They discovered that the model tree-based categorization technique
might provide very accurate prediction formulas. Gholampour et al. [59] concentrated
on the application of AI techniques for estimating the mechanical parameters of recycled
aggregate concrete. This research determined the applicability of predictive AI models in
pre-design and modeling. It was determined that most of the earlier ML-based investiga-
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tions concentrated on forecasting the CS of normal cement-based materials [60–66]; just
a few papers focused on predicting the properties of fiber-reinforced nano-silica concrete
(FRNSC).

This study concentrates on ML methods utilization to calculate the CS of FRNSC. Four
types of ensemble ML methods were employed, including gradient boosting (GB), random
forest (RF), bagging regressor (BR), and AdaBoost regressor (AR), to achieve the study’s
aims. The performance of each model was assessed using statistical tests, coefficients of
determination (R2), k-fold method, and variance of projected findings (errors) from those
of actual. The reason for choosing only ensemble ML methods is because it is evident
from the literature that ensemble ML methods outperform individual ML methods [67,68].
Therefore, this study employed only ensemble ML methods to assess which one is the best
predictor. Though experimental investigations need substantial human effort, expenditures,
and time for materials gathering, casting, curing, and performing tests, by overcoming the
aforesaid difficulties through the application of innovative methodologies such as ML, the
building sector will acquire an edge. Since a variety of variables, such as fiber volume, the
aggregate amount, water to binder ratio, nano-silica dosage, etc., impact the concrete CS, it
is challenging to evaluate their combined influence using experimental approaches. In this
context, a Shapley Additive Explanations (SHAP) analysis was performed to explore the
interaction and influence of input parameters on the CS of FRNSC. A data set is necessary
for ML techniques and SHAP analysis, which may be gathered from past studies as different
experimental research has been done to demonstrate the CS of FRNSC. The obtained data
might then be employed to train ML systems and estimate material properties. The current
research utilized six input parameters and 175 data samples to forecast the CS of FRNSC
and assess the performance of multiple ML techniques. The objective of this work is to
determine the most suited ML approach for predicting the CS of GPC and the influence of
many factors on FRNSC strength.

2. Research Strategy
2.1. Dataset Description

In order to develop the required result, ML methods need a vast diversity of input
variables [69]. The CS of FRNSC was computed using literature data (see Supplementary
Data). To avoid bias, data samples were collected arbitrarily from previous studies, and
data points containing CS results were collected for algorithm execution. Fiber volume (FV),
coarse aggregate to fine aggregate ratio (CA/FA), water to binder ratio (w/b), nano-silica
(NS), superplasticizer to binder ratio (SP/B), and specimen age (A) were incorporated as
inputs in the models, with CS acting as an output. The amount of input features and size
of the dataset have a significant impact on the model’s output [70]. In this research, 175
data samples were employed to run ML models. Three kinds of fibers were utilized in the
FRNSC samples, including steel, polypropylene, and glass fibers. The data were obtained
based on the proportions of the mixture and the desired result in a concern, as models
required comparable types of input parameters for each mixture to yield the required
output. The descriptive statistics for each input variable are given in Table 1. The word
“descriptive statistics” indicates a collection of brief, scientific measurements that give
an outcome, which might be the entire population or its subgroup. The mode, median,
and mean reveal basic trends, whereas the standard deviation, minimum, and maximum
indicate variance. Table 1 comprises all statistical terms for the input variables. Figure 1
depicts the relative frequency dispersal of each input component.
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Table 1. The outcomes of the descriptive assessment of input parameters.

Parameter FV (%) CA/FA w/b NS (kg/m3) SP/B A (Days)

Mean 0.20 0.91 0.41 21.21 0.02 41.65
Median 0.20 0.87 0.39 16.50 0.02 28.00
Mode 0.20 0.87 0.39 0.00 0.02 7.00

Standard Deviation 0.18 0.06 0.04 17.30 0.01 38.25
Range 0.90 0.26 0.17 49.60 0.02 113.00

Minimum 0.00 0.87 0.31 0.00 0.01 7.00
Maximum 0.90 1.14 0.48 49.60 0.03 120.00
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Figure 1. Input parameter’s relative frequency dispersion.



Polymers 2022, 14, 3906 5 of 23

2.2. Modeling

To meet the study’s aims, four ensemble ML methods, including GB, RF, BR, and
AR, were used with Python coding employing the Anaconda Navigator software. Spyder
(5.1.5) was utilized to execute the ML models. In the presence of input variables, these ML
approaches are frequently employed to estimate the intended output. These approaches
may forecast the temperature effects, the strength properties, and the durability of the
material [71,72]. During the modeling stage, six input characteristics and one output (CS)
were used. The R2 value of the expected outcome represents the performing ability of
the applied techniques. The R2 value defines the extent of deviation; a number close
to zero signifies larger variation, whilst a value close to one implies that the predicted
model and actual data are almost entirely fit [73]. The succeeding subsections describe
the ML techniques utilized in this investigation. In addition, all models underwent k-fold,
statistical, and error assessments, including mean absolute error (MAE), mean absolute
percentage error (MAPE), and root mean square error (RMSE). Also, a SHAP analysis
is utilized to investigate the effect of input characteristics on the CS of FRNSC. Figure 2
depicts the plan for the study.
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Figure 2. Sequence of the research strategy adopted.

2.2.1. Gradient Boosting

In 1999, Friedman [74] suggested GB as an ensemble method for regression and classi-
fication. GB is solely beneficial for regression. Figure 3 demonstrates that the GB method
associates each repeat of the randomly chosen training dataset with the fundamental model.
By randomly subsampling the training dataset, which also inhibits overfitting, it is possible
to reduce execution time and improve accuracy. Since every repetition of the model must
incorporate minimum data, the smaller the training dataset, the quicker the regression.
GB approach needs modification parameters, including shrinkage rate and n-trees, where
n-trees are the tree numbers to be produced; n-trees should not be retained too little, and
the shrinkage aspect, also recognized as the learning rate, must not be kept too high [75].
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2.2.2. Random Forest

The RF method, which is a classification and regression-based technique, is being
used frequently [77,78]. In RF, numerous trees, also known as a forest, are constructed,
and dissimilar data are arbitrarily picked and assigned to corresponding trees, as seen in
Figure 4. Every tree has columns and rows of data, and various measurements of columns
and rows are picked. The subsequent processes are performed for the expansion of every
tree; two-thirds of the overall data is arbitrarily picked for every tree’s data frame. This
practice is considered bagging. The prediction variables are selected at random, and the
node separation is accomplished by finely dividing these variables. The leftover data are
used to approximate out-of-bag error for all trees. Therefore, the ultimate out-of-bag error
rate is determined by merging the mistakes from every tree. Every tree gives regression,
and the forest with the greatest number of votes is chosen as the model. The importance of a
vote can be either a 1 or a 0. The probability of prediction is measured by the fraction of ones
obtained. RF is the most complex method for ensemble learning. It has ideal characteristics
for variable importance measures (VIMs), including fewer model parameters and robust
overfitting resilience. A decision tree is utilized as a basic forecaster for RF, and RF models
with default parameter settings can give acceptable results [79].
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2.2.3. Bagging Regressor

Figure 5 depicts a schematic flowchart of the method for BR. It is essentially an
analogous ensemble approach that characterizes the forecast model adjustment with the
addition of more training data. The irregular sampling method comprises the replacement
of data from the main set. Utilizing replacement sampling, every new training data set
is able to replicate certain observations. In the bagging process, each component has an
equal chance of occurring in the new dataset. The size of the training set is independent
of predictive force. In addition, variation may be significantly reduced by fine-tuning
the intended outcome estimate. Using these data sets, more models are trained. The
mean of all model forecasts is utilized for this ensemble. In regression, the mean of the
forecasts of many models can serve as a forecast [81]. Twenty sub-models are used to
fine-tune the bagging method using a decision tree in order to determine the optimal
output-producing value.
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2.2.4. AdaBoost Regressor

Figure 6 depicts the procedure for predicting the outcome of the AR algorithm. As
multi-classifiers, multiple algorithms are pooled to form an ensemble, a group of about
a thousand learners working toward the same purpose to resolve the situation. An AR
method employs ensemble learning, which is essentially a supervised ML method. It is
also known as adaptive boosting due to the fact that weights are re-connected to each
occurrence, with bigger weights being linked to examples that have been inaccurately
grouped. Boosting strategies are usually used to decrease variance and bias in supervised
ML. Using ensemble strategies can help weak learners improve. It employs an unlimited
amount of decision trees for input data throughout the training stage. During the creation of
the first decision tree, incorrectly classified data are highlighted inside the primary model.
The identical data records serve as input for a separate model. The above-mentioned
procedure would be continued until a specific number of base learners were produced.
AR enhances the development of the decision tree’s operation on binary classification
problems. Moreover, it is utilized to enhance the ML model’s performance. It is very helpful
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when employed with weak learners. These ensemble methods are widely employed in
material science, specifically for forecasting the mechanical characteristics of cementitious
materials [82].
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3. Analysis of Results
3.1. Gradient Boosting Model

Figure 7 displays the outcomes of the GB technique for the CS estimation of the FRNSC.
Figure 7a depicts the relation among actual data and predicted results. The GB approach
produced outcomes with a reasonable level of exactness and a little difference among
actual and estimated results. The R2 of 0.81 indicates that the GB approach is reasonable
in predicting the CS of FRNSC. The dispersal of projected and divergent values (errors)
for the GB model is shown in Figure 7b. After examining the error values, the lowest,
average, and maximum values were determined to be 0.30 MPa, 5.92 MPa, and 26.40 MPa,
respectively. Furthermore, the proportional dispersal of errors was analyzed, and it was
found that 16.98% of the values fell below 1 MPa, 24.53% fell within the range of 1–3 MPa,
24.53% fell within the range of 3–6 MPa, 16.98% fell within the range of 6–10 MPa, and
16.98% were greater than 10 MPa. Furthermore, the divergent values show that the GB
approach predicted the CS of FRNSC with a satisfactory degree of accuracy.
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sion of anticipated results and errors. Error = |Experimental result− Estimated result|.

3.2. Random Forest Model

Figure 8 provide an assessment of the experimental and predicted results of the RF
model. Figure 8a shows the relation among real and predicted findings, with an R2 of
0.91 demonstrating that the RF approach is more exact than the GB in calculating the CS
of FRNSC. Figure 8b represents the spreading of anticipated results and errors using the
RF method. The lowest, average, and greatest errors were found to be 0.06 MPa, 4.38 MPa,
and 12.77 MPa, respectively. Also, it was determined that 15.09% of the error distribution
were below 1 MPa, 28.30% fell between 1–3 MPa, 26.42% fell between 3–6 MPa, 24.53% fell
between 6–10 MPa, and 5.66% exceeded 10 MPa. Moreover, this reduction in error suggests
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that the RF model is more exact than the GB model. The enhanced precision of the RF is a
result of its optimal properties for VIMs.
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3.3. Bagging Regressor Model

Figure 9 illustrates the results of the BR technique used to forecast the FRNSC’s CS.
Figure 9a shows the link among experimental and projected results. The BR technique
produced outcomes with greater precision than the GB model and a lower variance among
actual and anticipated findings. With an R2 of 0.91, the BR model is equivalent to the RF
model in calculating the CS of FRNSC. Figure 9b represents the dispersion of anticipated
values and errors using the BR technique. It was revealed that the least, average, and highest
error values were 0.10 MPa, 4.24 MPa, and 11.90 MPa, respectively. The error division was
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18.87% less than 1 MPa, 18.87% among 1–3 MPa, 32.08% between 3–6 MPa, 22.64% between
6–10 MPa, and 7.55% over 10 MPa. The error distribution also demonstrated that the BR
model was more exact than the GB model and had precision equivalent to the RF model.
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3.4. AdaBoost Regressor Model

Figure 10 illustrates the results of the AR technique used to forecast the FRNSC’s CS.
Figure 10a shows the correlation among actual and projected outcomes. The AR technique
produced outcomes with the best precision of all the other models employed in the present
study and the least variance among actual and forecasted findings. With an R2 of 0.92,
the AR model is most exact in calculating the CS of FRNSC. Figure 10b represents the
spreading of expected findings and errors using the AR technique. It was found that
the least, average, and highest error values were 0.30 MPa, 3.73 MPa, and 15.70 MPa,
respectively. The error division was 24.53% less than 1 MPa, 33.96% between 1–3 MPa,
18.87% between 3–6 MPa, 16.98% between 6–10 MPa, and 5.66% over 10 MPa. The error
distribution also demonstrated that the AR model is the most exact than the other model
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employed. The reasons for the best accuracy of the AR model are because it uses an endless
amount of decision trees for training, and in the first decision tree, incorrectly categorized
data are prioritized. Also, another model uses the same data records. The aforementioned
technique is repeated until enough basic learners are created. In addition, AR improves
decision tree performance in binary classification.
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4. Validation

Statistical checks, as well as k-fold methods, were applied to verify the exactness of
ML algorithms in use. Typically, statistical checks in the form of errors (MAE, MAPE, and
RMSE) are calculated to measure and compare the performance of ML techniques. Also,
the k-fold method is applied to test the soundness of an approach by randomly distributing
and splitting relevant data into 10 groups [84]. As shown in Figure 11, nine groups are used
to train ML models, while one is used to validate them. The ML approach is more accurate
when the errors (MAE, MAPE, and RMSE) are minor and R2 is larger. In addition, the
technique must be performed 10 times for a desirable outcome. This repetitive effort adds
substantially to the ML model’s excellent exactness. Also, as shown in Table 2, each model’s
accuracy was statistically evaluated using errors assessment (MAE, MEPE, and RMSE).
Using Equations (1)–(3) derived from previous research [85,86], the projecting performance
of the ML methods was statistically evaluated. It was found that the MAE values for GB,
RF, BR, and AR are 5.920, 4.379, 4.237 and 3.727 MPa, respectively. MAPE for GB, RF, BR,
and AR were determined to be 11.2%, 7.40%, 7.30%, and 6.50%, respectively. Also, RMSE
values for GB, RF, BR, and AR were calculated to be 8.685, 5.416, 5.241 and 5.099 MPa,
respectively. These assessments also indicated that the AR model is more precise than the
alternatives due to its lower error rate.

MAE =
1
n ∑ n

i=1|Pi − Ti|, (1)

RMSE =

√
∑

(Pi − Ti)
2

n
, (2)

MAPE =
100%

n ∑ n
i=1
|Pi − Ti|

Ti
, (3)

where n = size of the dataset, Pi = estimated results, and Ti = experimental results.
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Figure 11. Schematic illustration of the k-fold method [87].
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Table 2. Statistical evaluation of the techniques used.

Model MAE (MPa) MAPE (%) RMSE (MPa)

Gradient boosting 5.920 11.2 8.685
Random forest 4.379 7.40 5.416

Bagging regressor 4.237 7.30 5.241
AdaBoost regressor 3.727 6.50 5.099

To measure the validity of models using k-fold evaluation, R2, RMSE, and MAE were
calculated, and their results are shown in Table 3. To assess the outputs of each ML method’s
k-fold analysis, Figures 12–14 are created. The MAE values for the GB method ranged
from 4.16 to 12.33 MPa, with a mean of 7.83 MPa. The range of MAE for the RF model
was 3.21 to 12.73 MPa, with a mean of 6.84 MPa. Also, the MAE values for the BR method
varied among 3.94 and 13.50 MPa, with a mean of 6.84 MPa. In addition, the MAE values
for the AR method varied among 2.30 and 10.40 MPa, with a mean of 6.64 MPa (Figure 12).
Similarly, average RMSE values for the GB, RF, BR, and AR models were 9.06, 8.23, 8.34
and 8.01 MPa, respectively (Figure 13). Though the average R2 values for GB, RF, BR, and
AR were 0.61, 0.64, 0.64 and 0.68, respectively (Figure 14). In terms of forecasting the CS of
FRNSC, the AR model with the lowest error values and the highest R2 is comparably the
most accurate.

Table 3. MAE, RMSE, and R2 results from the k-fold assessment.

K-
Fold

GB RF BR AR

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

1 9.73 10.66 0.30 5.17 6.42 0.67 5.10 6.62 0.68 6.27 6.59 0.69
2 12.33 17.56 0.33 8.60 11.32 0.66 8.30 11.10 0.64 8.56 11.79 0.44
3 11.94 13.17 0.66 12.73 17.88 0.26 13.50 17.29 0.43 10.40 13.93 0.50
4 5.40 6.32 0.62 5.14 5.49 0.67 5.04 5.86 0.62 5.91 6.50 0.64
5 5.54 5.68 0.73 9.50 9.69 0.32 9.89 10.35 0.26 7.68 6.23 0.44
6 4.16 4.79 0.81 3.21 4.26 0.91 3.94 5.28 0.91 2.30 5.02 0.92
7 6.31 6.91 0.27 5.11 6.62 0.26 4.88 6.37 0.27 5.18 6.68 0.49
8 8.01 8.84 0.79 6.39 5.48 0.90 4.78 6.19 0.83 7.20 8.21 0.89
9 8.28 9.65 0.81 6.10 7.32 0.90 5.69 7.17 0.91 7.24 8.85 0.91

10 6.57 7.00 0.79 6.43 7.82 0.81 7.30 7.18 0.85 5.66 6.33 0.88
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Figure 12. MAE dispersal from k-fold evaluation.
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Figure 13. RMSE dispersal from k-fold evaluation.
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Figure 14. R2 dispersal from k-fold evaluation.

5. Interaction and Impact of Input Features on the CS of FRNSC

In this study, the effect of input features on the performance of the CS of FRNSC was
examined. SHAP tree explainer is primarily applied to the entire dataset to deliver a more
precise account of global feature effects by integrating local SHAP explanations. Figure 15
depicts the findings of the violin SHAP plot for all of the input parameters utilized in
this study. In this graph, each parameter value is denoted by a distinctive color, and the
matching SHAP value on the x-axis represents the influence of an input feature. CA/FA
is an example of an input characteristic with a greater effect, illustrative of the stronger
negative correlation among this feature and the CS of FRNSC (higher red spots on the
negative axis). This suggests that a rise in CA/FA would likely result in a decrease in CS.
However, the age of specimen (A) has a more positive impact (more red dots on the positive
side), suggesting that at increased specimen age, CS improves. The impact of NS and FV on
the CS was determined to be both positive and negative, implying that the incorporation of
NS and FV up to an optimal amount has a positive impact while using NS and FV above
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that limit has a negative impact on the CS of FRNSC. A similar correlation of SP/B on CS
to that of NS can also be seen. The impact of the w/b was determined to be unclear due
to the less variation of w/b in the used dataset. Employing a greater size dataset with a
higher variation of input features might produce better relationships.
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Figure 16 demonstrates the relationships between the input parameters and their
impact on the CS of the FRNSC. Figure 16a displays the FV interaction. The scatter figure
demonstrates that, amongst other features, FV has the greatest influence on the CS of
FRNSC, which increases with the quantity of FV up to 0.5% and then decreases and
interacts mostly with the NS. Under these conditions, an FV of nearly 0.5% is optimal
for achieving a high CS for FRNSC while using the same components as in the current
study. Conversely, increasing levels of CA/FA have a negative influence on the CS of
FRNSC (Figure 16b) and interact mostly with the age of the specimen. Also, as depicted in
Figure 16c, w/b interacts mostly with NS and increasing its value has a negative impact on
the CS of FRNSC. Thus, the w/b should be maintained lower to achieve higher strength.
The impact of incorporating NS in concrete was found to be beneficial (see Figure 16d).
Using NS up to an optimal quantity will help improve the strength of concrete. Thus,
NS might be used in the range of 30–35 kg/m3 to obtain enhanced material strength. In
addition, NS interacts mostly with the age of specimen (A), among the other input features.
This suggests that the development of concrete strength with NS is proportional to the
specimen age, i.e., at increased age, the strength will increase. As seen from Figure 16e,
the higher SP/B ratio deteriorated the FRNSC strength, and its optimal ratio is nearly
0.20. Figure 16f implies that with increasing specimen age, the CS of FRNSC increases
and maximum strength might be achieved at 120 days. It is essential to note that these
findings are based on the kinds of input features and amount of data samples analyzed
in this research. Employing diverse input features and data samples may result in unique
outcomes.
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6. Discussion

This study employed four ensemble ML methods, including GB, RF, BR, and AR. The
accuracy of each method was assessed to find out which is the highly efficient predictor.
Compared to the GB method, with an R2 of 0.81, the other three models, i.e., RF, BR, and AR,
produced more accurate results with an R2 of 0.91, 0.91, and 0.92, respectively. The accuracy
of the RF, BR, and RF was found to be approximately comparable in predicting the CS of
FRNSC from the R2 and error distributions (MAE, MAPE, and RMSE). For the comparison
of the results of the present study to those of the previously published literature, Table 4 has
been constructed. The past studies also reported the higher precision of the RF, BR, and AR
models in forecasting the strength characteristics of concretes [67,76,79,87,88]. For example,
Khan et al. [67] employed two ensemble ML methods (GB and BR) to anticipate the CS of
recycled aggregate concrete and found the best accurate results with the BR model.
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Table 4. Ensemble machine learning models employed previously.

Type of Material Forecasted Properties Ensemble ML Methods Used No. of Input
Features

Size of
Dataset

Optional ML
Method Reference

Recycled aggregate concrete CS GB and BR 8 638 BR [67]
Geopolymer concrete CS BR and RF 9 371 BR [88]

High-performance concrete CS AR, BR, extreme GB, and RF 8 1030 RF and BR [85]
Recycled aggregate concrete CS and flexural strength GB and RF 12 638 RF [76]

Geopolymer concrete CS AR and RF 9 363 AR and RF [87]
Geopolymer concrete CS BR and AR 9 154 BR [73]

High-performance concrete CS AR and RF 7 1030 RF [79]
High-performance concrete CS AR and BR 8 1030 BR [89]

In addition, each model’s accuracy was evaluated using statistical and k-fold ap-
proaches. A model is more precise when the degree of divergence (errors) from the experi-
mental results is less. Nevertheless, determining and suggesting the most favorable ML
approach for predicting properties in diverse research fields is difficult since the precision
of an ML technique is largely reliant on the number of inputs and data samples utilized
to run algorithms [85]. Ensemble ML approaches commonly use the weak learner by
creating sub-models that are trained on the dataset and tuned to increase the R2 value, thus
yielding outcomes with higher accuracy than the individual ML models. The distribution
of R2 for the GB, RF, BR, and AR sub-models is seen in Figure 17. The R2 values for GB
sub-models ranged from 0.808 to 0.818, yielding an average of 0.814. Also, the R2 values for
the RF sub-models ranged from 0.893 to 0.909, yielding an average of 0.904. Similarly, the
average R2 of BR and AR sub-models was determined to be 0.905 and 0.917, respectively.
These findings validate that the RF, BR, and AR sub-models have higher accuracy than
the GB sub-models, having nearly equal precision. In addition, SHAP analysis is carried
out utilized to explore the interaction and effect of input features on the CS of FRNSC.
CA/FA was shown to be a highly effective input feature, demonstrating a larger negative
correlation with FRNSC’s CS. However, the impact of specimen age was found to be more
beneficial on the CS of FRNSC. The influence of NS and FV on CS was both positive and
negative, signifying that utilizing NS and FV up to an optimum level has a good impact,
while using NS and FV over that limit has a detrimental impact on FRNSC’s CS. SP/B also
has a comparable correlation. However, due to little variance in w/b in the data sample, the
w/b influence b’s was unclear, and larger datasets with more input attributes may create
better relationships. This sort of exploration will support the building sector by accelerating
the progress of quick and economical approaches for calculating material properties and
the impact of raw ingredients.
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7. Conclusions

This study focused on comparing the performance of ensemble machine learning (ML)
techniques to predict the compressive strength (CS) of fiber-reinforced nano-silica concrete
(FRNSC). Four types of ML methods, including gradient boosting (GB), random forest (RF),
bagging regressor (BR), and AdaBoost regressor (AR), were used to forecast outcomes. In
addition, SHAP analysis was performed to assess the interaction of input features and their
impact on the CS of FRNSC. This research reached the following conclusions:

• The performance of the GB model in estimating the CS of FRNSC was found to be
satisfactory, with an R2 of 0.81, while the performance of other ML models, i.e., RF, BR,
and AR, was found to be more accurate in anticipating the CS of FRNSC, with an R2 of
0.91, 0.91, and 0.92, respectively. The accuracy of RF, BR, and AR might be considered
approximately equal.

• The difference between estimated and experimental results (errors) for all models was
analyzed and revealed that in 16.98%, 5.66%, 7.55%, and 5.66% of estimated results, the
error values for GB, RF, BR, and AR models were above 10 MPa, respectively. These
errors also confirmed the comparable precision of RF, BR, and AR models and higher
accuracy than the GB model.

• Statistical and k-fold assessments were employed to confirm the employed model’s
performance. Smaller errors and higher R2 reflect ML model accuracy. The mean
absolute percentage error (MAPE) for the GB, RF, BR, and AR models was 11.2%,
7.40%, 7.30%, and 6.50%. These MAPEs further validated the best performance of the
AR model, followed by BR, RF, and GB in predicting the CS of FRNSC.

• K-fold analysis revealed that the average MAE for GB, RF, BR, and AR was 7.83, 6.84,
6.84, and 6.64 MPa, respectively. Similarly, the average RMSE for GB, RF, BR, and AR
was 9.06, 8.23, 8.34, and 8.01, respectively. In contrast, the average R2 for GB, RF, BR,
and AR was 0.61, 0.64, 0.64, and 0.68, respectively. The lower errors (MAE and RMSE)
and higher R2 suggested the AR model had the highest precision among the others.

• SHAP analysis revealed that coarse aggregate to fine aggregate ratio (CA/FA) had a
stronger adverse correlation with FRNSC’s CS. Whereas specimen age had a positive
impact on FRNSC CS and nano-silica (NS), fiber volume (FV), and superplasticizer to
binder ratio (SP/B) had both favorable and detrimental effects on the CS of FRNSC.
Using NS, FV, and SP/B within the optimum limits enhances the CS, while their usage
in lower and higher concentrations may cause deterioration of CS.

• This sort of exploration will support the building sector by accelerating the progress of
quick and economical approaches for calculating material properties and the impact
of raw ingredients.
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