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Abstract: From time immemorial, humans have exploited plants as a source of food and medicines.
The World Health Organization (WHO) has recorded 21,000 plants with medicinal value out of
300,000 species available worldwide. The promising modern “multi-omics” platforms and tools
have been proven as functional platforms able to endow us with comprehensive knowledge of the
proteome, genome, transcriptome, and metabolome of medicinal plant systems so as to reveal the
novel connected genetic (gene) pathways, proteins, regulator sequences and secondary metabolite
(molecule) biosynthetic pathways of various drug and protein molecules from a variety of plants with
therapeutic significance. This review paper endeavors to abridge the contemporary advancements in
research areas of multi-omics and the information involved in decoding its prospective relevance
to the utilization of plants with medicinal value in the present global scenario. The crosstalk of
medicinal plants with genomics, transcriptomics, proteomics, and metabolomics approaches will
be discussed.

Keywords: medicinal plants; multi-omics platforms; genomics; transcriptomics; proteomics; metabolomics

1. Introduction
1.1. Medicinal Plants

The welfare of humankind depends on 12% of Earth’s approximately 300,000 [1,2]
to 400,000 plant species. Plant-based herbal medicines have been utilized for more than
5000 years. In the post-Neolithic period, approximately 60% of plants were reported to
have medicinal properties [3]. Medicinal plants produce active metabolites or compounds
of pharmacological importance for humankind [4]. Payne et al. [5] reported that only
5000 plant species from 250,000–300,000 were thoroughly studied for their medicinal value.
Both small, narrow-ranged species and trees have therapeutically vital compounds [6,7].
Traditional medicinal plants are widely exploited in various regions of the world or across
different continents, for instance, in South America, Asia and Africa [8], and in diverse
civilizations [9,10]. For generations, ethno-medicine has been utilized by around 60% of the
world population for their healthcare needs [11]. In prehistoric times when the medicinal
properties of herbs were being explored [12–14], their scientific relevance, experimental
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potentiality, molecular mechanisms of medicinal value and emerging omics technologies
applicability were unknown. The isolation of the bioactive compound “morphine” from
the medicinal plant Papaver somniferum L. was the first reported in the early 1800s [15].
Countries such as Korea, China, India and Japan are leading the scientific investigation
and validation of the fundamental principles of traditional medicines [16]. The World
Health Organization (WHO) has catalogued 21,000 medicinal plants the world over. Out
of these, 2500 species are of Indian origin, because of which India is known as the main
producer of medicinal plants [17]. The WHO states that up-to 80% of the population of
the developing countries depend principally on drugs of plant origin [18,19]. The WHO
estimates that plant-based medicines provide principal healthcare for around 3.5–4 billion
citizens globally [20]. The International Union for Conservation of Nature and World
Wildlife Fund estimated that universally, above 50,000 plant species find use in medicinal
purposes [21,22]. Around 25% of pharmaceuticals have a direct or indirect plant-based
origin [23,24]. Global Industry Analysts (GIA) hold the opinion that the worldwide plant
and herbal supplement market by the year 2020 will be worth USD 115 billion [25]. The
WHO reports that the present need of herbal drugs is USD 14 billion per year, and by
the year 2050, it will reach to USD 5 trillion [26]. Medicinal plants have been used in
Indian therapeutic systems from time immemorial. Indian Medicine Systems include
systems of medicine of Indian origin, such as Ayurveda (2559 herbs), Siddha (2267 herbs),
Unani (1049 herbs), Sowa-Rigpa (671 herbs), Yoga, Naturopathy and Ethno-botanical Folk
(6403 herbs), or those that came to Indian land from exterior areas and became enriched and
incorporated into Indian culture, such as homeopathy (460 botanicals), which came to India
in the 18th century [27]. The Indian Traditional Medicine System (Ayurveda) is gaining
global acceptance. Approximately 25,000 efficient plant-based formulations are exploited
within India. The trading of authenticated therapeutic plants and their products universally
is worth approximately USD 60 billion. The annual profits of Ayurveda-based medicines
in the global market are around USD 813 million [28]. Consequently, the Indian market is
the heart of therapeutic plant trading, with a computable trade of around USD 140 million
per annum. In 2010, the international export of plant-based and natural ingredients was
worth around USD 33 billion and was anticipated to reach USD 93 billion by the year
2015, whereas the export of Indian medicinal plants and their products was predicted to
be USD ~0.2 billion. Besides the global business, the worldwide trade of medicinal plants
in India generates revenue of USD 1.6–1.8 billion [29]. India contributes only 2.5% of the
annual USD 60 billion that constitutes the total worldwide herbal market. In spite of the
rich legacy of Ayurvedic literature and the huge biodiversity of medicinal plants, India is
still fighting with the potential market demands [29]. Herbaceous plant species (86 genera
of 29 families) of Jammu province [30] and 105 medicinal plant species (36 families) from
diverse niches of the district of Samba in the Union Territory of Jammu and Kashmir
are used for medicinal purposes [31]. There are about 41 dicotyledonous plant species
(29 families) [32] and 13 monocotyledonous angiospermic plant species (of 5 families) in
the Union Territory of Jammu and Kashmir which are useful in the healing of diabetes
mellitus [33].

1.2. Omics Technologies

Modern day omics approaches, which include genomics, transcriptomics, proteomics
and metabolomics, are becoming extremely significant for the identification and char-
acterization of vital gene-protein-metabolite networks, new drug metabolites, complete
genomes, transcriptomes, and proteomes of medicinal plants, and the responses of hu-
man cells to drugs or whole ethno-botanical plants for the medicinal use and large-scale
production of plant-derived medicines [34–37]. The next generation sequencing (NGS)
technique has increased the deep transcriptome studies of medicinal plants, the crosstalk
between gene expression co-responses and the accumulation of metabolites. The concept
of “guilt-by-association” states that genes undergoing co-expression lead to biosynthesis of
metabolites which show accumulation analogous to levels of the co-expression of genes [38].
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The metabolomics approach, along with the functional genomics of gene products from
ethno-medicinal plants, accelerates the discovery of new biosynthetic pathways of various
bioactive metabolites. This has improved the prospective discovery and generation of prod-
ucts with pharmaceutical significance. Artemisinin (antimalarial drug) was first enhanced
by the breeding of Artemisia annua L. with novel hybrids with high-yielding abilities so as
to gain a robust cropping system, and secondly in a re-engineered microbial host by the
reconstitution of the biosynthetic pathway of artemisinin, which was obtained after the
sequencing of its genome [39]. The crosstalk of omics with the ethno-botanical approach
was studied in a non-plant bioengineered host via the detection of a string of FAD2 phy-
tochemicals after the transcriptomics and metabolomics of developing seeds that amass
abnormal fatty acids [40]. Vitis vinifera L. multi-omics (transcriptomics, metabolomics and
genome-wide microarray analysis) identified 238 genes and 2012 metabolites that are upreg-
ulated by UV-C irradiation. This supports the concept that stilbene biosynthesis encourages
transcription factor-mediated regulation [41]. Genes of the morphine biosynthetic pathway
in Papaver somniferum L. have been identified mostly by omics approaches [42,43]. The inte-
gration of transcriptome and genetic approaches identified an alkaloid biosynthesis gene
cluster in the genome of Papaver somniferum L. [44]. In an editorial by Chen [45], phytochem-
icals such as carotenoids, flavonoids, lignans, and phenolic acids were reported as having
been analyzed via high-throughput tools. The mechanistic insights into the bioactivities of
these substances, and roles in disease treatments, profiling, extraction, identification and
biotechnology, and focus on the gene transfer and nanoparticles have been explored. An-
other paper focused on studies of medicinal plants with bioinformatics-assisted tools. Their
focus was a case study of multi-omics data-based workflow for the Dendrobium medicinal
plant, and it incorporated very few details on the genomics, transcriptomics, proteomics
and metabolomics of other important medicinal plants [46]. The potential applications of
metabolomics as well as analytical techniques, statistical approaches and bioinformatics
tools help us to understand the system-wide effects of Thai traditional medicine [47]. The
frequency and distribution of the 47,700 microsatellites or simple sequence repeats (SSRs)
from 109,609 expressed sequence tags (ESTs) of 11 medicinal plants with antidiabetic po-
tential were studied for their potential as biomarkers for cross transferability [48]. Our
present review is novel in terms of being comprehensive and detailed, focusing mainly on
the studies of multi-omics technologies in medicinal plants. The review also highlights the
chemical structures of medicinal metabolites and/or drugs/synthetic derivatives of some
important medicinal plants, along with their medicinal properties. The objective of this
review paper is to merge the omics-based approaches with the scientific investigations in
various medicinal plants with representative case studies. This will update our awareness
of natural-product-based drugs from various plants of therapeutic significance, and the
prolonged exploitation of plant pharmaceutical resources.

2. Omics in Medicinal Plants

High-throughput omics platforms such as genomics, transcriptomics, proteomics and
metabolomics (Figure 1) generate big data. Big data can be used for the prediction of sec-
ondary metabolic pathways of various therapeutic plants, to discover the genes involved
in the biosynthesis of biologically active metabolites and to probe the plant genome and
evolution. Medicinal plants develop novel traits to adapt to shifting environments for an
improved life. The hypothesis-based and big data-based investigations of medicinal plants
combine plant-based analysis, biotechnology and omics approaches to improve the life of
man. The Medicinal Plant Genomics Consortium and genome-guided research [49,50], the
Medicinal Plant Transcriptome Project [51], the 1000 Green Plant Transcriptome Project [52],
etc., will help in the identification of various plant biosynthetic pathways and their evo-
lution, especially in the discovery of new pathways originating as gene clusters in Oryza
sativa L., barley [53] and poppy. In poppy, an antitumor noscapine (alkaloid) biosynthetic
pathway of a 10-gene cluster positioned over 401 kb of genomic sequence was found [44].
Advanced RNA sequencing techniques enable us to study the expression profiles of en-
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zymes and transcription factors on a global scale. The database of metabolomics and
transcriptomics of 14 medicinal plants (http://metnetdb.org/mpmr_public/ accessed
on 17 November 2020) is accessible for the development of a hypothesis regarding the
role of genes [54]. The research area of metabolomics was developed after genomics,
transcriptomics and proteomics, and deals with all the metabolites of a cell [55]. In Gly-
cyrrhiza uralensis Fisch. ex DC. (licorice), two cytochrome P450 genes of the glycyrrhizin
biosynthetic pathway were detected [56], and these direct the microbial generation of
glycyrrhetinic acid and triterpene saponin, which is a natural sweetener.
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3. Genomics in Medicinal Plants

The DNA sequences of a genome integrate vital information of the origin, develop-
ment and epigenomic regulation of a plant. This may act as the foundation of decoding
genomic and chemical diversity at minute levels [57]. The high-throughput sequenc-
ing of various therapeutic plants emphasizes the biosynthetic pathways of their drug
molecules, secondary metabolites [58], and regulatory pathways. The genomic sequencing
of plants helps us to investigate various genes and regulatory sequences of medicinal
importance. Whole-genome sequencing, besides being a costly process, is also demanding
when the genome contains a huge share of repetitive sequences, elevated levels of het-
erozygosity, and non-diploids [59]. The sequenced genome of grapes is available online
(http://www.genoscope.cns.fr/spip/ accessed on 17 November 2020) [60,61]. Phalaenopsis
equestris (Schauer) Rchb.f [62], Brassica napus L. [63], Capsicum annuum L. [64,65], Momordica
charantia L. [66], Coffea canephora Pierre ex A. Froehner [67], Salvia miltiorrhiza Bunge [68],
Ziziphus jujuba Mill. [69,70], Glycyrrhiza uralensis Fisch. Ex DC. [71], Dendrobium officinale
Kimura et Migo [72], Azadirachta indica A. Juss., 1830 [73], and Catharanthus roseus (L.)
G. Don chloroplast and genome [49,74] and the chloroplast of Pogostemon cablin (Blanco)
Benth. [75] have been sequenced. These may emerge as significant models for the study of
herb genetics and their cell metabolic actions [49,76]. Salvia miltiorrhiza Bunge (Danshen)
and Catharanthus roseus (L.) G. Don synthesizes triterpenes, indole alkaloids and diterpene
quinone. The draft genome sequence of Catharanthus roseus (L.) G. Don offers verification
of the partial gene clustering for alkaloid (vinblastine and vincristine) biosynthesis. With
bacterial artificial chromosome sequencing, Kellner et al. [49] showed seven small clusters,
each one of two to three genes, in the biosynthetic pathways of vinblastine and vincristine.
Ziziphus jujuba Mill. is rich in vitamin C and sugar, and has a variety of medicinally essential
flavonoids, phenolics and alkaloids. Azadirachta indica A. Juss. is medicinally effective as
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an antitumorigenic, antidiabetic and antimalarial. The genome of neem sequenced with the
next generation sequencing approach is loaded with AT sequences and modest repetitive
DNA, and has 20,000 genes [77]. The genome-wide identification of Salvia miltiorrhiza
Burge (Danshen) and the characterization of its putative genes involved in the terpenoid
biosynthetic pathway was studied by Ma et al. [78]. The cp genome draft sequence of Salvia
miltiorrhiza Burge (Danshen) [79] verifies its genome size as approximately 600 MB, having
30,478 genes that code for protein and 1620 genes that act as transcription factors. Some of
these take part in the biosynthetic pathways of tanshinone and phenolic acids, which are
useful in the treatment of hyperlipidemia, and cardiovascular and cerebrovascular diseases.
In Salvia miltiorrhiza Burge (Danshen), 40 terpenoid biosynthetic pathway genes have been
discovered. Among these, 27 genes were new, which comprise 19 families (10 with single
and 9 with multigene). In the terpenoid biosynthetic pathway of S. miltiorrhiza Burge
(Danshen), HDR, DXS, HMGR and GGPPS enzymes are transcribed by multigene families
that have diverse expression profiles and subcellular positions [78]. The domestication
and differentiation of Capsicum was undertaken by the comparative genome sequencing
of cultivated Capsicum annuum pepper variety Zunla-1 with wild progenitor Capsicum
annuum var. glabriusculum (Chiltepin) [64]. The genome sequences of Solanum tuberosum
L., Capsicum, Atropa and tomato give information about the evolution of various members
of the Solanaceae family. Innumerable anticancerous plant-based chemical molecules, such
as camptothecin and podophyllotoxin derivatives [80], can be probed with this strategy.
Modern day next generation sequencing of the Panax ginseng cp genome gives an insight
into its evolution and polymorphism [81]. Panax ginseng promotes health and is useful in
clinical therapy. The genome sequencing of Dendrobium officinale Kimura et Migo, which is
a medicinal plant, and the orchid Cypripedium macranthos Sw. provides an insight into the
content and order of their genes and latent RNA editing sites [82]. Ocimum sanctum L. and
Ocimum basilicum L. genome sequencing and annotation reveals higher expressions of genes
of the phenylpropanoid/terpenoid biosynthetic pathway, cytochrome P450s and transcrip-
tion factors. This has provided a new approach for the mining of biosynthetic pathways of
important medicinal metabolites in related species [83,84]. The cp genome sequence of Oci-
mum tenuiflorum L. disclosed that the amino acid mutations at the gene loci of biosynthesis
give it incomparable pharmaceutical traits. Ocimum tenuiflorum L. generates specialized
metabolites with anticancer potential, such as ursolic acid, oleanolic acid, luteolin, taxol,
eugenol, apigenin and sitosterol, as a defense mechanism. The genes responsible for the
expression of these metabolites with anticancer potential can be identified and used for the
development of targeted drugs [85]. In opium poppy (Papaver somniferum L.), the genes of
benzylisoquinoline alkaloid (BIA) biosynthesis have been identified by virus-induced gene
silencing (VIGS) technology. This has also helped us to discover the genes of the morphine
biosynthetic pathway involved in reactions of O-demethylation with metabolite thebaine to
produce codeine and then the conversion of the metabolite codeine into morphine [42,43].
The genomic data from restriction site-associated DNA sequencing (RAD-Seq) [86], which
is used to assess the genome heterozygosity, and genotyping by sequencing (GBS) method
are employed to establish the origin and distribution blueprint of the plants with anticancer
potential [57]. Microsatellite markers assist in the reproduction of plants, the regulation of
the genome, recombination, quantitative genetic variation, evaluation and organization,
evolution, and the defense of the genetic resources. In the hemi-parasitic plant Viscum
coloratum (Kom.) Nakai, with anticancerous properties, 19 new polymorphic microsatellite
markers were developed, so that the ecological conservation and population genetics of
this plant can be studied [87]. The study of evolutionary genomics helps in identifying
genes involved in specific innovations, botanical diversity, as well as medicinally impor-
tant characteristics, for example, anti-allergic, anticancerous, anti-inflammatory, etc. [57].
ISSR analysis in 32 native populations of an endangered Berberidaceae medicinal plant
Sinopodophyllum hexandrum (Royle) Ying showed its genetic diversity and structure of
population, and provided data for the studies of evolution and conservation [88]. The
genome resources assist in the association of genomic variations with the origin of new



Cells 2021, 10, 1296 6 of 23

phytochemicals and physiological traits in the therapeutic plants [89]. To conclude, the
genomics of medicinal plants provide information on the genes and regulatory sequences,
latent RNA editing sites, origin, evolution, development, domestication, differentiation,
polymorphisms, epigenomic regulation, genome heterozygosity, genotyping and biosyn-
thetic pathways of drug molecules, secondary metabolites and their regulatory pathways.
However, it is a costly and demanding process in genomes with higher percentages of
repetitive sequences and heterozygosity.

4. Transcriptomics in Medicinal Plants

The transcriptomes of hundreds of therapeutic plants for instance, Oenothera (Ona-
graceae) [90], Fabaceae [91], Caryophyllales [92], Polygonum cuspidatum Sieb. et Zucc. [93],
Rhodiola algida (Crassulaceae) [94], Taxus mairei [95], Salvia sclarea L. (Lamiaceae) [96], etc.,
subjected to sequencing are available online at the Sequence Read Archive (SRA), National
Centre for Biotechnology Information (NCBI), PubMed and Gene Expression Omnibus
(GEO) databases. High-throughput comparative transcriptomics of medicinal plants is
more viable in comparison to comparative genomics. Transcriptomics is an efficient ap-
proach to retrieve the genomic data from numerous non-model therapeutic plants that
lack a reference genome. The transcriptomic studies help in the characterization of key
characteristics involved in the formation of secondary metabolites and in probing phar-
maceutically important mechanisms at the molecular level [94–97]. With RNA sequencing
(RNA-seq), gene sequences can be obtained from plants without a reference genome, and
with them integrated analyses of transcriptomics (transcriptome data) and metabolomics
(metabolic profiling data sets) potential for any medicinal plant [98]. Whole transcriptome
shotgun sequencing (WTSS) makes it possible to probe the genes of various metabolite
biosynthesis processes and the relationship between the genes and plant metabolites.

From transcriptome data of Podophyllum hexandrum Royle, candidate genes were
selected and combinatorially expressed in Nicotiana benthamiana Domin. This way, six
enzymes from the podophyllotoxin biosynthetic pathway to etoposide aglycone were
identified [99]. Podophyllotoxin is a natural precursor of etoposide, which is a chemothera-
peutic anticancerous molecule. The podophyllotoxin biosynthetic pathway is only partly
known [99]. Simultaneous co-expressions of 10 genes in model plant tobacco led to the
reconstitution of the biosynthetic pathway into etoposide aglycone. The etoposide aglycone
is a natural lignin and mediator precursor of anticancerous etoposide. The olivetolic acid
cyclase enzyme, a polyketide synthase and an acyl-activating enzyme that is responsible
for the synthesis of olivetolic acid, was identified from the transcriptome data of glandular
trichomes of the female flower of cannabis (Cannabis sativa L.) Glandular trichomes of
the female flower of cannabis are the primary sites of cannabinoid biosynthesis, suggest-
ing their unnoticed role in the generation of chemical diversity [100,101]. Chlorophytum
borivilianum Santapau & R. R. Fern. has revealed antitumerogenic and anticancerous
potential [102] due to chloromaloside-A, spirostanol-pentaglycosides-embracing beta-D-
apiofuranose and steroidal glycosides. The medicinal phytometabolites, such as saponins,
alkaloids, terpenoids and polysaccharides, some of which are antitumerogenic, have been
identified in Ranunculaceae. The expression profiling of various genes and appropriate
transcriptomics platforms have revealed the distinct outcomes of phyto-metabolites in
cancerous cells [103]. The transcriptomic data of Catharanthus roseus (L.) G. Don generates
diverse iridoid-based monoterpene indole alkaloids along with anti-cancerous vinblas-
tine [104]. From these transcriptomic data, a new iridoid synthase was identified that con-
verts 10-oxogeranial into iridoid scaffold [105] and cytochrome P450 hydroxylating genes
concerned with the monoterpenoid indole alkaloid biosynthetic pathway [76]. Iridoids
possess anti-inflammatory, anticancerous and antibacterial potential [106,107]. Curcuma
longa L. decreases the prevalence of gastrointestinal cancers due to secondary metabolite
Curcumin. Curcuma longa L. (rhizome) transcriptomics showed transcripts associated
with the terpenoid biosynthetic pathways and other biosynthetic pathways of various
anticancerous phytochemicals, such as vinblastine, curcumin and taxol. This informa-
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tion paved the way for the biosynthetic pathways of a variety of terpenoids in Curcuma
longa L., along with its transcriptomic database [108]. Phylotranscriptomic approaches
provide knowledge about the evolution of the essential anticancerous traits of a plant
attributed to its inestimable chemo diversity [109]. Rubiaceae member, Ophiorrhiza pumila
Champ. ex Benth., accrues a monoterpenoid indole alkaloid known as camptothecin,
which is an anticancerous metabolite. The deep transcriptome analysis of Ophiorrhiza
pumila Champ. ex Benth. yielded a 2GB sequence from which novel genes of plant sec-
ondary metabolic biosynthetic pathways were predicted [98]. Withania somnifera (L.) Dunal
synthesizes bioactive secondary metabolites known as withanolides. The leaf and root
tissue chemo-profiling of Withania somnifera (L.) Dunal chemovars showed variations in the
composition and traits of withanolides. The genes of chemotypes and the tissue-specific
biosynthesis of withanolide of distinct chemotypes was characterized [110]. The differen-
tial transcriptomics and metabolic profiling of engineered culture cells that do or do not
produce camptothecin alkaloids identifies candidate genes of the biosynthesis of alkaloids
and anthraquinones [98,111]. The combination of transcriptomics and genetic approaches
proposes the existence of a complex gene cluster in the genome used for alkaloid noscapine
biosynthesis in the chemo-variety of Papaver somniferum L. [44]. Advanced genome sequenc-
ing and comparative transcriptomics have advanced our understanding of the functions of
diverse genes involved in the biosynthetic pathways. By cDNA microarray from various
stages of hairy root development in Salvia miltiorrhiza Burge (Danshen), Cui et al. [112]
found variations in the expression profiles of the genes of the tanshinone biosynthetic
pathway. From RNA-seq data of Salvia miltiorrhiza Burge (Danshen), a group of novel genes
related to terpenoid-derived tanshinone and salvianolic acid secondary metabolite biosyn-
thesis was identified [113]. In the five key secondary metabolic biosynthetic pathways that
cover almost all bases in the phenylpropanoid and terpenoid pathways, the identification
of 1539 unigenes was possible. The functional characteristics of approximately 70 new
transcripts of phenylpropanoid and terpenoid biosynthetic pathways and the spatiotem-
poral expression profiles of 10 novel transcripts correlated to terpenoid and phenolic acid
biosynthetic pathways were understood through the transcriptome. The differential gene
expression profiling of Lupinus angustifolius L. chemo-varieties for quinolizidine alkaloids,
the gene that encodes the enzyme lysine decarboxylase involved in the first step of the
alkaloid biosynthetic pathway, was undertaken, and the catalytic potential of the lysine
decarboxylase was explained by site-directed mutagenesis and protein modeling [114].
The putative homologue genes of the iridoid biosynthetic pathway were identified from
the transcriptome of a variety of TIA-producing therapeutic plants [115]. Then, they were
evaluated with non-secologaninous plants to remove unrelated genes, and the authors
validated the necessity of CrDL7H- 7-deoxyloganic acid 7-hydroxylase (CYP72A224) in
iridoid metabolism and its homologous nature with the secologanin synthase-like gene
of Camptotheca acuminata Decne. [116]. RNA-seq gives rich sequence information about
the full-length gene sequences, and also helped recognize the orthologous and paralogous
gene cluster families in Camptotheca acuminata Decne., Rauvolfia serpentina (L.) Benth. ex
Kurz and Catharanthus roseus (L.) G. Don for the respective biosynthesis of camptothecin,
ajmaline and vinblastine [115,117]. In 2012, Gongora-Castillo and coworkers developed
a transcriptomics database. From this database, the alcohol dehydrogenase homologue
known as the tetrahydroalstonine synthase (THAS) gene, which was upregulated by MeJA
and converts strictosidine aglycone into tetrahydro-alstonine, was validated via VIGS, nu-
clear magnetic resonance (NMR) imaging and liquid chromatography–mass spectrometry
(LC-MS) [118]. The RNA-seq of two Vaccinium macrocarpon Aiton (Cranberry) fruits at
different developmental stages was annotated from public domains such as NCBI, KEGG,
GO and NT, and the genes CHS, F3H, CHI, F3 ′ H, and LDOX of the bioactive flavonoid
biosynthetic pathway were identified [101]. The cranberry transcriptome, in comparison to
blueberry (Vaccinium sp.), reveals a UDP-glucose flavonoid 3-O-glucosyl transferase (UFGT)
enzyme of the flavonoid biosynthetic pathway, which characterizes more different types of
flavonoids that are accessible in the cranberry transcriptome. Further, the ABC transporters



Cells 2021, 10, 1296 8 of 23

and glutathione S-transferases (GST), WD40, WRKY and bHLH regulatory transcription
factors, involved in flavonoid biosynthesis were also found in this transcriptome [119]. The
metabolic changes that take place in the fruit-ripening of Rubus coreanus Miq. 1867 (rich in
anthocyanins) were assessed by metabolomics and transcriptomics [120]. From the data of
transcriptome, the annotated unigenes of flavonoid metabolism, along with main genes
such as F3H, CHS and CHI, were identified. In rice, tomato and petunia, the CHI gene is
the chief gene of the flavonoid and anthocyanin biosynthetic pathway [121–123]. The CHI
enzyme family was screened from the transcriptome database of Korean black raspberry,
and its function was authenticated by complementary tests in Arabidopsis transparent
testa 5-1 (tt5-1) mutant, which is devoid of CHI potential. Comparative transcriptomics of
two strains of Magnolia sprengeri Pampanini, and Nuovo Giorn with red and white flowers,
revealed some key enzymes of the flavonoid biosynthetic pathway, such as phenylalanine
ammonia-lyase, cinnamate-4-hydroxylase, F3′H, F3H and CHS. The families of MYB, bHLH
and WD40 transcription factors also regulate the anthocyanidin metabolic pathway. With
FPKM investigation, eight of these genes for transcription factors associated with the
transcript abundance of genes, metabolic processes, and the color of flowers showed an
eightfold boost in expression level in Magnolia sprengeri Pampanini, and Nuovo Giorn
red-flowered strain, compared to the white-flowered strain [124]. In Chlorophytum boriv-
ilianum Santapau & R.R.Fern., which is an endangered species, an adaptogen, antiaging
agent and promoter of general health, the transcriptome analysis enabled insights into the
molecular mechanism of flavonoid glycosylation [125]. Transcriptome analysis in different
stages of grapefruit ripening was done and the gene expression profiling was clustered by
K-means grouping of RPKM [126]. To conclude, the transcriptomics of medicinal plants
provided information on the relationship between genes and plant metabolites, the expres-
sion profiling of genes, key characteristics, and the molecular bases of secondary metabolite
formation and biosynthetic pathways, such as iridoid, flavonoid, terpenoid, podophyllo-
toxin, terpenoid-derived tanshinone and the salvianolic acid secondary metabolite pathway.
Transcriptomics is more viable than comparative genomics. The details of the medicinal
plants reviewed are given in Table 1.

5. Proteomics and Functional Analysis of Proteins in Medicinal Plants

The field of proteomics is a potent platform to investigate comprehensively the
proteins regulated by the drugs and explore signaling pathways of cell perturbations.
Proteomics has a range of functions in medicinal plant research. Proteomics illustrates
the structures, functions and modifications of proteins, and the protein–protein inter-
actions taking place under in vitro and in vivo conditions [127]. The authentication of
post-translational modifications, such as protein phosphorylation, protein acetylation, pro-
tein glycosylation and proteolysis, can also be performed [128]. These protein modifications
arise during disease progression or after the treatment of a disease with drugs, or even nat-
urally under controlled conditions. The mechanism of action of drugs is examined by the
macro-investigation of alterations in proteins and by the detection of proteins that undergo
modification as potential targets of the drugs [127]. The multifunctional field of proteomics
helps in the prediction of the protein targets of plant-based bioactive compounds, and
also provides a logical approach to appreciating the mechanisms of traditional Chinese
medicine (TCM) in tumor cells and protein–drug interactions at the molecular level [129].
Terpenoids, flavonoids, glycosides and other secondary metabolites identified from TCM
plants have antitumor potential in various cancers, as studied extensively via proteomics.
The natural plant drug molecules cause the suppression of tumors by completely targeting
the mitochondria present in the cells of malignant tissue [129]. Luteolin, Baicalein, and
Tangeretin, which are the natural flavones, show signs of anticancerous activity; however,
their mode of action is ambiguous. The baicalein up-regulates peroxiredoxin-6, causing
reductions in reactive oxygen species (ROS) generation and hindrances in the cell prolifera-
tion of colorectal cancer [130]. The natural flavone Luteolin shows analogous anticancerous
potential against various categories of cancers, together with hepatic cancer in humans.
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Tripterygium wilfordii Hook. f. has been extensively and effectively utilized for the treatment
of several human syndromes, for instance rheumatoid (RH) arthritis and skin psoriasis.
The anticancerous value and intrinsic mechanisms of action of Tripterygium wilfordii Hook.
F. have been examined, and at the proteomic level the effect of a bioactive metabolite
diterpenoid epoxide triptolide in curing colon cancer has been demonstrated [131]. The
metabolite triptolide stimulates division at the cellular level, and a key protein 14-3-3ξ,
involved in the arrest of the cell cycle and the death of cells, undergoes perinuclear translo-
cation [132]. Andrographis paniculata (Burm. F) also contains diterpene compounds that
have medicinal applicability against various human disorders, such as cancer and hep-
atitis, and viral and pathogenic bacteria [133]. Proteomic study is a proficient method for
achieving a complex understanding of the inheritable traits and the physiological status of
plant members of the family Acanthaceae [134]. Periplocin is extracted from the tissues of
the bark and stems of Periploca graeca L., and can help fight cancers in the lungs and colon
both in the laboratory and under natural conditions via the beta-catenin/TCF signaling
pathway, by means of inducing apoptosis. With tandem mass spectrometry (TMS) and 2D
gel electrophoresis, the outcome of periplocin’s action on the cell line A549 of lung cancer
was studied. Western blot analysis validated and investigated the proteins subjected to
modifications and protein–protein interactions [135]. Curcumin from Curcuma longa L. has
antioxidant, antineoplastic, anti-angiogenic and anticancerous value. With proteomics,
the activity of curcumin in diverse cancerous cell lines was confirmed. The proteomic
investigation differentiated twelve proteins with differential expression patterns that en-
hance functions such as transcription, glycolysis, RNA translation, the splicing of mRNA
and lipid metabolism, the synthesis of proteins, protein folding and the degradation of
proteins, amino acid synthesis, and the motility of cells in the MCF-7 cell line of human
breast cancer [136]. The proteins undergo differential expression in HepG2 liver cancerous
cells upon treatment with Berberine. Berberine is isolated from Coptis chinensis Franch., and
its anti-proliferative properties lead to the arrest of the cell cycle at the G0 stage of mitosis
and the apoptosis of cells [137]. Gambogic acid, which is a natural xanthonoid molecule,
is isolated from Garcinia hanburyi Hook. f. resin. It has revealed promising antitumor
activity in clinical trials and hinders the growth of a range of cancer cells through multiple
signaling pathways [138–140]. In hepatocellular carcinoma, gambogic acid possibly targets
Stathmin. Over eighty anticancerous metabolites were predicted to appear in species of
Garcinia. Garcinia oblongifolia Champ. ex Benth contains the bioactive metabolite 1, 3, 6,
7-tetrahydroxyxanthone that restricts cell proliferation in hepatocellular cancerous cells via
the upregulation of p16 and 14-3-3σ [141], and 1, 3, 5-trihydroxy-13, 13-dimethyl-2H-pyran
[7, 6-b] xanthone can stimulate the death of cancerous cell by the suppression of Heat
Shock Protein 27 [142], which plays a crucial role. From the roots of Salvia miltiorrhiza
Burge (Danshen), Tanshione IIA, which is phenanthrene quinine, is extracted. Tanshione
IIA also down-regulates Heat Shock Protein 27 expression in cervical cancerous cells [127].
In another study in 2014, the treatment of primary T cell lymphoma in the central nervous
system with fenugreek seeds showed an incidence of tumor regression by cancer cell
destruction through cytotoxins [143].

In Catharanthus roseus (L.) G. Don, the systematic analysis of the proteome was under-
taken via 2D polyacrylamide gel electrophoresis. Mass spectrometry identified proteins
such as strictosidine synthase and tryptophan synthase, involved in alkaloid biosynthetic
pathway [144]. Differential proteomic analyses of leaves, flowers, and glands of Cannabis
sativa L. with different levels of cannabinoids were performed by two-dimensional gel
electrophoresis (2D-gel), followed by mass spectrometry. The counting of resolved gel
spots on 2D-gel indicated the presence of at least 800 proteins in leaves and flowers. Less
than 100 proteins expressed in the flowers were characterized by mass spectrometry [145].
The first comprehensive draft map of the Cannabis proteome has given evidence for the
expression of over 17,269 protein-coding regions [146]. Global proteomic profiling of the
Artemisia annua L., and quantitative targeted sub-proteomic analysis of two chemotypes of
high (HAP) and low (LAP) artemisinin content enabled identification of 13403 proteins on
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the basis of the genome sequence annotation database, and 182 proteins on the basis of mass
spectrometry, respectively [147]. MS-based proteomics of the trichome shed light on the
trichome machinery in Artemisia annua L. and its role in the production of artemisinin [148].
Kim et al. [149] reviewed in detail the proteomics of the Panax species with the medicinal
properties of anticancer, antiaging, and protection against circulatory shock, and performed
comparative proteomics of root and leaf tissues of Oriental, American and Indian ginsengs.
Proteomics-based knowledge provides insights into ginseng biology. Indian ginseng (With-
ania sominifera (L.) Dunal) has major secondary metabolites of withanolides. When resolved
on the 2D-gels, Indian ginseng root tissue showed 56 unique spots, whereas 22 proteins
were identified by MALDI-TOF/TOF [150].

To conclude, the proteomics of medicinal plants provided information on the structure,
function and post-translational modifications of proteins, protein–protein interactions,
protein targets of plant-based bioactive drugs, protein–drug interactions at the molecular
level, and the signaling pathways of cell perturbations. This provides insights into the
mechanisms of plant-based medicines in tumor cells and a complex understanding of the
inheritable traits and physiological status of plant. Proteins undergo post-transcriptional
and post-translational modifications. Thus, proteomics data do not always complement
transcriptomics data. Therefore, future efforts require integrated omics approaches to
explore the biology of any medicinal plant [149].

Table 1. Omics of Medicinal Plants Reported in Review.

Medicinal Plants Reference/s

Genomics

Grapes [56,57]
Phalaenopsis equestris (Schauer) Rchb.f [58]

Brassica napus L. [59]
Capsicum annuum L. [60,61]

Momordica charantia L. [62]
Coffea canephora Pierre ex A. Froehner [63,74,75]

Salvia miltiorrhiza Bunge [64]
Ziziphus jujuba Mill. [65,66]

Glycyrrhiza uralensis Fisch. ex DC. [67]
Dendrobium officinale Kimura et Migo [68]

Azadirachta indica A. Juss., 1830 [69]
Catharanthus roseus (L.) G.Don [45,70,72]

Pogostemon cablin (Blanco) Benth. [71]
Solanum tuberosum L. [76]

Panax ginseng [77]
Dendrobium officinale Kimura et Migo [78]

Cypripedium macranthos Sw. (1800) [78]
Ocimum sanctum L. [79]
Ocimum basilicum L. [80]

Papaver somniferum L. [42,43]
Viscum coloratum (Kom.) Nakai [83]

Sinopodophyllum hexandrum (Royle) Ying [84]

Transcriptomics

Podophyllum hexandrum Royle [95]
Cannabis sativa L. [96,97]

Chlorophytum borivilianum Santapau & R.R.Fern. [98,121]
Catharanthus roseus (L.) G. Don [100,101,113]

Curcuma longa L. [104]
Ophiorrhiza pumila Champ. ex Benth. [94]

Withania somnifera (L.) Dunal [106]
Papaver somniferum L. [44]

Salvia miltiorrhiza Burge (Danshen) [109]
Lupinus angustifolius L. [110]

Camptotheca acuminata Decne. [112]
Rauvolfia serpentina (L.) Benth. ex Kurz [111]

Vaccinium macrocarpon Aiton 1789 [101]
Blueberry (Vaccinium sp.) [115]
Rubus coreanus Miq. 1867 [116]

Magnolia sprengeri Pampanini, Nuovo Giorn [120]
Grapefruit [122]
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Table 1. Cont.

Medicinal Plants Reference/s

Proteomics

Tripterygium wilfordii Hook.f. [127]
Andrographis paniculata (Burm. F) [129]

Periploca graeca L. [131]
Curcuma longa L. [132]

Coptis chinensis Franch. [133]
Garcinia hanburyi Hook. f. [134–136]

Garcinia oblongifolia Champ. ex Benth [137,138]
Salvia miltiorrhiza Burge (Danshen) [123]

Catharanthus roseus (L.) G. Don [140]
Cannabis sativa L. [141,142]
Artemisia annua L. [143,144]

Withania sominifera (L.) Dunal [146]

Metabolomics

Aloe vera (L.) Burm.f. [151]
Panax ginseng C.A. Mey., [152]

Panax notoginseng (Burkill) F.H.Chen [152]
Panax japonicus (T.Nees) C.A. Mey [152]

Persicaria minor (Huds.) Opiz [153,154]
Artemisia [155]

Pulcaria crispa (Forssk.) Benth. ex Oliv. [155]
Rubus coreanus Miq. 1867 [116]

6. Metabolomics in Medicinal Plants

Metabolomics is mainly significant in the plant kingdom, because of the huge quan-
tity of metabolites (primary and secondary) produced by plants [156]. Metabolomics is
a potent tool for discovering new chemical entities (NCEs) for the detection and devel-
opment of drugs, by helping in the discovery and profiling of secondary metabolites in
therapeutic plants, the regulation of the response of drugs, and the scrutiny of possi-
ble cytotoxic effects. High-throughput screening for the assessment of plant drugs and
the detection of biomarkers for revealing human ailments [53,157], the isolation and de-
tection of metabolites, and the fingerprinting of plant metabolites are required for the
improved exploitation of therapeutic plants [158]. The metabolomics of the therapeutic
plants represents a promising scientific area that assists in the detection of various drug
molecules [158–160]. Metabolomics is used in an extensive array together with synthetic
biology, medical science and Ayurveda, and is useful in predictive plant system model-
ing. Secondary metabolites with low therapeutic value and concentrations are not easily
detected in plants. Yet, synergistic biological activities are generated due to numerous
intrinsic ingredients in plants and herbal formulations. Here, metabolomics operates as
a proficient approach to understand the phytochemistry of a range of medicinally active
herbal ingredients [158]. The genes involved in some biosynthetic pathways formulate
gene clusters in the plant genome [42,161], making gene identification easier, and this also
gives an additional exhaustive approach to understanding the specialized metabolites’
evolution and their function. About 1 million metabolites exist in the whole flora [162],
out of which only a few have been investigated for their metabolite biological activities
and chemical constituents [163]. This has paved the way for further investigations into the
classification of the metabolites of plant species that are as yet unexplored. Approximately
200,000 secondary metabolites have been investigated in plant species, several of which
arose from the genome duplications that further caused the fast progression of complex
characters [151,152]. The three key classes of secondary metabolites of plants, based on their
structural characteristics and biosynthetic pathways, are terpenoids (~36,000) (Buckingham,
2007), alkaloids (~12,000) [153] and phenolics (~10,000) [154].

Metabolomics studies undertaken with the analytical technique of nuclear magnetic
resonance spectroscopy are useful for compiling metadata in two diverse dimensions for
the detection of any alterations [159]. The methods of NMR spectroscopy and multivariate
investigation were utilized to assess the metabolite profile and inhibitory effects in Aloe
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vera (L.) Burm. f., an anticancer and antitumorigenic plant. The metabolome influences
the genome of hepatocellular carcinoma cells by escalating the gene expressions of p53
and Bcl-2 [164]. The metabolomic characterization of Panax ginseng C. A. Mey., Panax
notoginseng (Burkill) F. H. Chen and Panax japonicus (T. Nees) C.A.Mey. by the UPLC-
QTOF-MS technique identified secondary metabolites such as chikusetsu saponin IVa
and ginsenosides (Rb1, Rb2, Rc, Rg2, R0) [165]. In Persicaria minor (Huds.) Opiz syn.
Polygonum minus Huds, 48 compounds with via GC × GCTOF MS, 42 compounds via GC-
MS, 37 volatile compounds via GC-MS investigation, and 85 flavonoids via LC-TOF were
successfully identified [155,166]. Over 50% of anticancer drugs used in therapeutics today
have a natural source [167,168]. The profiling of metabolites and the antitumor potential of
broadly cultivated plants belonging to Compositae are reported. These species of plants
portray changeable metabolite profiles. The plant Artemisia has the maximum secondary
metabolite concentration, while Pulcaria crispa (Forssk.) Benth. ex Oliv. shows proficient
in- vitro anticancerous action [169]. Mass spectrometry (MS) showed enhancement in
the flavonoid and anthocyanin groups and reductions in the sucrose, fatty acids, organic
acids and amino acids in Rubus coreanus Miq. [120]. Several therapeutically important
plant metabolites, along with their medicinal properties and chemical structures, are
given in Table 2. To conclude, metabolomics of medicinal plants provided information
on the isolation and detection of metabolites and new chemical entities (NCEs) for the
development of drugs, the fingerprinting of plant metabolites, and phytochemistry.

Table 2. Medicinal Properties and Chemical Structures of Some Metabolically Bioactive Compounds from Medicinal Plant
Species. (Chemical Structures were Drawn with ChemSpider Software).

Medicinal Plants Medicinal
Metabolites

Drugs/Synthetic
Derivatives

Medicinal
Properties Structures Reference/s

Ammi visnaga Visnadin, visnagin,
and khellin

Amiodarone for
cardiac dysrhythmias;

Cromolyn for
treatment of asthma

Kidney stones,
menstrual cramps to

atherosclerosis.
Cardiac arrhythmias,

congestive heart
failure, angina, and

hypercholes-
terolemia
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Table 2. Cont.

Medicinal Plants Medicinal
Metabolites

Drugs/Synthetic
Derivatives Medicinal Properties Structures Reference/s

Atropa belladonna,
Datura stramonium

Atropine/Hyoscyamine/
Scopolamine Donnatal peripheral anticholinergic

or antispasmodic action
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cramps to atherosclerosis. 
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terolemia  
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Table 2. Cont.

Medicinal Plants Medicinal
Metabolites

Drugs/Synthetic
Derivatives Medicinal Properties Structures Reference/s

Curcuma longa L. Curcuminoids
mainly curcumin

Antioxidant,
neuroprotective, antitumor,

anti-inflammatory,
anti-acidogenic,

radioprotective and
anti-arthritis
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Digitalis (digoxin)
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name Lanoxin and
digitoxin by brand
name Crystodigin

Heart medicine
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and antiobesity activities 

 

[191] 

Nicotiana tabacum L. Nicotine  
Smoking cessation drug 

to relieve withdrawal 
symptoms 

 

[192] 

Papaver somniferum L. Morphine  

Musculoskeletal pain, ab-
dominal pain, chest pain, 
arthritis, and even head-

aches 
 

[193] 

Papaver somniferum L. 

Noscapine 

 

Opiate analgesics, anti-
tussive, stroke, anticancer 

 
Noscapine 

[194] 

Codeine 
Opiate analgesics, anti-

tussive 

 
Codeine 

Noscapine
[194]

Codeine Opiate analgesics,
antitussive
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Table 2. Cont.

Medicinal Plants Medicinal
Metabolites

Drugs/Synthetic
Derivatives Medicinal Properties Structures Reference/s

Picrorhiza kurroa
Royle ex Benth. Picroside

Picrosides as
anticarcinogenic agents,
hepatoprotective drug
formulation, picroliv
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7. Conclusions and Future Prospects

Modern day omics-based technology allows extensive and nano-scale assessments of
biological samples for the probing of compounds with medicinal properties. Traditional
medicinal plants are very prolific in the discovery of novel plant-based drugs. Medicinal
plants have unexploited potential for use in novel molecular target discovery, which adds
to the process of drug development. It is imperative to manipulate and investigate not only
at the genome level with high-throughput sequencing and recombinant DNA technology,
but also at the levels of the proteome with mass spectrometry, the transcriptome with
RNA Seq and the metabolome with nuclear magnetic resonance spectroscopy and/or LC-
MS. In modern day biology, big data is derived from omics technologies, which allow the
discovery of unidentified metabolic pathways/enzymes, metabolites, genes, gene networks,
and protein–protein interactions, because of which interdisciplinary research on medicinal
plant genomics accompanied by high-throughput sequencing platforms for DNA and RNA,
metabolomics and proteomics is entirely essential. These studies will continue to disclose
novel secondary metabolites that are biologically active and thus make the immense
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biological diversity of plants applicable for use in for novel drug discovery. The systems
biology tool will help in identifying networks by which pharmacological substances of
individual medicinal herbs or synergistic action networks of herbal prescriptions can
be resolved and their target signaling pathway networks can be studied. However, the
databases, computational models and infrastructure required to pool the disciplines are in
their infancy. Systems biology will prove to be a revolutionary research area in plant-based
drug discovery and diseases in future.
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