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Relative importance of composition 
structures and biologically 
meaningful logics in bipartite 
Boolean models of gene regulation
Yasharth Yadav1,5, Ajay Subbaroyan1,2,5, Olivier C. Martin3,4* & Areejit Samal1,2*

Boolean networks have been widely used to model gene networks. However, such models are coarse-
grained to an extent that they abstract away molecular specificities of gene regulation. Alternatively, 
bipartite Boolean network models of gene regulation explicitly distinguish genes from transcription 
factors (TFs). In such bipartite models, multiple TFs may simultaneously contribute to gene regulation 
by forming heteromeric complexes, thus giving rise to composition structures. Since bipartite Boolean 
models are relatively recent, an empirical investigation of their biological plausibility is lacking. 
Here, we estimate the prevalence of composition structures arising through heteromeric complexes. 
Moreover, we present an additional mechanism where composition structures may arise as a result of 
multiple TFs binding to cis-regulatory regions and provide empirical support for this mechanism. Next, 
we compare the restriction in BFs imposed by composition structures and by biologically meaningful 
properties. We find that though composition structures can severely restrict the number of Boolean 
functions (BFs) driving a gene, the two types of minimally complex BFs, namely nested canalyzing 
functions (NCFs) and read-once functions (RoFs), are comparatively more restrictive. Finally, we find 
that composition structures are highly enriched in real networks, but this enrichment most likely 
comes from NCFs and RoFs.

Transcriptional regulation is a fundamental mechanism for the control of gene  expression1. Significant research in 
systems biology has thus been focused on reconstruction and analysis of transcriptional regulatory  networks2–5. 
Boolean modeling is a widely used framework for studying the dynamics of such gene regulatory networks (see 
Fig. 1a). Stuart  Kauffman6,7 and René  Thomas8,9 pioneered the use of Boolean models to better understand the 
dynamical behaviour of gene networks including fixed points and cyclic  attractors4,10,12. Specifically, dynamical 
models based on Boolean networks can provide a powerful means to explain the most important properties 
of cell  differentiation11. Over time Boolean modeling has gained a wide appeal and has thus been extended to 
capture the dynamics of other types of biological networks such as  signalling13 and metabolic  networks14–16.

Until the turn of this century, the paucity of empirical data on the structure (including combinatorial regula-
tion) of real biological networks mandated a statistical approach based on ensembles of random Boolean net-
works for probing the dynamics of gene regulatory  networks6,10,17–19. Random Boolean networks are typically 
defined by placing interactions (directed edges) between randomly chosen genes (nodes) and assigning random 
logical update rules to those nodes. However, mounting evidence over the past two decades, obtained via biologi-
cal network reconstruction using large-scale data from high-throughput  experiments3,20,21, has shown that the 
architecture of real gene networks is far from random, both for their network  structure3,5,15,20,22–25 and for their 
logical update  rules12,15,26–33, i.e., the Boolean functions (BFs) assigned to each associated gene.

Biologically meaningful Boolean functions. Further investigation into the nature of Boolean functions 
capturing gene regulation revealed that certain classes of regulatory Boolean logics are particularly biologically 
meaningful. These types of BFs have been classified as unate functions (UFs)34, canalyzing functions (CFs)35 and 
nested canalyzing functions (NCFs)10,36,37. Stuart Kauffman, in his book titled “The Origins of Order”35, pro-
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pounded the idea that canalyzing functions reflect the “chemical simplicity” of the underlying molecular regu-
latory mechanisms in gene networks. Using Kauffman’s proposition as a premise, Subbaroyan et al.38 recently 
showed that NCFs and Read-once functions (RoFs) minimize two notions of complexity of Boolean functions, 
namely, the average sensitivity and the Boolean complexity, respectively. This effort has led to the addition of a 
new type of BF previously unexplored in Boolean models of living systems, the Read-once function (RoF), to the 
list of biologically meaningful BFs. Remarkably, the ‘simplest’ logics, NCFs and RoFs, also form the most restric-
tive subset of BFs among other biologically meaningful BFs in the space of all  BFs38.

Bipartite Boolean networks. Evidently, the Boolean network model of gene regulation is a coarse-grained 
picture of biological reality. There have been proposals to incorporate more realistic features within the Boolean 
 framework39–44. Graudenzi et al.39 were the first to propose a bipartite Boolean network model of gene regulation 
with an aim to incorporate more realistic assumptions about the timescales of genetic processes. Remarkably, 
their model, called as gene protein Boolean network or gene product Boolean network (GPBN), could explicitly 
capture the interactions between genes and proteins, or genes and gene products (e.g., microRNAs), respectively. 
Hannam et al.44 generalized the notion of GPBNs further and proposed a bipartite Boolean network model that 
could also account for the formation of heteromeric protein complexes in regulatory processes. More precisely, 
the biological basis behind such a bipartite model of transcriptional regulation is as  follows44,45. Firstly, a factor 
affecting a gene’s transcription rate can be either a single TF or a complex of TFs (e.g. heterodimer of  TFs46). We 
refer to either type as a transcriptional regulator (TR). Thus the presence of a TR may depend on the expression 
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Figure 1.  Boolean functions in unipartite versus bipartite network models of transcriptional gene regulation. 
(a) A unipartite Boolean network model consisting of only genes. The dashed trapezium highlights a subgraph 
wherein 3 genes with expression states x1, x2 and x3 , directly regulate the gene with expression state x4 . Thus, 
the BF f determining the state x4 of the output gene depends on the states of the 3 input genes x1, x2 and x3 , and 
the truth table for this 3-input BF f is shown in the figure; its “bias”, defined as the number of 1’s in the output 
column, is 3 for this case. Note that any one of the 223 = 256 possible 3-input BFs can be assigned to BF f. (b) A 
bipartite Boolean network model accounting for the two types of molecular species involved in transcriptional 
regulation namely, the genes and transcriptional regulators (TRs). In this bipartite Boolean network model, the 
states of genes are denoted by variables x1, x2, . . . , xi and the states of TRs are denoted by variables y1, y2, . . . , yj . 
The dashed trapezium highlights the subgraph wherein the gene with state x1 determines the TR with state 
y2 according to a 1-input BF p1(x1) = x1 , and the genes with states x2 and x3 determine the state of the TR y3 
according to a 2-input BF p2(x2, x3) = x2x3 . Moreover, the TRs with states y2 and y3 in this subgraph directly 
regulate the gene with state x4 according to a 2-input BF g(y2, y3) = y2 + y3 . Ultimately, the regulation of 
the output gene with state x4 depends on the states of the input genes x1, x2 and x3 according to a 3-input BF 
h(x1, x2, x3) = g(p1(x1), p2(x2, x3)) = x1 + x2x3 . Fink and  Hannam47 called such a subgraph a “composition 
structure” and the BF h corresponding to the subgraph a “composed BF”. The truth table of a composed BF h 
allowed by this particular composition structure {1, 2} is shown in the figure. Moreover, for the composition 
structure {1, 2} , there are 221222222 = 256 ways to combine the BFs g, p1 and p2 and these combinations result in 
only 152 unique BFs h after accounting for the permutations of the inputs x1 , x2 and x3 (see “Methods”).
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of one or more genes. Secondly, multiple TRs can control the expression of a given gene. Note that genes are 
regulated not only by transcription factors but by other types of molecules such as miRNAs and hormones, and 
accounting for these in the bipartite formalism proposed by Fink and  Hannam47 requires a further exploration 
of the framework. We do believe however that it may be possible to explicitly account for complexes contain-
ing different molecules such as RNA-binding proteins or hormone-receptor complexes in this framework but 
do not pursue this further in this work. Fink and  Hannam47 capture the gene-TF-gene interactions in bipartite 
Boolean networks via subgraphs called composition structures and elucidate how composition structures allow 
for a composition of BFs to be defined on genes. Further, they show that the presence of composition structures 
can severely restrict the space of allowed BFs. Note that the restrictive nature of the composition of BFs, albeit in 
unipartite Boolean models, has also been considered by Shmulevich et al.48.

Composition structures. Fink and  Hannam47 introduced the term composition structure to denote specific 
subgraphs of gene-TF-gene interactions in a bipartite Boolean network. More precisely, a composition structure 
{t1, t2, . . . , tr} is assigned to a given gene if its transcriptional regulation depends on the states of r TRs accord-
ing to a BF of r inputs. Further, the state of each TR i, where i ∈ [1, r] , in turn depends on the states of ti genes 
according to a BF of ti inputs. See “Methods” for a formal definition of composition structures.

Figure 1b illustrates the composition structure {1, 2} and its corresponding composed BF arising in a bipartite 
Boolean network. Here, the state of a given gene x4 depends on its input TRs y2 and y3 according to a 2-input 
BF g(y2, y3) . Further, y2 depends on the input gene x1 according to a 1-input BF p1(x1) , and y3 depends on input 
genes x2 and x3 according to a 2-input BF p2(x2, x3) . Thus, in this composition structure {1, 2} , the state of x4 
ultimately depends on x1, x2 and x3 according to a composed BF of 3-inputs h(x1, x2, x3) = g(p1(x1), p2(x2, x3)) . 
Such a composition of BFs reduces the number of allowed 3-input BFs. Note that there are two other composi-
tion structures possible for 3 inputs, namely {1, 1, 1} and {3} , which do not restrict the space of allowed BFs. 
Hence, these two composition structures can be considered as trivial whereas {1, 2} can be considered as a non-
trivial composition structure (see “Methods”). Finally, composition structures also allow for autoregulation, an 
important feature in determining the attractor  landscape49, wherein a TF associated with a gene can regulate 
the expression of that same gene.

Motivation and objectives. Currently, the bipartite Boolean models  proposed44,45,47 for transcrip-
tional gene regulation are theoretical propositions without a solid grounding in empirical evidence. Our work 
approaches the question of prevalence of composition structures in real gene regulatory networks from a data-
centric perspective. The central theme of our work is thus to examine how plausible it is for both composi-
tion structures and composed BFs to occur in real transcriptional regulatory networks by analyzing published 
experimental data. We begin by estimating the prevalence of composition structures arising in two different 
scenarios of gene regulation. The first scenario is gene regulation by heteromeric protein complexes which act 
as transcription  regulators44,45. The other scenario, which is a novel aspect of this work, accounts for transcrip-
tional regulation via cis-regulatory elements, in particular promoters and  enhancers50,51, that can be bound by 
transcription factors.

Next, we will build upon the work of Fink and  Hannam47 on Boolean compositions and augment their 
approach for counting the number of possible BFs under Boolean compositions by accounting for the fact that 
the different input variables are distinguishable and so are non-equivalent under permutation. We then compare 
the restriction in the logic rules in gene regulatory networks due to Boolean compositions with the restriction 
due to different types of biologically meaningful BFs, and thereafter analyze how often Boolean compositions 
display biologically meaningful properties. Finally, we evaluate the enrichment (depletion) and relative enrich-
ment (depletion) of composed BFs in a compiled empirical dataset of 2687 BFs from published reconstructed 
Boolean models of biological systems.

Results
Quantifying the presence of protein complexes that can act as transcriptional regula-
tors. Hannam et al.44 proposed to model transcriptional gene regulation via bipartite Boolean networks, thus 
allowing them to distinguish genes from proteins or protein complexes. Non-trivial composition structures arise 
if regulation requires complexes of  TFs44,45 (see “Methods”). To our knowledge there has been no systematic 
study of such complexes in any organism, and we here attempt to fill this gap.

Genes often come in families following either segmental or whole genome duplications, and that is the case in 
particular for those coding for TFs. There are several organisms where it has been shown that TFs within a given 
family form complexes in the form of heterodimers or even multimers contributing to gene  regulation52–55. For 
instance the family of TFs called auxin response factors (ARFs) includes over 20 members in numerous plants 
and it has been shown that they form heterodimers that activate gene  transcription54,56. However, a quantitative 
assessment of the frequency at which heteromeric complexes contribute to gene regulation has not been carried 
out. The prevalence of such complexes in real-world gene regulatory networks can provide empirical support 
for the (frequent or not) occurrence of non-trivial composition structures.

We obtained a list of 1325 macromolecular complexes in H. sapiens from the EBI Complex Portal  database57, 
and the list of 1639 human TFs from http:// human tfs. ccbr. utoro nto. ca/ provided by Lambert et al.58. Among the 
1639 human TFs, we selected only those TFs that were reviewed in the SWISS-PROT59 protein database, result-
ing in a list of 1617 human TFs that was used for further analysis. We found that among the 1325 complexes in 
H. sapiens, 169 satisfy the constraint of being heteromeric with all subunits corresponding to TFs (Supplemen-
tary Table S1). Of those, 165 are heterodimers and the remaining 4 are heterotrimers. Furthermore, there are 
84 unique TFs composing these 169 complexes. Second, we manually searched for DNA binding evidence for 
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each of these 169 heteromeric complexes and found that DNA binding has been verified for 86 of them. This 
then leaves us with 86 validated complexes of TFs that act as TRs, and thus, are likely candidates for forming 
composition structures.

Another approach we take to estimate the number of protein complexes acting as transcriptional regulators is 
to determine from the literature if there are transcription factor families known to form heterodimers. Two genes 
coding for a protein can derive from a common ancestor (by duplication) leading to paralogs, and in particular to 
proteins with similar sequences, structure and function. Thus the complex forming propensity of a TF is expected 
to be conserved across the elements in that particular family. In evolution, this phenomenon is so common that 
one often has dozens or more genes belonging to the same family. We thus explored the specific importance of 
heteromers of TFs belonging to particular families. Indeed, it is known that certain classes of TFs, for instance 
basic leucine zipper (bZIP)53,60 and basic helix-loop-helix (bHLH)61 classes, bind to DNA as homo- or hetero-
dimers55,62,63. Knowing the prevalence of such TFs could shed light on the abundance of dimeric complexes 
which act as TRs. Thus for the 1617 TFs in H. sapiens we used the JASPAR  database64 to obtain the associated TF 
families; JASPAR provides a manually curated list of DNA transcription factor binding motifs, the corresponding 
TFs, family information etc. Focusing on the TFs of the bZIP and bHLH families, we found 36 TFs in the first 
family and 38 in the second family (see Supplementary Table S2). Although our current data suggests that TF 
complexes are not so prevalent, we cannot rule out that this conclusion is an artifact of insufficient experimental 
evidence on complexes regulating genes. A similar count of complexes involved in transcriptional regulation in 
Saccharomyces cerevisiae is presented in the Supplementary Information and Supplementary Tables S3 and S4. 
That system leads us to a similar conclusion as the one made from complexes in humans.

Composition structures arising through enhancers. Bipartite Boolean network models provide a 
quite general framework and so for instance composition structures can accommodate other mechanisms of 
eukaryotic gene regulation than the one involving complexes as covered in the previous sub-section. Here, we 
propose one such alternative picture where the intermediate transcriptional regulators (TRs) are no longer pro-
tein complexes but are associated with cis-regulatory modules such as promoters, enhancers, or insulators. In 
eukaryotes, transcription is typically regulated via the binding of TFs upstream of the  gene50,51,65. Promoters are 
located close to the transcription start site where RNA polymerases and transcription factors assemble to initiate 
 transcription66. Enhancers on the other hand may be located at rather large distances (in fact both upstream or 
downstream) of the target gene they  regulate67. Enhancers are “active” or “inactive” based on whether their chro-
matin state is accessible or not; in the former case, transcription factor binding sites within these enhancers can 
attract specific TFs and thus modulate transcription of nearby  genes51. Interestingly, a given enhancer typically 
contains multiple such binding sites and is thus considered to be a cis-regulatory  module51,68.

Figure 2a and b illustrate how enhancers and promoters may act as TRs in the composition structure {2, 3} 
where we have chosen to have 2 TFs binding to the promoter and 3 TFs binding to the enhancer. One can sup-
pose that an abundance of enhancers containing multiple TF binding sites is suggestive of the prevalence of 
non-trivial composition structures in real-world gene regulatory networks. In view of this possibility, we perform 
an analysis to provide a quantitative estimate of the number of TFs that bind to active enhancers in two widely-
studied human cell lines namely, HepG2 and K562.

For the cell line HepG2, we used ChIP-seq peaks provided for 458 unique TFs and a total of 32929 enhanc-
ers detected as active (see “Methods”). 2976 enhancers had exactly one TF binding within their region while 
10754 enhancers had two or more TFs binding within their region, representing 32.68% of the total number of 
enhancers in HepG2 (Fig. 2c, Supplementary Fig. S1(a)). Additionally, of the 458 TFs for which data is available 
in HepG2, we found that 456 TFs bind to at least one of the enhancers detected as active. For the cell line K562, 
we used ChIP-seq peaks provided for 323 unique TFs and a total of 20471 enhancers detected as active. 1801 
enhancers had exactly one TF binding within their region while 9071 enhancers had two or more TFs binding 
within their region, representing 44.31% of the total number of enhancers in K562 (Fig. 2d, Supplementary 
Fig. S1(b)). Additionally, of the 323 TFs for which data is available in K562, we found that 322 TFs bind to at 
least one of the enhancers detected as active. The fact that 32.68% and 44.31% of the active enhancers in HepG2 
and K562, respectively can be bound by at least two TFs suggest that non-trivial composition structures indeed 
do arise frequently in gene regulatory logics.

Accounting for all possible permutations of the inputs in a composition structure. In their pro-
cedure to count BFs arising from a composition structure, Fink and  Hannam47 do not account for permutations 
of the input variables, that is they ignore the labels of the inputs. In the present work, we have extended Fink and 
Hannam’s counting approach by accounting for all the permutations of input variables in a given composition 
structure (see “Methods”). Including all possible permutations of inputs is sufficient to ensure that all isomor-
phisms (i.e., permutations and negations of inputs) of a BF in a composition structure are also present therein 
(see “Methods” for definition of isomorphism of BFs). Table 1 provides a comparison of the number of distinct 
BFs allowed by different composition structures for k ≤ 5 inputs, both with and without including all possible 
permutations of the input variables. Table 1 also provides these results as fractions among all possible BFs for 
k ≤ 5 inputs. Naturally, we find that accounting for all possible permutations of inputs increases the number of 
BFs in a composition structure in comparison to those reported by Fink and  Hannam47. However, this does not 
alter the central result of Fink and  Hannam47, that is, composition structures significantly restrict the space of 
possible BFs. This is evident from the trends for the fractions of composed BFs among all possible BFs as a func-
tion of the number of inputs (see Table 1).
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Overlap of Boolean functions across various k-input composition structures. There are multiple 
composition structures {t1, . . . , tr} possible for a given number of inputs k such that t1 + t2 + · · · + tr = k , and 
each composition structure allows a certain set of BFs. However, composed BFs can belong to more than one 
composition structure. Therefore, it is worthwhile to examine the overlaps of composed BFs across all non-
trivial composition structures with a given number of inputs k. Here, we analysed the intersections of composed 
BFs across non-trivial composition structures for k = 4 and k = 5 inputs. We reiterate that there are no non-
trivial composition structures for k = 1 and k = 2 inputs, and note that {1, 2} is the only non-trivial composition 
structure for k = 3.

For k = 4 inputs, we find that the set of BFs in the composition structure {2, 2} is a proper subset of the set 
of BFs in {1, 1, 2} (see Fig. 3a). For k = 5 inputs, we find that the set of BFs in the composition structure {2, 3} is 
a proper subset of the set of BFs in {1, 1, 3} as well as {1, 1, 1, 2} , and the set of BFs in the composition structure 
{1, 2, 2} is a proper subset of the set of BFs in {1, 1, 1, 2} (see Fig. 3a). Further, we give the number of BFs in all 
possible intersections of non-trivial composition structures for k = 4 and k = 5 inputs through UpSet  plots69 
in Fig. 3b and c, respectively.

Comparing restriction levels: composition structures versus biologically meaningful 
types. Clearly, imposing a non-trivial composition structure significantly restricts the space of allowed BFs 
within the complete space of BFs with k inputs. As shown by some of us  recently38, the same holds when impos-
ing certain biologically meaningful properties. Here, we compare the level of restriction achieved by four estab-
lished biologically meaningful types of BFs, namely unate functions (UFs), canalyzing functions (CFs), nested 
canalyzing functions (NCFs) and read-once functions (RoFs), to that achieved by composed BFs of a given 
composition structure, in the space of all BFs with k inputs. See “Methods” for the formal definitions of biologi-
cally meaningful BFs. Among the four different types of biologically meaningful BFs, it is known that the NCFs 
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Figure 2.  Non-trivial composition structures arising due to enhancers bound by multiple transcription 
factors. (a) A biologically plausible mechanism revealing the occurrence of non-trivial composition structures 
in transcriptional gene regulation. Multiple transcription factors (TFs) can bind to the promoter as well as the 
enhancer region(s) of a target gene. The enhancers and promoters bound by TFs then act as transcriptional 
regulators (TRs) of their target genes, resulting in non-trivial composition structures. (b) A schematic 
representation of the composition structure {2, 3} arising in subfigure (a). The target gene is regulated by an 
active promoter that is bound by 2 TFs, and an active enhancer that is bound by 3 TFs. (c) Scatter plot showing 
the number of active enhancers bound by a given number of TFs in the HepG2 cell line in humans. We found 
that 32.68% of the active enhancers in HepG2 are bound by at least 2 TFs. (d) Scatter plot showing the number 
of active enhancers bound by a given number of TFs in the K562 cell line in humans. We found that 44.31% of 
the active enhancers in K562 are bound by at least 2 TFs. The x and y axes in part (c) and (d) are in log scale. 
These results suggest that non-trivial composition structures are prevalent in gene regulatory networks.
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represent the smallest fraction in the space of all  BFs38. For k = 4 and k = 5 inputs, we find that certain composi-
tion structures restrict very strongly, though less than NCFs (see Supplementary Table S5). Specifically, at k = 4 
inputs, {2, 2} is the most restrictive one. The composed BFs in {2, 2} occupy a fraction of 0.018 among all BFs, 
which is 1.63 times greater than the fraction occupied by NCFs at k = 4 (whose value is 0.011). For k = 5 inputs, 
{2, 3} is the most restrictive composition structure. The BFs in {2, 3} occupy a fraction of 1.67× 10−5 , which is 
about 6.76 times greater than the fraction occupied by NCFs at k = 5 (whose value is 2.47× 10−6 ). In Supple-
mentary Table S5, we compare the fraction of BFs in the most restrictive composition structure to the fractions 
for each of the four types of biologically meaningful BFs for k ≤ 5 inputs.

We next evaluated how often a BF in a composition structure also displays biologically meaningful properties. 
Table 2 shows the number of composed BFs that belong to each of the four types of biologically meaningful BFs 
for non-trivial composition structures with k ≤ 5 inputs. Clearly imposing BFs to be biologically meaningful and 
to be compatible with a given composition structure severely restricts the possible BFs. We also find that certain 
types of biologically meaningful BFs, in particular NCFs, are proper subsets of BFs in certain composition struc-
tures. Specifically, all the 64 NCFs with k = 3 inputs are contained in the composition structure {1, 2} , all the 736 
NCFs with k = 4 inputs are contained in the composition structures {1, 3} and {1, 1, 2} , and all the 10624 NCFs 
with k = 5 inputs are contained in the composition structures {1, 4} , {1, 1, 3} and {1, 1, 1, 2} . Moreover, all CFs 
with k = 3, 4, and 5 inputs are a subset of the composition structures {1, 2} , {1, 3} and {1, 4} , respectively, whereas 
all RoFs with k = 4 and 5 inputs are a subset of the composition structures {1, 1, 2} and {1, 1, 1, 2} , respectively. 
In Supplementary Table S6, we provide the fraction of composed BFs that belong to each of the four types of 
biologically meaningful BFs for non-trivial composition structures with k ≤ 5 inputs.

We also computed the number and fraction of composed BFs for different composition structures which have 
odd bias. Recently, some of us showed that BFs with odd bias are preponderant among BFs in reconstructed 
Boolean network models of biological  systems38. Furthermore, it was shown that  NCFs70 and  RoFs38 have odd 
bias. Here, we find that the fraction of BFs with odd bias in any composition structure with k ≤ 5 inputs is less 
than 0.5 (see Supplementary Table S7). Additionally, we find that BFs – with any given even bias – occur in all 
composition structures with k ≤ 5 inputs. In Supplementary Table S7, we list the odd biases of BFs that are 
present in composition structures with k ≤ 5 inputs.

Enrichments of composed BFs in reconstructed biological networks. In this section, we present 
the results of our analyses of the abundances of composed BFs in a compiled reference biological dataset of 2687 
BFs from 88 published Boolean network models of biological  systems38. More explicitly, we do not reconstruct 

Table 1.  Comparison of the number and fraction of BFs allowed by different composition structures, with 
and without including all possible permutations of input variables. The composition structures in the bipartite 
Boolean network framework of transcriptional gene regulation are categorized based on the number of inputs 
k to a gene in the corresponding unipartite Boolean network framework. The column “Number of composed 
BFs” gives the number of distinct BFs in a composition structure, and the subcolumns provide a comparison 
of the number of such BFs both without and with the accounting for all possible permutations of the input 
variables. The column “Fraction of composed BFs” gives the fraction of distinct BFs in a composition structure 
among all possible BFs for a given number k of inputs, and the subcolumns provide a comparison of the 
fraction of such BFs both without and with the accounting for all possible permutations of the input variables.

Inputs (k) Composition structure

Number of composed BFs Fraction of composed BFs

Without permutation With permutation Without permutation With permutation

1 {1} 4 4 1 1

2
{2} 16 16 1 1

{1,1} 16 16 1 1

3

{3} 256 256 1 1

{1,2} 88 152 0.344 0.594

{1,1,1} 256 256 1 1

4

{4} 65,536 65,536 1 1

{1,3} 1528 4864 0.023 0.074

{2,2} 520 1208 0.008 0.018

{1,1,2} 1696 6216 0.026 0.095

{1,1,1,1} 65,536 65,536 1 1

5

{5} 4,294,967,296 4,294,967,296 1 1

{1,4} 393,208 1,921,928 9.16× 10
−05

4.47× 10
−04

{2,3} 9160 71,608 2.13× 10
−06

1.67× 10
−05

{1,1,3} 30,496 263,488 7.10× 10
−06

6.13× 10
−05

{1,2,2} 11,344 100,768 2.64× 10
−06

2.35× 10
−05

{1,1,1,2} 457,216 3,446,488 1.06× 10
−04

8.02× 10
−04

{1,1,1,1,1} 4,294,967,296 4,294,967,296 1 1



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:18156  | https://doi.org/10.1038/s41598-022-22654-7

www.nature.com/scientificreports/

(a) (b)

(c)

N
um

be
r o

f f
un

ct
io

ns

N
um

be
r o

f f
un

ct
io

ns

10   6

10   6

{1,1,3}

{2,3} {1,2,2}

{1,1,1,2}

{1,1,2}

{2,2}

k = 4k k = 5k

k = 4k

k = 5k

{1,1,1,2}

{2,3}

Figure 3.  Overlaps between the sets of BFs compatible with different composition structures at k = 4 and 
k = 5 inputs. (a) Venn diagrams illustrating proper subsets among the sets of non-trivial composition structures 
at k = 4 and k = 5 inputs. (b) UpSet plot illustrating the number of BFs that are present in all possible 
intersections of non-trivial composition structures at k = 4 inputs. (c) UpSet plot illustrating the number of BFs 
that are present in all possible intersections of non-trivial composition structures at k = 5 inputs. The horizontal 
bars in the UpSet plots indicate the number of BFs that are present in different composition structures. The 
vertical bars indicate the number of BFs that are simultaneously present in some and absent from other 
composition structures, as specified by the underlying dark and light green circles.

Table 2.  Number of BFs in different composition structures that display biologically meaningful properties. 
The number of BFs within a non-trivial composition structure that also belong to each of the four types 
of biologically meaningful functions, namely Unate functions (UFs), Canalyzing functions (CFs), Nested 
canalyzing functions (NCFs) and Read-once functions (RoFs). The column “Number of composed BFs” gives 
the number of BFs that are allowed in a given composition structure.

Composition structure Number of composed BFs

Number of biologically meaningful 
BFs in composition structure

UF CF NCF RoF

{1,2} 152 96 120 64 64

{1,3} 4864 1210 3514 736 736

{2,2} 1208 634 730 224 320

{1,1,2} 6216 1370 1850 736 832

{1,4} 1,921,928 41,676 1,292,276 10,624 12,544

{2,3} 71,608 13,676 33,596 3264 6784

{1,1,3} 263,488 26,156 80,996 10,624 14,144

{1,2,2} 100,768 17,836 25,236 5504 9984

{1,1,1,2} 3,446,488 61,516 122,516 10,624 15,104
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the composition structures associated with each of the 2687 BFs in our database, but rather determine which 
composition structure each of the 2687 BFs belong to, by comparing the real BFs with the composed BFs of vari-
ous composition structures. In the “Methods” section, we provide details about the compilation and curation of 
this empirical dataset.

To begin, we computed two proportions for each possible composition structure. The first is the proportion 
of BFs with k inputs in the reconstructed biological networks that belong to the given composition structure 
(bar plots in Fig. 4a). The second is the corresponding proportion in the “random ensemble” with k inputs; that 
proportion is thus given by the number of BFs with k inputs that are compatible with the given composition 
structure, divided by the total number of BFs (black dots in Fig. 4a). The results show that the proportions of 
composed BFs in the reference biological dataset are larger than in the ensemble of random BFs, for each com-
position structure, indicating that non-trivial composed BFs are enriched in real biological networks. Note that 
the sets of BFs allowed by different composition structures overlap with each other (see Fig. 3), allowing for the 
sum of the height of the bars in Fig. 4a to be larger than 1. To consider this question in greater depth, we define 
the “enrichment factor” as the ratio of the first and the second proportions. For instance, for the composition 
structures {2, 2} and {2, 3} that are the most restrictive composition structures for k = 4 and k = 5 inputs, the 
corresponding enrichment factors are 40.37 and 45760.08. To check the level of significance of this effect, we 
applied a standard statistical test (see “Methods”). In Supplementary Table S8, we list the enrichment factors for 
all non-trivial composition structures having k ≤ 5 inputs and we give the corresponding one-sided p values. 
These p values show that the enrichment effects are indeed statistically significant, providing evidence in biologi-
cal systems of a selection pressure in favor of each of the non-trivial composition structures.

Figure 4b is a bar plot of the fractions in the reference biological dataset of the four biologically meaningful 
sub-types when focusing on the BFs satisfying a given composition structure. In addition, the black dots give 
the corresponding fractions when using the random ensemble instead of the reference biological dataset. We call 
“relative enrichment” ER the ratio of these fractions that focuses on both a given composition structure and a 
given biologically meaningful sub-type of BF. The ER s are larger than 1 for all non-trivial composition structures 
with number of inputs k ≤ 5 , suggesting that the four biologically meaningful sub-types of composed BFs are 
enriched within any composition structure in the reference biological dataset. Table 3 gives the ER values for the 
four biologically meaningful sub-types in all non-trivial composition structures with number of inputs k ≤ 5 . 
Furthermore, the computed relative enrichment values are statistically significant as determined by one-sided 
p values (see Supplementary Table S9).
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Figure 4.  Abundance of composed BFs in reconstructed biological networks. (a) Bar plots give the fraction of 
BFs in the reference biological dataset that are compatible with each of the composition structures. The black 
dots indicate the fraction when considering all possible BFs instead of only the ones in the reference biological 
dataset. Note that since the sets of BFs allowed by different composition structures overlap with each other, the 
sum of the bar plot values may be larger than 1. (b) For all BFs of the reference biological dataset compatible 
with a given composition structure, the bars give the fraction of these BFs that belong to each of the four 
biologically meaningful sub-types: Unate functions (UFs), Canalyzing functions (CFs), Nested canalyzing 
functions (NCFs), and Read-once functions (RoFs). Again, the black dots give these fractions when considering 
instead all possible BFs.
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A previous  analysis38 showed that biologically meaningful BFs are enriched in our reference biological data-
set. Notably, those enrichments are likely driven by complexity minimization, with NCFs and RoFs respectively 
minimizing two complexity measures namely, average sensitivity and Boolean  complexity38. An immediate 
question that then arises is whether the enrichments of composed BFs as found in Fig. 4 might just be driven by 
enrichments of NCFs and RoFs. To examine that possibility, let TC denote the set of BFs allowed by a composition 
structure C at a given number of inputs k, and let TNCF denote the set of NCFs with k inputs. We have determined 
the enrichment factors of three disjoint sets of BFs: composed BFs that are also NCFs (i.e., TC ∩ TNCF ), composed 
BFs that are not NCFs (i.e., TC \ TNCF ), and NCFs that are not composed BFs (i.e., TNCF \ TC ). Table 4 shows 
the enrichment factors for these three disjoint sets of BFs, for all non-trivial composition structures with k ≤ 5 
inputs. We find that the BFs belonging to the set TC ∩ TNCF display a very high enrichment factor. Moreover, for 
composition structures {2, 2} , {2, 3} and {1, 2, 2} , we find that both the sets TC \ TNCF and TNCF \ TC are enriched 
in the biological datasets. However, the enrichment factor is much larger for the set TNCF \ TC . Finally, for the 
composition structures {1, 2} , {1, 3} , {1, 1, 2} , {1, 4} , {1, 1, 3} and {1, 1, 1, 2} that are a superset of the correspond-
ing NCFs, we find that the set TC \ TNCF is either depleted or shows a lower enrichment factor compared to the 
set TC ∩ TNCF . After repeating the above analysis for RoFs to estimate the enrichment factors for TC ∩ TRoF , 
TC \ TRoF and TRoF \ TC , we find that the results are similar to those for NCFs (Table 4). Furthermore, all these 
enrichment factors are statistically significant as determined by one-sided p values (Supplementary Table S10). 
These results suggest that although composed BFs are subject to positive selection in real biological networks, 
the primary driving force for enrichment is the property of being an NCF or an RoF.

Table 3.  Relative enrichment of biologically meaningful BFs among composed BFs of different composition 
structures in the reference biological dataset. This table gives the relative enrichment values ER in the reference 
biological dataset for the four biologically meaningful sub-types within composed BFs for different non-trivial 
composition structures with number of inputs k ≤ 5 . These four biologically meaningful sub-types within 
composed BFs include those BFs in a composition structure that also happen to be Unate functions (UFs), 
Canalyzing functions (CFs), Nested canalyzing functions (NCFs), or Read-once functions (RoFs).

Composition structure

ER of biologically meaningful sub-types in a given composition 
structure

UF CF NCF RoF

{1,2} 1.58 1.27 2.26 2.26

{1,3} 4.02 1.38 6.36 6.36

{2,2} 1.90 1.53 4.77 3.62

{1,1,2} 4.52 3.16 7.71 7.23

{1,4} 45.78 1.49 159.62 139.70

{2,3} 5.24 1.97 18.07 9.85

{1,1,3} 10.07 3.05 21.11 17.57

{1,2,2} 5.65 3.70 15.46 9.49

{1,1,1,2} 56.03 26.00 268.47 209.30

Table 4.  Comparison between the enrichments of composed BFs and biologically meaningful BFs of 
minimum complexity in the reference biological dataset. The table provides the enrichment factors when 
composed BFs in non-trivial composition structures with k ≤ 5 inputs are compared with two classes of 
biologically meaningful BFs of minimum complexity namely, nested canalyzing functions (NCFs) and 
Read-once functions (RoFs). TC denotes the set of composed BFs allowed by a composition structure at a 
given number of inputs k, TNCF denotes the set of all k-input NCFs, and TRoF denotes the set of all k-input 
RoFs. ∩ represents the intersection of two sets and \ represents the set-theoretic difference. “–” in the 
columns TNCF \ TC or TRoF \ TC indicates that the NCFs or RoFs are a subset of the set of BFs allowed by the 
composition structure.

Composition structure TC ∩ TNCF TC \ TNCF TNCF \ TC TC ∩ TRoF TC \ TRoF TRoF \ TC

{1,2} 3.67 0.14 – 3.67 0.14 –

{1,3} 79.38 0.55 – 79.38 0.55 37.04

{2,2} 192.78 5.68 29.77 146.06 2.29 29.77

{1,1,2} 79.38 1.02 – 74.49 0.38 –

{1,4} 310,977.13 230.48 – 272,157.87 173.03 96,791.63

{2,3} 826,630.05 8459.68 82,296.27 450,476.77 3397.73 72,800.54

{1,1,3} 310,977.13 2286.48 – 258,889.63 883.34 0.00

{1,2,2} 570,245.27 6069.12 32263.88 350,214.73 2426.14 32,263.88

{1,1,1,2} 310,977.13 200.33 – 242,434.78 96.28 –
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We have also examined these questions for the other sub-types of biologically meaningful BFs. Supplementary 
Table S11 lists the corresponding enrichment factors while Supplementary Table S12 lists the associated p values. 
First, we find that the set of BFs that are UFs but not composed BFs (i.e., TUF \ TC ) are enriched whereas those 
BFs that are composed BFs but not UFs (i.e., TC \ TUF ) are highly depleted. This suggests that UFs could also 
be a possible driving factor for the enrichment of composed BFs in biological networks. Second, BFs that are 
composed BFs but not CFs (i.e., TC \ TCF ) are highly enriched compared to BFs that are CFs but not composed 
BFs (i.e., TCF \ TC ). Though this result provides evidence for composition structures as a driving factor for the 
enrichment of CFs in real biological networks, we reiterate our earlier result that this enrichment is primarily 
driven by the property of being NCFs or RoFs.

Discussion
We began our empirical study into the potential biological relevance of non-trivial composition structures 
arising in bipartite gene regulatory networks by investigating two different scenarios. In the first we estimated 
the degree of occurrence of heteromeric complexes formed by DNA-binding proteins while in the second we 
characterized co-occurrences of TF binding sites in enhancers. Recall that a composition is called non-trivial 
when the number of terms in the composition structure is greater than 1 and at least one of its entries is not 
equal to 1 (see “Methods”).

TF complexes have previously been studied in unipartite Boolean  models27,71,72. One approach to handle TF 
complexes in unipartite Boolean models is to create a functional topology of the original  network27. Creation 
of the functional topology involves the creation of pseudonodes called complementary nodes and composite 
nodes. Complementary nodes are nodes which are assigned negated literals that allow for the replacement of 
inhibitory interactions with activatory ones. Composite nodes on the other hand represent the conjunction of 
their input variables (which could be actual nodes or complementary nodes). Thus composite nodes capture the 
TF complexes in the unipartite Boolean network. Furthermore, we note that the effective graph formalism could 
also be useful in dealing with protein  complexes73. In the scenario of transcriptional regulation by heteromeric 
complexes as proposed by Hannam et al.44, a non-trivial composition structure arises when a gene is regulated 
by at least two transcriptional regulators, of which at least one is a heteromeric protein complex made up of at 
least two monomers. Composition structures can therefore be important if a substantial fraction of genes are 
transcriptionally regulated by protein complexes. Generally that will require many different such complexes, 
but one cannot exclude that just a few complexes are involved in the control of many genes. From the data on 
macromolecular complexes in humans obtained from the EBI Complex  Portal57, we find that for approximately 
6.5% of the complexes (86 out of 1325), all of their monomeric subunits are identified as TFs. (For such an 
identification, we imposed that they be present in the database of 1617 human TFs from Lambert et al.58 and 
come with strong evidence for DNA binding as ascertained by manual curation of the literature.) Furthermore, 
we find that 4.57% of the human TFs belong to the bZIP and bHLH classes that are known to bind to DNA as 
homodimers or heterodimers.

It is likely that the collection of complexes in the EBI Complex Portal are biased towards complexes which do 
not act as TRs given that the detection and characterization of heteromeric protein complexes which act as TRs 
is experimentally challenging. Though our empirical analysis provides some support for Hannam’s picture of 
heteromeric protein complexes acting as TRs, the existing data on such complexes is insufficient to quantitatively 
estimate the prevalence of composition structures in real-world gene regulatory networks. Another point that 
requires critical assessment in this picture of gene regulation is the number of logic rules that govern the forma-
tion of the heteromeric complexes. Since a heteromeric complex is a conjunction of all its monomeric subunits, 
the only Boolean logic rule which captures the formation of a complex is the one linking all the components by 
the “AND” operator. In a general bipartite Boolean network, the upper limit for the number of logics possible 
for the composition structure {t1, t2, . . . , tr} is 22t1 22t2 . . . 22

tr
22

r , whereas if one imposes the “AND” logic for 
the formation of protein complexes only 22r logics are possible.

The flexibility of the bipartite formalism allows us to capture a more nuanced scenario in gene regulation that 
involves cis-regulatory elements (such as enhancers and promoters) and the transcription factors (TFs) which 
bind to them. In our picture, a target gene is regulated by cis-regulatory elements which act as transcriptional 
regulators (TRs) and each cis-regulatory element acts in a way that depends on the TFs that bind therein (see 
Fig. 2a). Thus, a non-trivial composition structure is realized when a gene is regulated by at least two cis-regula-
tory elements, one of which is regulated by at least two TFs. We thus inferred whether non-trivial composition 
structures of this kind arise in gene regulatory networks by determining how often the enhancers of a gene are 
bound by at least two TFs. By analyzing ChIP-seq and enhancer datasets in the two human cell lines HepG2 and 
K562, we find that 32.68% and 44.31% of their respective active enhancers bind to at least two TFs. Our result 
suggests that composition structures with cis-regulatory elements acting as transcriptional regulators are likely 
to be prevalent in bipartite gene regulatory networks. We remark that experimental limitations do not allow 
for the detection of all the enhancers for a given target gene in a given cell type, preventing the identification of 
exact composition structures from empirical data.

Fink and  Hannam47 showed that composition structures can severely restrict the number of Boolean logics in 
the space of all BFs. In the present contribution, we address many questions from the perspective of providing a 
comprehensive comparison between the BFs of a composition structure and the BFs that are biologically mean-
ingful. The main questions we address are as follows: (i) How restrictive are composition structures compared 
to biologically meaningful logic rules? (ii) For a given number of inputs, do the BFs belonging to two different 
composition structures overlap? (iii) Do BFs in a given composition structure overlap with those having a bio-
logically meaningful logic? (iv) Are composed BFs enriched in an empirical dataset of biological logic rules? 
First, we provide the corrected values for the number of BFs belonging to a given composition structure by 
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accounting for all the isomorphisms for each of the composed BFs (Fink and  Hannam47 leave these out of their 
work). Note that the procedure used to count the corrected values of the number of composed BFs in the present 
work is purely computational and is based on enumeration. Such a computational approach limits our ability 
to count the number of BFs belonging to most composition structures beyond k = 5 inputs. We then compare 
the degree of restrictiveness imposed by composition structures vis-a-vis biologically meaningful logic rules 
and find that for all inputs up to 5-input BFs, the NCFs and RoFs are more restrictive than the most restrictive 
composition structures. Next, we quantify the overlaps between different composition structures and find that 
BFs belonging to different composition structures may partially overlap but some composition structures may 
in fact be subsets of other composition structures, e.g. {2,2} is a subset of {1,1,2}. Following this, we quantify 
the overlaps between composition structures and biologically meaningful BFs. Interestingly, we find that of the 
9 composition structures (up to 5-input BFs), the NCFs are a subset of 6 composition structures. The overlaps 
across different composition structures and the overlaps of composition structures with biologically meaning-
ful BFs provide essential information for analysing their enrichments in real biological networks. In particular, 
quantifying these overlaps help us identify specific classes of composed BFs or biologically meaningful BFs that 
drive the enrichments of the other classes.

Our final set of analyses are a set of 3 statistical tests to identify whether composed BFs are enriched within 
biological logics and if so, what are the factors that drive their enrichment. First, we find that the composed BFs 
are indeed enriched in our reference biological dataset in comparison to the space of all BFs. Then by computing 
the relative enrichment of a biologically meaningful sub-type in non-trivial composition structures (for instance, 
the relative enrichment of NCFs when considering BFs compatible with the composition structure {2,2}), we find 
that these sub-types are enriched, though the cause of its enrichment could be attributed either to the property of 
being biologically meaningful or to the property of belonging to the composition structure. To decide between 
these two possibilities, we compare the relative enrichments of biologically meaningful BFs which do not belong 
to the composed BFs to the relative enrichment of the composed BFs which do not belong to the biologically 
meaningful BFs. In a nutshell, these tests confirm that the property of being minimally complex in terms of the 
Boolean complexity or the average sensitivity, i.e., being either an RoF or a NCF, is most likely what drives the 
enrichment of composition structures.

Methods
Boolean models of gene regulatory networks. A Boolean model of a gene regulatory network con-
sists of nodes (or vertices) and directed links (or edges) wherein the nodes correspond to genes and a directed 
link towards any gene captures the regulation of that output gene by a input gene from which the link  arises6–8,35. 
In a Boolean network model, the allowed states for any node are analogous to that of a switch which can be either 
‘on’ or ‘off ’, and therefore, the state of a node is given by a Boolean variable x that can take the values 1 or 0. The 
dynamics of any Boolean network model is determined by two factors, namely: update rules or Boolean functions 
(BFs) which are assigned to each node, and the update scheme employed (e.g., synchronous35 or asynchronous74). 
The state of a node j in the network with k inputs at time t + 1 is given by a BF f = fj(x1, x2, . . . , xk) having k 
input variables, where xi ∈ {0, 1} are the states of each of the k inputs at time t. This BF maps the 2k different pos-
sibilities for the k input variables to output values 0 or 1, i.e., f : {0, 1}k �→ {0, 1}.

Useful representations and properties of Boolean functions. A BF f of k inputs can be represented 
via an algebraic expression consisting of the k input variables combined using the logical operators AND (e.g. 
x1 · x2 ), OR (e.g. x1 + x2 ) and NOT (e.g. x1 ). Alternatively, f can be represented as a truth table with 2k rows, 
wherein each row corresponds to a possible choice of the set of k input variables (see Fig. 1). The last entry of 
each row in the truth table gives the output value for the corresponding realisation of the input variables. Thus, a 
BF can also be expressed as a binary vector of size 2k , where each element of the vector corresponds to the output 
value of the corresponding row of the truth table. Some properties associated with BFs such as bias or parity, 
complementarity or being  isomorphic75, may have utility in the biological  context38. The bias of a BF f is the 
number of ones which occur in its output vector. A BF with an odd (even) bias is said to possess an odd (even) 
parity. The complement f  of a BF f is obtained by inverting each element in its output  vector75. For instance, if 
BF f = [0, 0, 1, 0] , then its complement f = [1, 1, 0, 1] . The  isomorphisms75 of a BF f are the BFs obtained by 
permuting and possibly negating the inputs of f. For instance, the 4 isomorphisms of the BF with expression 
a+ b are a+ b itself, a+ b , a+ b , and a+ b.

Biologically meaningful types of Boolean functions. Unate function (UF). If a BF is monotonically 
increasing or decreasing for each input i, it is said to be a unate function (UF)34. Formally, if a BF is monotoni-
cally increasing in xi , then:

or, if it is monotonically decreasing, then:

Here ei ∈ {0, 1}k denotes the unit vector having entry 1 for input i and 0 for all others.

Canalyzing function (CF). If in a BF there exists at least one input i (or input variable xi ) which, when fixed to 
0 or 1, fixes the output value, then that BF is said to be a canalyzing function (CF)35. Mathematically,

(1)∀ x ∈ {0, 1}k with xi = 0, f (x + ei) ≥ f (x),

(2)∀ x ∈ {0, 1}k with xi = 0, f (x + ei) ≤ f (x).
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independent of xj for j  = i . Here, xi is the canalyzing input variable, a is the canalyzing input value, and b is the 
canalyzed output value.

Nested canalyzing function (NCF). A k-input BF is said to be a nested canalyzing function (NCF)10,76 with 
respect to some permutation σ on its inputs if:

Here, a1, a2, . . . , ak are the canalyzing input values and b1, b2, . . . , bk are the canalyzed output values. ak and bk 
denote the complements of the Boolean values ak and bk , respectively.

Read-once function (RoF). If a k-input BF f can be expressed only using the operators AND, OR and NOT in 
such a manner that each variable appears exactly once in the Boolean expression, then the BF is said to be a 
Read-once function (RoF)38,77. Mathematically, for f there exists a permutation σ on {1, 2, . . . , k} such that after 
stripping all the parentheses in the Boolean expression for f (x) , we are left with an expression of the form:

Here, Xσ(i) ∈ {xσ(i) , xσ(i)} and ⊙ ∈ {∧ (AND), ∨ (OR)}.

Composition structures. We provide here a formal definition of composition structures. Consider a sub-
graph in the bipartite network model of transcriptional regulation wherein a given gene has r incoming links 
from r TRs, that is, the expression of the given gene is directly controlled by r TRs and each of these r TRs in 
turn have ti incoming links from ti genes where i ∈ [1, r] , that is, each TR i is directly dependent on ti genes. In 
recent work, Fink and  Hannam47 termed such a subgraph in the bipartite model as a ‘composition structure’, 
and denoted it as {t1, t2, . . . , tr} (see Fig. 1b); since the composition graph is a tree of depth 2, the ordering of 
the degrees (i.e., ti s) is arbitrary and so one can force the sequence {t1, t2, . . . , tr} to be increasing. In their work, 
Fink and  Hannam47 assumed that the t1, t2, . . . , tr genes directly controlling the r TRs in the subgraph are dis-
tinct. Evidently, the sum k = t1 + t2 + . . .+ tr gives the number of genes whose products directly regulate the 
targeted gene in the bipartite model. In other words, this sum k in the bipartite model gives the number of inputs 
k to a gene in the corresponding unipartite model.

Clearly, for a given value of k, there are multiple composition structures possible. For instance, the possible 
composition structures for k = 4 are: {1, 1, 1, 1}, {1, 1, 2}, {1, 3}, {2, 2} and {4} . Fink and  Hannam47 refer to the 
subset of functions within all 22k BFs resulting from the restrictions imposed by the composition structure as 
“composed Boolean functions”.

Composed Boolean functions. Consider a composition structure {t1, t2, . . . , tr} in the bipartite Boolean 
network framework. Let there be a gene whose transcriptional regulation depends on the states of r TRs accord-
ing to a BF g with r inputs. We denote the BF g as g = g(y1, y2, . . . , yr) , where y1, y2, . . . , yr are the states of the 
r TRs. The state of each TR i, where i ∈ [1, r] , in turn depends on the states of ti genes according to a BF pi with 
ti inputs.

Let us denote the states of the k = t1 + t2 + . . .+ tr  genes directly controlling the r TRs as 
x1, . . . , xt1 , . . . , xt1+t2 , . . . , xk . It follows that:

The regulation of a gene in the composition structure {t1, t2, . . . , tr} ultimately depends on the states of k genes 
according to some BF h of k inputs. This BF h is in fact the composition of the BFs p1, p2, . . . , pr fed into g, that is:

In the above equation, the BF h is said to be a composed BF. There are no restrictions on the BFs that can be 
assigned to p1, p2, . . . , pr or g. Therefore, the upper limit on the possible number of composed BFs h is:

(3)f (x1, x2, . . . , xi−1, xi = a, xi+1, . . . , xk) = b,

(4)f (x) =































b1 if xσ(1) = a1,
b2 if xσ(1) �= a1, xσ(2) = a2,
b3 if xσ(1) �= a1, xσ(2) �= a2, xσ(3) = a3,
.
.
.

bk if xσ(1) �= a1, xσ(2) �= a2, . . . , xσ(k) = ak ,

bk if xσ(1) �= a1, xσ(2) �= a2, . . . , xσ(k) = ak .

(5)f (x) = Xσ(1) ⊙ Xσ(2) ⊙ Xσ(3) . . .⊙ Xσ(k).

y1 = p1(x1, . . . , xt1),

y2 = p2(xt1+1, . . . , xt1+t2),

.

.

.

yr = pr(xt1+t2+...+tr−1+1, . . . , xk).

g(y1, y2, . . . , yr)

= g(p1(x1, . . . , xt1), . . . , pr(xt1+t2+tr−1+1, . . . , xk))

= h(x1, x2, . . . , xk).
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However, the 22t1 22t2 . . . 22
tr
22

r BFs thereby composed are generally not all distinct, and it is necessary to remove 
the redundancies to obtain the set of (non-redundant) composed BFs. Such a non-redundant set of composed 
BFs is referred to as “biological logics” by Fink and  Hannam47, and in the present work we will refer to this non-
redundant set of BFs as simply the “composed BFs”.

From the definition of composed BFs, it follows that if a BF h is associated with a composition structure 
{t1, t2, . . . , tr} , then its complement h is also associated with the same composition structure (see Supplementary 
Information, Property 1). Figure 1b provides a schematic illustration of a composed BF belonging to the composi-
tion structure {1, 2} . Fink and  Hannam47 have provided exact analytical expressions for the number of composed 
BFs in a composition structure. Following these analytical expressions, it can be easily shown that the composed 
BFs belonging to the two composition structures {1, 1, 1, . . . , 1} and {k} do not restrict the space of k-input BFs, 
and they each include all 22k possible BFs (see Supplementary Information, Property 2). Thus, for k-input BFs, 
these two composition structures can be considered as trivial whereas the remaining composition structures are 
in fact non-trivial. Further, it is easy to see that there are no non-trivial composition structures for 1-input and 
2-input BFs. Importantly, we excluded all the trivial composition structures from the analyses reported in this 
work, and in particular, we focus on non-trivial composition structures corresponding to 3, 4 and 5 input BFs.

Accounting for all the permutations of inputs of composed BFs. Consider a composed BF of the type 
g(p1(x1), p2(x2, x3)) that belongs to the composition structure {1, 2} and corresponds to a 3-input BF h(x1, x2, x3) . 
Taking p1(x1) = x1 , p2(x2, x3) = x2x3 , and g(x, y) = x + y leads to the composed BF h(x1, x2, x3) = x1 + x2x3 . 
However the BFs obtained by permuting the labels of these variables, namely x2 + x1x3 and x3 + x1x2 , are just 
as relevant biologically; indeed, the labels point to genes and these are hardly ever equivalent. Thus, we count all 
three of the cases above as valid composed BFs. In contrast, Fink and  Hannam47 count them as one composed 
BF. A code to generate all the composed BFs for any given composition structure after accounting for all the 
permutations of the input variables is available from the associated GitHub repository (see https:// github. com/ 
asama llab/ CoSt). Note that this example shows that the two ways of counting are not generally related by the 
number of permutations (k!) of k labels because of possible symmetries within these expressions.

TF binding regions and active enhancers. We relied on two types of published datasets for estimating 
the prevalence of composition structures arising from cis-regulatory modules: (i) transcription factor binding 
regions and (ii) active enhancers. We focused on the two well-studied human cell lines HepG2 and K562 because 
there is ample published data for them. We obtained the DNA binding regions of the TFs as ChIP-seq narrow-
Peak bed files for the two cell lines from the human ENCODE  project78. The active enhancers are obtained from 
data processed using the STARRPeaker peak-calling  software79. Employing these two datasets, we consider that 
a TF binds to an active enhancer if and only if both the midpoint and the summit of the ChIP-seq peaks for that 
TF fall within the active enhancer region. Notably, there were no cases wherein the summit of the peaks were not 
provided in the ChIP-seq files obtained from the human ENCODE project. The ChIP-seq narrowPeak bed files 
for the HepG2 and K562 cell lines were last downloaded on April 28th 2022 and April 29th 2022, respectively, 
from the human ENCODE project website: https:// www. encod eproj ect. org. The processed datasets from human 
ENCODE used for this analysis and the associated codes are available at: https:// github. com/ asama llab/ CoSt. 
This study was carried out in accordance with relevant guidelines and regulations.

Reference biological dataset of 2687 Boolean functions from reconstructed models. We uti-
lized the empirical dataset compiled by Subbaroyan et al.38 consisting of 2687 BFs extracted from 88 published 
discrete models of biological systems to quantify the abundance of composed BFs in biological networks. This 
dataset of BFs, available for download at https:// github. com/ asama llab/ MCBF/ tree/ main/ biolo gical_ datas et, 
was compiled using information on published models in online repositories Cell  Collective31 (https:// cellc ollec 
tive. org/),  GINSIM28 (http:// ginsim. org/) or  BioModels29 (http:// www. ebi. ac. uk/ biomo dels/) and by manually 
retrieving information from published literature. The compiled collection of 88 published models spans a diverse 
range of biological processes from various kingdoms of life. Though most of the 88 models are Boolean, some 
models are not Boolean but nevertheless discrete, implying that each node may have more than 2 states in its 
discrete logic model. For such models, BFs alone were compiled into the dataset, i.e., nodes which had a binary 
state and whose inputs were restricted to binary states were included in the 2687 BFs.

Statistical tests. Enrichments and relative enrichments. For a given number of inputs k, let T be the set 
of composed BFs allowed by the composition structure {t1, t2, . . . , tr} , with t1 + t2 + . . .+ tr = k . Let f0 be the 
fraction occupied by the set T among the set of all k-input BFs. This fraction f0 is equal to the probability of 
obtaining a BF belonging to the set T when drawing at random (uniformly) within all k-input BFs (black dots in 
Fig. 4a). Let f1 denote the fraction of BFs belonging to T among all k-input BFs that are present in the reference 
biological dataset (bar plots in Fig. 4a). T’s “enrichment factor”, E, is equal to the fraction f1/f0 . An enrichment 
factor E > 1 implies that the composition structure {t1, t2, . . . , tr} is enriched in the reference biological dataset, 
whereas E < 1 implies that the composition structure is depleted.

Consider now a refinement of the previous notion of enrichment to probe the roles of biologically meaningful 
types. Specifically, let s be one of the four types of biologically meaningful BFs (UFs, CFs, NCFs, or RoFs). Denote 
by Ts the subset of BFs of type s in T. We then define the “relative enrichment” ER of type s in T as ER = fs,1/fs,0 . 
In that ratio, fs,0 (respectively fs,1 ) is the fraction of BFs in T that belong to Ts (respectively the fraction of BFs 

22
t1
22

t2
. . . 22

tr
22

r
.

https://github.com/asamallab/CoSt
https://github.com/asamallab/CoSt
https://www.encodeproject.org
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http://ginsim.org/
http://www.ebi.ac.uk/biomodels/
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in the intersection of T and the reference biological dataset that belong to Ts ). A relative enrichment close to 1 
means that an enrichment of Ts is driven by an enrichment of T (i.e., by the composition structure) rather than 
by the biologically meaningful sub-type s. In contrast, a large relative enrichment suggests that sub-type s is 
driving enrichment of such BFs in the reference biological dataset even after accounting for enrichment of BFs 
compatible with a given composition structure.

Associated p values. We first describe the procedure that we employed to test the significance of an enrichment 
factor E for the set T of composed BFs in the composition structure {t1, t2, . . . , tr} . A similar statistical test was 
presented and implemented by Subbaroyan et al.38. First, we introduce the null hypothesis, denoted by H0 , in 
which all the k-input BFs in the reference biological dataset are drawn from a random ensemble comprised of 
uniformly distributed k-input BFs. The p value associated with rejecting this null hypothesis H0 is computed as 
follows. Recall that f0 is the probability of choosing a k-input BF belonging to the set T from the random ensem-
ble. Define M to be the number of k-input BFs in the reference biological dataset. Then, we draw M BFs from all 
k-input BFs in the random ensemble, and compute the probability of getting m BFs that also belong to the set T. 
This probability is equivalent to getting m successes when tossing a biased coin M times, and is thus given by the 

binomial distribution 
(

M
m

)

f m0 (1− f0)
M−m . The p value is then given by 

∑

m>=Mf1

(

M
m

)

f m0 (1− f0)
M−m . 

Here, Mf1 is the number of BFs belonging to the set T among all k-input BFs that are present in the reference 
biological dataset.

We perform a similar statistical test to determine whether a relative enrichment ER for a given T and s is 
statistically significant. In this case, the null hypothesis H0 hypothesizes that although there is a selection for T 
(as evident from a large value of E), the elements that are drawn within T have a uniform probability, that is the 
individual elements belonging to Ts are not more probable than the other elements of T. In practice, we draw a 
sample of size M under H0 where as above M is the number of k-input BFs in the reference biological dataset. If 
this sample contains MT elements in T as does the reference biological dataset, the distribution of the number 

of elements in Ts is then known. Specifically, the probability to have m elements in Ts is 
(

MT

m

)

f ms,0(1− fs,0)
MT−m 

where fs,0 is the ratio of sizes of Ts and T in the random ensemble. The p value associated with rejecting H0 is 
then just the sum of all such probabilities under the condition that m is larger or equal to the number of Ts ele-
ments in the reference biological dataset.

Data availability
The list of human macromolecular complexes was abtained from the EBI Complex Portal  database57, and the list 
of human TFs was obtained from http:// human tfs. ccbr. utoro nto. ca/58. The families of human TFs are provided 
in the JASPAR  database64. The ChIP-seq peaks for TFs in HepG2 and K562 were obtained obtained the human 
ENCODE  project78. The active enhancer regions were obtained from data processed using STARRPeaker peak-
calling  software79.

Code availability
All original codes used to generate the composed BFs are deposited in GitHub and are publically available at 
https:// github. com/ asama llab/ CoSt.
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