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Abstract

Coralline algae (Corallinophycideae) are calcifying red algae that are foundation species in

euphotic marine habitats globally. In recent years, corallines have received increasing

attention due to their vulnerability to global climate change, in particular ocean acidification

and warming, and because of the range of ecological functions that coralline algae provide,

including provisioning habitat, influencing settlement of invertebrate and other algal spe-

cies, and stabilising reef structures. Many of the ecological roles corallines perform, as well

as their responses to stressors, have been demonstrated to be species-specific. In order

to understand the roles and responses of coralline algae, it is essential to be able to reliably

distinguish individual species, which are frequently morphologically cryptic. The aim of this

study was to document the diversity and distribution of coralline algae in the New Zealand

region using DNA based phylogenetic methods, and examine this diversity in a broader

global context, discussing the implications and direction for future coralline algal research.

Using three independent species delimitation methods, a total of 122 species of coralline

algae were identified across the New Zealand region with high diversity found both

regionally and also when sampling at small local spatial scales. While high diversity identi-

fied using molecular methods mirrors recent global discoveries, what distinguishes the

results reported here is the large number of taxa (115) that do not resolve with type mate-

rial from any genus and/or species. The ability to consistently and accurately distinguish

species, and the application of authoritative names, are essential to ensure reproducible

science in all areas of research into ecologically important yet vulnerable coralline algae

taxa.
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Introduction

Coralline red algae (belonging to the orders Corallinales P.C.Silva & H.W.Johans., Hapalidiales

W.A.Nelson, J.E.Sutherl., T.J.Farr & H.S.Yoon and Sporolithales L.Le Gall & G.W.Saunders)

possess extra-cellular calcium carbonate, and are recognised as foundation species that are crit-

ical to the ecosystems in which they are found [1,2]. As calcified organisms, coralline algae are

also vulnerable to the impacts of global climate change, such as warming seas and ocean acidi-

fication, and as such, have been receiving increased research attention over the last decade

(e.g. [3–5]). Distributed from the poles to the tropics and occupying habitats from the inter-

tidal zone through to the limits of the euphotic zone, these algae perform crucial ecological

functions. Coralline algae provide structurally complex and food-rich habitats for small mobile

invertebrates (e.g. [6]), support diverse and abundant faunal communities (e.g. [7]), influence

the settlement of other macroalgae with both positive and negative interactions reported (e.g.

[8,9]), induce settlement of a wide range of invertebrate species (e.g. [10–12]), and serve as

seedbanks for microscopic algal life history stages (e.g. [13]). They also are major builders and

stabilisers of reef framework in temperate and tropical regions (e.g. [1,4,14,15]) and play an

important role in the recovery of biodiversity following disturbance (e.g. [8]).

Accompanying the surge of studies on coralline algal physiology, calcification, and

responses to global and local anthropogenic stressors, over the past decade there has also been

an increase in systematic research on corallines, which has resulted in an unprecedented num-

ber of discoveries, including the recognition of a new subclass, encompassing all coralline algal

taxa (Corallinophycidae L.Le Gall & G.W.Saunders [16]), as well as new orders [16–18]. In

addition to the new understanding of higher-level relationships, recent research on coralline

algal systematics has clearly established that sequence data and phylogenetic analyses are

essential for the characterisation of genera and species. This need for molecular sequence data

has been articulated compellingly by multiple authors (e.g. [17,19–32]).

Reliable taxonomy, nomenclature and a robust phylogenetic framework are critical for all

areas of research on coralline algae, with direct implications for the interpretation of physio-

logical and ecological research, understanding the impacts of anthropogenic change and the

provision of ecosystem services. This is particularly important as the induction of invertebrate

settlement (e.g. [10,11]), growth rates (e.g. [11,33]), competitive ability (e.g. [34,35]), and

responses to stressors (e.g. [36–38]) can all be species-specific. Assessing biodiversity at local

and global scales, and understanding biogeography and distributional ranges requires repro-

ducible and authoritative use of names and species concepts [19]. Based on investigations

using DNA sequence data, strong caution has been expressed about basing the recognition of

coralline algae (particularly non-geniculate/crustose species) on solely morphological and ana-

tomical characters, and reports of morphologically identified non-geniculate coralline algae

with geographically widespread and/or disjunct distributions have been called into question

(e.g. [21,27,29,39]). While some species have been confirmed to have wide distributions (e.g.

Lithophyllum kaiseri (Heydr.) Heydr., with widespread pan-tropical distribution [20], Hydroli-
thon boergesenii (Foslie) Foslie [40], and Sporolithon indopacificum Maneveldt & P.W.Gabriel-

son [21]), these appear to be the exception. For example, Adey et al. [31] found that in the

cold-water Boreal region, the majority of species of Phymatolithon Foslie “are largely ecolog-

ically and biogeographically partitioned”.

The aims of this study were to understand the diversity of coralline algae across the New

Zealand region based on molecular data, and to estimate likely diversity that remains undis-

covered based on current data and sampling approaches. Although this is a regional study, it

has value beyond the SW Pacific. The resolution of generic and specific boundaries in the Cor-

allinophycidae and the development of a robust phylogenetic framework for coralline algae
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requires taxon sampling that reflects geographic and habitat diversity. These data provide new

insights about the estimation of diversity and have implications for future research on coralline

algae, their diversity, distribution and ecology.

Materials and methods

Specimen collection

A total of 796 samples of coralline algae were collected from 110 collection sites around south-

ern New Zealand, extending earlier surveys of coralline algae in northern and central New

Zealand (Fig 1 [41,42]). All collections were made under Special Permit 665 issued by the New

Zealand Ministry for Primary Industries (MPI) which allows the taking of seaweed for the pur-

poses of education and investigative research. Sampling was conducted in a range of different

habitat types (e.g. rocky reefs, biogenic reefs, and soft bottoms) of varying exposures. Depend-

ing on accessibility, depth and available time, collections were made either by hand in the

intertidal or subtidal, using a hammer and chisel, or by use of a dredge on soft bottom habitats

in depths greater than 20 metres. At each site, a range of growth forms from different micro-

habitats were targeted for collection, in an attempt to representatively sample the biodiversity

present. Specimens were examined using a dissecting microscope and sorted based on external

morphological features (e.g. colour, reproductive features and growth form), depth and micro-

habitat. Wherever necessary, specimens were cleaned using forceps and a razor blade to

remove fragments of rocky substrate underneath as well as epiphytes and invertebrates, prior

to storage in silica gel for subsequent DNA analysis. Where possible, specimens were subsam-

pled into formalin and subsequently rinsed in freshwater, prior to being transferred to an etha-

nol glycerol mix (1 glycerol: 7 ethanol 90%: 2 water) for preservation of anatomical features for

long-term storage. Voucher specimens are currently housed at National Institute of Water and

Atmospheric Research (NIWA) Wellington, and will be deposited in the Herbarium of the

Museum of New Zealand Te Papa Tongarewa in Wellington (WELT [43]).

In addition to the sampling across the southern region, intensive sampling was undertaken

at two sites to quantify diversity at small spatial scales, using two different approaches. At But-

terfly Bay in Karitāne (Fig 1) sampling was undertaken over an area of approximately 0.02km2,

targeting a range of microhabitats (e.g. under macroalgal canopy, in crevices, on the surface of

reef) from the intertidal zone to 10 metres below mean low water. In Moeraki (Fig 1), quantita-

tive sampling was undertaken across a series of six boulders with little to no canopy cover at

1.5 metres below mean low water in a semi-sheltered sandy bay. Quantitative sampling was

achieved using a line intercept transect method [44], by laying a transect across each boulder

and recording the projected length of individual coralline alga (identified by taking a small

sample for DNA analysis) beneath the transect to the nearest millimetre.

DNA sequencing

DNA was extracted by grinding dried samples and then using the Qiagen DNeasy Blood and

Tissue DNA Extraction Kit (Qiagen GmbH, Hilden) as per the manufacturers’ instructions,

except that the initial incubation of ground tissue was carried out with Buffer AL (200 μl),

Buffer ATL (180 μl) and Proteinase K (20 μl) at 56˚C for 2–4 hours.

We attempted to amplify and sequence the psbA marker from each DNA extract. Amplifi-

cation and sequencing of the rbcL marker was subsequently carried out for a subset of these

specimens based on the results of species delimitation analysis of the psbA dataset (further

explanation below). The psbA marker was amplified using primers psbAF1 paired with either

psbAR2 or, in some cases, psbAR1 [46]. Amplicons were sequenced using the appropriate

reverse primer. The rbcL marker was amplified in two overlapping pieces using primers F57
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paired with R1150, and F753 with RrbcS [47]. Products were sequenced in both directions

using the same primers.

Each PCR reaction contained 3 μl of 1:100 diluted coralline algae DNA extract, 25 pM of

each primer, 5 nM of dNTPs, 1x reaction buffer (containing MgCl2 to a final concentration of

1.5 mM), and 0.5 U Kapa 2G Robust HotStart DNA polymerase (Sigma-Aldrich, St Louis,

MO). Amplification conditions were: Initial denaturation of 95˚ C for 3 min; 35 cycles of either

95˚ C for 30 s, 41˚ C for 20 s, 72˚C for 1 min (psbA) or 95˚ C for 30 s, 48˚ C for 15 s, 72˚C for

30 s (rbcL); followed by a final extension of 2–3 min at 72˚ C. PCR products were checked for

size and concentration by electrophoresis in 1% agarose gels, purified using ExoSAP-IT

reagent (USB, Cleveland, Ohio, USA) and sequenced by Macrogen Inc. (Seoul, Korea).

Fig 1. Collection sites of coralline algae around the New Zealand coast and associated islands. The dashed lines represent divisions between the

Southern, Central and Northern collection regions. Map was created using QGIS software [45] with the use of New Zealand Transverse Mercator 2000

(NZTM2000) projection (LINZ; Land Information New Zealand).

https://doi.org/10.1371/journal.pone.0225645.g001
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Sequences were imported into Geneious 11.0.3 (https://geneious.com), trimmed to remove

poor quality sequence and assembled to generate a consensus sequence as necessary.

Species delimitation and phylogenetic analyses

The psbA data was analysed as two separate datasets of taxa belonging to the Corallinophyci-

dae: (1) members of the order Corallinales, and (2) members of the orders Hapalidiales and

Sporolithales. Sequence data from the southern New Zealand specimens were aligned with

sequence data previously obtained from collections of Corallinophycidae specimens from cen-

tral and northern regions of New Zealand (see [17,41,42,48]). Species delimitation methods

were employed on these two psbA datasets to establish primary species hypotheses (PSH).

Prior to analysis, identical sequences were removed using a python script as recommended by

Blair & Bryson [49]. Three separate single-locus delimitation methods were implemented: (1)

a distance based method, Automatic Barcode Gap Discovery (ABGD [50]); (2) a tree-based

method, Poisson-Tree Processes (PTP [51]); and (3) an ultrametric tree based method, Gener-

alized Mixed Yule Coalescent (GMYC [52,53]). AGBD was run on the alignments using the

web interface (http://wwwabi.snv.jussieu.fr/ public/abgd/) with the Jukes-Cantor (JC69) dis-

tance and relative gap width (X) set to 0.5. A Bayesian version of PTP (bPTP) with 500,000

MCMC generations was run with thinning every 100 generations on the web server (http://

species.h-its.org/ptp) using a standard maximum likelihood phylogeny as an input. Maximum

likelihood (ML) phylogenies were constructed with PhyML v3.1 [54] using the General Time

Reversible (GTR) sequence evolution model [55] with rate variation modelled as a discrete

gamma distribution [56], and including a parameter for invariant sites (GTR+I+G). This

sequence evolution model was selected for both datasets using the Bayesian Information Crite-

rion (BIC) in jModelTest v2.1.10 [57]. The single threshold version of GMYC (sGMYC) was

calculated by using an ultrametric tree as an input on the web server (http://species.h-its.org/

gmyc). The ultrametric tree was constructed using BEAST v2.4.8 [58] running for 10 million

MCMC generations with sampling every 1000 generations. The clock model was set to ‘relaxed

lognormal molecular clock’, and the prior ‘coalescence tree with constant population’ was cho-

sen [59]. A conservative approach, similar to that employed by Hoshino et. al [60], was used to

define the PSH. This was based on a consensus approach where a PSH was considered sup-

ported when two or more species delimitation methods supported it. One specimen was

selected from each PSH (hereafter referred to as a species) for rbcL sequencing.

A concatenated psbA and rbcL alignment was created for each of the three orders (Coralli-

nales, Hapalidiales and Sporolithales) using one specimen from each identified species. We

also included sequences available in Genbank that were obtained from type material, to pro-

vide reliable taxonomic reference points for existing names (S1 Table). Each analysis included

four taxa from the other two orders, and also Corallinapetra novaezelandiae T.J.Farr, W.A.Nel-

son & J.E.Sutherl. (which is excluded from each of the three currently recognized orders), as

outgroups.

Maximum likelihood trees were constructed using IQ-Tree [61] for each of the three orders.

Appropriate partitioning strategies and models of sequence evolution were estimated under

Bayesian Information Criterion (BIC) using ModelFinder [62] implemented in IQ-Tree (S2

Table). The robustness of internal nodes was assessed by approximate Likelihood Ratio Tests

(aLRT) based on Shimodaira-Hasegawa (SH)-like procedures [63] and by 1,000 bootstrap rep-

licates, both implemented in IQ-Tree. MrBayes v3.2 [64] was used for the Bayesian analysis.

Not all sequence evolution models available in IQ-Tree can be implemented in MrBayes,

therefore ModelFinder in IQ-Tree was re-run on the partitioned dataset to estimate the best

sequence evolution models among those available in MrBayes (S2 Table). Two independent
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analyses, each with four independent chains were run on the partitioned datasets for 5,000,000

generations, sampling every 1,000 generations. Burn-in was assessed by inspection of average

parameter values and log-likelihood plots in Tracer v1.6 [65] and confirmed by inspection of

PSRF values calculated in MrBayes. All phylogenetic trees were visualised in FigTree v1.4.3

[66].

Species richness

Non-parametric incidence-based asymptotic estimators were used to estimate the number of

species expected in New Zealand and the three sub regions (Southern, Central and Northern

regions) if additional sampling was to take place in similar habitats [67]. Three different esti-

mators were calculated: (1) the Chao2 estimator [68], (2) the first order Jackknife (Jack1), and

(3) the second order Jackknife (Jack2). To visualise the relationship between number of sam-

ples and the number of species discovered, a species accumulation curve (SAC) and 95% confi-

dence interval was constructed using a permutational approach (permutations = 999).

Incidence-based estimators were calculated using the ‘specpool’ function and the SAC using

the ‘specaccum’ function in the R package ‘vegan’ [69].

Results

Species delimitation

A total of 122 species were identified in southern New Zealand coralline algal samples using

species delimitation methods (ABGD, sGMYC and bPTP) based on psbA sequence data (S3

Table). Of these, 57 were identified in the order Corallinales (Fig 2 and S3 Table), 61 in the

order Hapalidiales (Fig 3 and S3 Table), and four in the order Sporolithales (Fig 3 and S3

Table). There was broad agreement among the three species delimitation methods, although

there were some differences in the species identified. A total of 18 singleton species (i.e. species

known from a single collection) are represented in southern New Zealand and 29 New Zea-

land-wide (S3 Table).

Phylogenetic results

Sporolithales: Four species within the order Sporolithales were identified in the New Zealand

region (Fig 4 and S4 Table). These included two species of Sporolithon Heydr., one Heydrichia
R.A.Towns., Y.M.Chamb. & Keats, and one taxon, Sporolithales sp. A NZC2014, which does

not resolve clearly within either Sporolithon or Heydrichia. Taxa from this order (Sporo-

lithales) were predominantly found in central and northern regions of New Zealand reported

in Nelson et al. [17]. Sporolithon sp. B NZC2374 has been recorded only as rhodoliths, while all

records of Sporolithon sp. A NZC2175 are epilithic.

Corallinales: Our study identifies 59 Corallinales species in the New Zealand region (Fig 5

and S4 Table). Two taxa from the northern Kermadec Island are identified as Neogoniolithon
sp. and Mastophora pacifica (Heydr.) Foslie, although this identification has not been verified

by sequence data from the type specimen of M. pacifica and remains provisional. The remain-

ing 57 species are found in the main part of the New Zealand archipelago. Twelve are resolved

in the Corallinaceae, including eight species of Jania J.V.Lamour., only two of which can be

confidently assigned species names (Jania sagittata (J.V.Lamour.) Blainv. and the recently

described Jania sphaeroramosa Twist, J.E.Sutherl. & W.A.Nelson), three species of Arthrocar-
dia J.V.Lamour. and one species of Corallina L. formerly assigned to C. caespitosa R.H.Walker,

J.Brodie & L.M.Irvine. This taxon shows remarkable morphological variability, and some (1–2

bp) genetic variability in psbA sequence data.
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Fig 2. Maximum likelihood psbA tree for the order Corallinales showing species delimitation methods.

ABGD = Automatic Barcode Gap Discovery, sGMYC = single threshold Generalized Mixed Yule Coalescent,

bPTP = Bayesian Poisson-Tree Processes, and PSH = Primary Species Hypothesis—assigned using a consensus

approach where two or more species delimitation methods agreed.

https://doi.org/10.1371/journal.pone.0225645.g002
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Fig 3. Maximum likelihood psbA tree for the order Hapalidiales and Sporolithales showing species delimitation

methods. ABGD = Automatic Barcode Gap Discovery, sGMYC = single threshold Generalized Mixed Yule

Coalescent, bPTP = Bayesian Poisson-Tree Processes, and PSH = Primary Species Hypothesis—assigned using a

consensus approach where two or more species delimitation methods agreed.

https://doi.org/10.1371/journal.pone.0225645.g003
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Of the 45 remaining Corallinales species, only one can be assigned to a described species,

the geniculate Amphiroa anceps (Lam.) Decne. Eleven taxa can be assigned to genus Pneophyl-
lum Kütz. on the basis of their resolution with sequence data from the type specimen of

Pneophyllum limitatum (Foslie) Y.M.Chamb. Sixteen species are resolved within the Litho-

phylloideae but do not resolve with members of either Lithophyllum Phil. or Amphiroa J.V.

Lamour., despite a number of these being initially assigned as Lithophyllum spp. based on a

select number of morpho-anatomical features. The remaining 17 taxa are not resolved with

type material from any genus or species within Corallinales. On the tree we have marked six

well supported clades that may represent new genera with multiple members within the New

Zealand region. These are annotated as ‘Genus N’ where N is an integer. Numbers for these

hypothetical genera follow Twist [70]. Outside of these clades ten specimens are not closely

resolved with any other taxa in the analysis (Fig 5).

Hapalidiales: Sixty one species were identified within Hapalidiales (Fig 6 and S4 Table). Of

these, only two can be identified to genus and species: Lithothamnion crispatum Hauck, which

is resolved with strong support with other Lithothamnion species, and Synarthrophyton patena
(Hook.f. & Harv.) R.A.Towns., which is derived from material from the type locality, and con-

forms to the description of that species. Based on currently available information, the remain-

ing 59 species cannot be assigned to any genus or species within the order. For instance, none

of the New Zealand taxa are resolved with the type species of Mesophyllum, M. lichenoides

Fig 4. Maximum likelihood (ML) phylogeny of concatenated psbA and rbcL alignment with members of the order Sporolithales, showing the relationships between

New Zealand (in boldface) and global taxa. Genera with two or more species which include a New Zealand representative are indicated by a vertical line and a genus

label. Approximate Likelihood Ratio Test (aLRT) values (%) followed by ML bootstrap values (%) are shown above each branch and Bayesian Posterior Probabilities (PP)

are shown below. Support values are shown if two of the three values are greater than 80%. An asterisk represents support at 100/100/1.

https://doi.org/10.1371/journal.pone.0225645.g004
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Fig 5. Maximum likelihood (ML) phylogeny of concatenated psbA and rbcL alignment with members of the order Corallinales, showing the relationships

between New Zealand (in boldface) and global taxa. Hypothetical genera are indicated for well supported clades containing closely related species within the

New Zealand dataset. Genera with two or more species which include a New Zealand representative are indicated by a vertical line and a genus label. Approximate

Likelihood Ratio Test (aLRT) values (%) followed by ML bootstrap values (%) are shown above each branch and Bayesian Posterior Probabilities (PP) are shown

below. Support values are shown if two of the three values are greater than 80%. An asterisk represents support at 100/100/1.

https://doi.org/10.1371/journal.pone.0225645.g005
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Fig 6. Maximum likelihood (ML) phylogeny of concatenated psbA and rbcL alignment with members of the order Hapalidiales, showing the

relationships between New Zealand (in boldface) and global taxa. Genera with two or more species which include a New Zealand representative are

indicated by a vertical line and a genus label. Approximate Likelihood Ratio Test (aLRT) values (%) followed by ML bootstrap values (%) are shown above

each branch and Bayesian Posterior Probabilities (PP) are shown below. Support values are shown if two of the three values are greater than 80%. An asterisk

represents support at 100/100/1. Hypothetical genera are based on well supported clades containing closely related species within the New Zealand dataset.

https://doi.org/10.1371/journal.pone.0225645.g006
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(J.Ellis) Me.Lemoine, despite initially being assigned to this genus based on morpho-anatomi-

cal features, and consequently none can be assigned to Mesophyllum.

Within the New Zealand Hapalidiales twelve well supported lineages are observed. These

are indicated on the Fig as ‘Genus N’ where N is an integer from 1 to 30. Outside of these 12

lineages and the two named taxa, 20 sequences are resolved without any close relationships in

the New Zealand Hapalidiales dataset.

Species diversity

Species accumulation curves indicate that the discovery of new species in all three New Zea-

land regions have not reached an asymptote, and a significant proportion of species diversity

remains undiscovered (Fig 7). Estimates of species diversity of coralline algae predicted in

New Zealand if sampling were to continue range from 141.7 ± 9.27 for the Chao2 estimator

(Table 1), 150.9 ± 5.3 for Jack1 and 157.9 for Jack2. This high level of undiscovered diversity is

further supported by the observation that 29 species are represented by only a single sequence

(singleton) in the New Zealand wide dataset.

Fig 7. Species accumulation curve for coralline algal sequences from southern, central and northern New

Zealand, and for all of New Zealand. Smoothed curve with 95% confidence interval (grey area) calculated using a

permutational approach (n = 999). Note that this plot shows the accumulation of species recorded in each region and

does not extrapolate to predict the total number of species.

https://doi.org/10.1371/journal.pone.0225645.g007

Table 1. Number of coralline algal species from the three orders (Corallinales, Hapalidiales and Sporolithales) estimated using Chao2 incidence-based species esti-

mators (see text for SD of the estimates), rounded down to the nearest integer, from each study regions around the New Zealand coast. The number of species (dis-

tinguished by PSH) identified in this study by species delimitation methods are recorded in brackets. n = the number of sequences used in analyses.

Southern

(n = 535)

Central

(n = 130)

Northern

(n = 384)

NZ wide

(n = 1049)

Corallinales 44 (29) 30 (18) 31 (29) 62 (57)

Hapalidiales 54 (47) 27 (21) 18 (16) 75 (61)

Sporolithales (1) � 3 (3) 4 (4) 4 (4)

Total 99 (77) 60 (42) 53 (49) 141 (122)

�No incidence-based species estimator could be calculated due to only one individual being found

https://doi.org/10.1371/journal.pone.0225645.t001
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The southern New Zealand region is predicted to have the highest number of coralline algal

taxa with estimates of 99 ± 12.4 for the Chao2 estimator (Table 1), 98.9 ± 4.7 for Jack1 and 109.9

for Jack2. This is followed by the central region with estimates of 60 ± 10.9 for the Chao2 estima-

tor, 60.9 ± 4.3 for Jack1 and 69.8 for Jack2, and finally by the northern region with estimates

ranging from 53.5 ± 4 for the Chao2 estimator, 57.9 ± 3 for Jack1 and 58 for Jack2. The differ-

ences between the numbers of coralline algae predicted in each region are largely driven by the

higher number of Hapalidiales taxa predicted to be present in the southern region compared to

central and northern regions (54 species predicted compared to 27 and 18, respectively).

Species diversity at small spatial scales

A total of 17 species were identified at both Butterfly Bay and Moeraki. If futher sampling was

to occur an additional 16 (total of 33) and eight (total of 25) species respectively are predicted

using Chao2 estimates. At Moeraki, nine out of the 17 species had average abundance�3%

cover with only two species having >18% average cover (S5 Table).

Discussion

The focus of this study was to document coralline algal diversity in southern New Zealand,

and to compare this with diversity in other parts of the New Zealand region, using recent phy-

logenetic studies of coralline algae (Corallinophycidae) as the framework for the analyses. We

anticipated that there would be a number of new discoveries using a collection strategy that

targeted a range of habitat types across a wide geographic area and employing molecular sys-

tematics, as well as the application of techniques to predict species diversity. However, the

number of genera and species of coralline algae that were distinguished amongst the collec-

tions (122 species), and the diversity that was predicted (141 species), exceeded both our

expectations, and earlier estimations based on morpho-anatomical approaches [71]. In addi-

tion, the discovery of high diversity at small spatial scales (not apparent from morphological

features or readily distinguished in the field) has significant implications for the design of

future sampling, and interpretation of field data.

Species diversity

The confirmation of high species diversity in New Zealand is consistent with recent studies in

tropical coral reefs [24], rhodolith beds in the United Kingdom [72], geniculate species around

the South African coast [73], corallines in the Mediterranean Sea [74,75], and around the Bra-

zilian coast [25]. It has been predicted that global diversity in coralline algae is likely to be 2–4

times higher than previously assigned using morpho-anatomical approaches [20,26,76]. Con-

trary to most other organism groups, diversity of macroalage has been shown to peak at mid

to high latitudes, with several competing hypotheses proposed related to stability of enviro-

mental variables, biotic interactions and oceanic currents [77–79], which may explain the high

regional diversity observed in this study across the New Zealand region spanning from mid

latitudes of 29˚ S to high latitudes of 52˚ S.

What distinguishes the diversity reported here is the number of taxa which we were unable

to assign to genus and species: there are 49 genera and 115 species that are distinct from any

authoritatively defined species for which sequence data are currently available, with further

diversity remaining to be discovered. While the New Zealand region is known for high species

diversity and endemism, a consequence of both the geographic extent of the region, from the

subtropical Kermadec Islands (29˚S) to subantarctic Campbell Island (53.5˚S), and the geolog-

ical history of continental Zealandia and isolation from other landmasses [80], these discover-

ies at small local and regional scales exceed diversity reported elsewhere and also raise many
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questions. Almost a quarter of the species discovered to date are ‘singleton’ species, i.e., known

from single collections (29 out of 122 species in the New Zealand region). Without further col-

lections it is not possible to even begin to understand the ecological or geographic distributions

of these ‘singleton’ species nor to characterise them morphologically or anatomically.

It is not clear how many of the currently undescribed genera in the New Zealand region

will prove to be restricted to this region. Hind et al. [28] reported the NE Pacific “to be a center

of endemism for both geniculate and nongeniculate coralline genera” with four endemic

geniculate genera and two endemic nongeniculate genera. Based on currently available infor-

mation, very few New Zealand species are found in neighbouring regions or globally. Where

we have multiple collections of a species it has been possible to examine geographic ranges,

and in such cases, we have found distributions of individual species vary from a few that are

relatively widespread in the New Zealand region to other species that appear to have highly

restricted distributions.

Consequences of high diversity

Diversity is important for maintaining a range of ecosystem functions (e.g. habitat provision-

ing, facilitation of larval settlement, and carbon storage) and loss of diversity can result in

major losses and changes to functionality [81,82]. Loss of diversity has the potential to drive

ecosystem changes comparable to those induced by environmental stressors such as climate

warming or increased ocean acidification [81]. Not only common or dominant species are

important: rare species have been shown to be more susceptible to temporal variance in distur-

bances than abundant species, and, because of this, are important in driving changes in com-

munity structure and assemblage dynamics under predicted climate change [83]. Given the

ubiquity of coralline algae in euphotic marine environments [e.g. 84] and the foundational

roles they play, losses or declines in coralline species could have significant impacts on the eco-

systems in which they are found.

Recent interest in ocean acidification and climate change has resulted in a many studies

examining their impacts on coralline algae (e.g. [4,5,38,85,86]). The need for appropriate

experimental design and methodology to adequately investigate the interactions and cumula-

tive impacts of key stressors on coralline algae has been highlighted, with guidance given on

best practices (e.g. [5,87]). However, there is also a critical need to base such research on

authoritatively identified material, that allows for reliable, reprodicible comparisons between

species, locations and studies. It is critical that material has been identified to reflect the most

up-to-date taxonomic understanding, and that representative voucher material is deposited in

a publicly accessible herbarium for future examination, for example when taxonomic hypothe-

ses change. For example, Gabrielson et al. [24] revealed that the name Porolithon onkodes
(Heydr.) Foslie–the most widely reported reef-building coralline algal species–has been

applied to more than 20 species, and Pezzolesi et al. [30] reported more than 13 species within

the Lithophyllum stictiforme (Aresch.) Hauck complex in Mediterranean coralligenous habi-

tats. With increasing recognition that the extent and impact of environmental stressors can be

species-specific (e.g. [8,38,85,86]), and that coralline algae can differ in their ecological traits

(e.g. growth and competitive ability [11,33–35,88]), in addition to ecological functions they

provide (e.g. influence on algal and invertebrate recruitment [9–11,89]), it is clear that taxo-

nomic confusion can compromise otherwise excellent science and lead to false conclusions.

The importance of species recognition in order to understand the community processes is

demonstrated in the study of Hind et al. [90] who found that although coralline algae are more

abundant in urchin ‘barrens’, these communities are dominated by only a few species and

have lower diversity compared to coralline assemblages under intact kelp forests. This work by
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Hind et al. [90] is a good example of a study in which enhanced resolution and understanding

of nearshore community dynamics was dependent upon reliable species identifications using

molecular data.

Consequences for taxonomy of New Zealand coralline algae

This study indicates that many names previously applied to New Zealand coralline algae

(e.g. [17,41,42,48]) were incorrect. This was a consequence of several issues—placing weight

on morpho-anatomical characters that are now understood to be insufficiently informative

for species recognition, poorly understood generic and specific boundaries, and the lack of

comparative molecular data globally (particularly data from type material) which made

placement in a global context difficult in these earlier studies. For example, Spongites Kütz.

and Pneophyllum had been distinguished from each other by the mode of their tetra/bispor-

angial conceptacle roof development, and, in Australia and New Zealand, the substratum

type was used to assign specimens to either Pneophyllum (epiphytic) or Spongites (epilithic,

epizoic, or unattached) [91]. According to Caragnano et al. [19], this assignment by habitat

led to misidentifications and to the polyphyletic outcomes seen in DNA sequence-based

analyses.

The coralline algal distributions revealed in this study depart from the pattern of diversity

seen across the rest of the New Zealand macroalgal flora, where the greatest diversity has been

recorded in the northern North Island [92]. In the Corallinophycidae, the order Hapalidiales is

particularly well represented in southern New Zealand with 47 species (54 predicted) present,

compared to 21 species (27 predicted) and 16 species (18 predicted) in the central and north-

ern areas, respectively. High diversity in Hapalidiales is also known to occur in the northern

Atlantic [31] in the boreal–subarctic transition zone that spans the North Atlantic from North

America (Gulf of Maine and the southern Canadian Maritimes) to southwestern Iceland and

the Norwegian outer coast between 42-63˚ N. In contrast, the Sporolithales in New Zealand is

better represented in the north (three genera, four species) than the south (one species). This

pattern is also seen globally where the majority of members of this order are found in tropical

to warm temperate regions [93]. The Corallinales is represented by similar numbers of taxa in

northern and southern New Zealand although the estimators predict that more will be found

in the south. In their analyses of the Corallinales, Rösler et al. [94] reported a clade of southern

hemisphere taxa (from New Zealand, Southern Australia, South Africa, and Chile) which they

considered warranted further investigation. They also commented on subclades of specimens

from New Zealand observed which they considered “indicates a high degree of genetic differ-

entiation of corallines from this region”.

Conclusions

The recognition of coralline diversity has significant implications for conducting future inves-

tigations and interpreting past research. To ensure reproducible science an understanding of

diversity within a molecular phylogenetic framework is critical for progress in all areas where

coralline algae are the subject–ecology, physiology, responses to global changes, calcification,

cell wall materials. If voucher material has been retained and deposited in publicly accessible

herbaria or collections, and sequence data are available, the identity of species used for experi-

ments may later be confirmed in the light of new knowledge and emerging understanding of

coralline algal diversity. Without such voucher material, there are significant challenges in

relating newly discovered diversity to earlier published accounts: the identity of species used

for experiments cannot be confirmed, and thus conclusions regarding species specific ecosys-

tem services and responses to disturbances cannot be validated.
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While this research has revealed high diversity of coralline algae in the New Zealand region

of the south west Pacific, further research involving targeted collection programs, multigene

phylogenetic analyses and morpho-anatomical characterisation, is needed before relationships

and diversity of the New Zealand flora can be fully understood. In addition, clarification of the

type material for New Zealand species is required [71]. To enable the New Zealand flora to be

placed in a wider context, and to understand phylogeographic relationships, there is a need for

detailed investigations of the coralline floras of other regions (particularly in the southern

hemisphere) focused on documenting diversity, increasing taxon sampling and distributional

data. Given that different species are likely to exhibit different ecological traits, perform differ-

ent functions, and respond differently to stressors, it is paramount to use molecular methods

and to continually develop the taxonomy and systematics of coralline algae to allow for reliable

identifications in order to advance future research and fully understand their role in coastal

ecosystems.
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9. Parada GM, Martı́nez EA, Aguilera MA, Oróstica MH, Broitman BR. Interactions between kelp spores

and encrusting and articulated corallines: recruitment challenges for Lessonia spicata. Bot Mar. 2017;

60: 619–625.

10. Pearce CM, Scheibling RE. Induction of metamorphosis of larvae of the green sea urchin, Strongylo-

centrotus droebachiensis, by coralline red algae. Biol Bull. 1990; 179: 304–311. https://doi.org/10.2307/

1542322 PMID: 29314958

11. O’Leary JK, Barry JP, Gabrielson PW, Rogers-Bennett L, Potts DC, Palumbi SR, et al. Calcifying algae

maintain settlement cues to larval abalone following algal exposure to extreme ocean acidification. Sci

Rep. 2017; 7: 1–10.
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