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Abstract: Dry-cured sausages are traditional in Mediterranean countries, and Paio do Alentejo (PA)
is one of the most popular in South Portugal. The aim of the present work was to evaluate the effect
of combined starters on the safety and quality of PA preserving its sensory quality. Physicochemical
parameters, namely pH and water activity (aW), microbiological parameters, biogenic amines, color,
texture, and sensory attributes were assessed. Three starter cultures were used, namely Staphylococcus
equorum S2M7 and Lactobacillus sakei CV3C2, both separate and combined with the 2RB4 yeast
strain at a concentration of 106 cfu/g. Dextrose 0.25% was added to the meat batter. Starters had
a significant effect on the reduction of aW values (0.845 to 0.823). The treatment with L. sakei as
well as the co-inoculation of L. sakei with S. equorum effectively reduced the L. monocytogenes counts
to undetectable levels. Sausages co-inoculated with S. equorum S2M7/L. sakei CV3C2 showed a
significant reduction in the content of vasoactive amines, namely tryptamine (26.21 to 15.70) and
β-phenylethylamine (4.80 to 3.69). Regarding texture, control PA showed higher hardness values,
and the starters promoted the cohesiveness of the batter while reducing chewiness. The studied
starters did not compromise the sensory characteristics of PA.

Keywords: dry-cured sausages; starter cultures; staphylococci; lactic acid bacteria; food safety;
biogenic amines; Listeria monocytogenes; food quality

1. Introduction

Dry-cured sausages are traditional food products that are greatly diverse in terms of
raw materials, organoleptic characteristics, and manufacturing methods. Paio do Alentejo
is a popular dry-cured sausage in Portugal because it is manufactured using pork meat
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from autochthonous breeds as well as typical nonmeat ingredients in small processing
units according to traditional practices specific to each geographical area. This type of
sausage has long been spontaneously fermented using empirical methods, but sometimes,
the sensory characteristics of the final products vary. In Portugal, the use of starters has not
been a common practice in micro and small processing units [1]. However, manufacturing
units are becoming more interested in the use of starter cultures in the production of
fermented sausages, due to their potential improvement in safety and in standardizing the
desirable technological properties [2–4]. These starter cultures should be autochthonous,
i.e., isolated from the native microbiota of these products, so that they will be better adapted
to the specific environmental conditions [5].

In fermented meat products, bacteria including lactic acid bacteria (LAB) and Gram-
positive catalase-positive cocci (G+C+C), such as coagulase-negative staphylococci (CNS),
but also yeasts and molds influence the technological properties of the product and its
quality and safety [3,6]. Therefore, the most frequently used starters in the meat processing
industry belong to the four cited microbial groups.

LAB ferment sugars thus boosting the production of lactic acid. The consequent
reduction in pH reduces the growth rate of undesirable microorganisms [7,8]. However,
and given the fact that LAB are among the most competitive microorganisms throughout
the manufacturing process, they are considered to be biopreservatives and bioprotectors. In
fact, together with intrinsic food factors, such as pH, temperature and aW, they can impair
the growth of pathogenic and spoilage microorganisms, making food products safer even
without the use of conservation techniques, such as modified atmospheres, high pressure
treatments, and chemical or other preservatives [9].

CNS are able to reduce nitrate and degrade hydrogen peroxide, with advantages at
the quality and color stability level, and metabolize nitrogenous and lipid compounds,
improving flavor [10,11]. According to Cocconcelli and Fontana [12], CNS have the ability
to release enzymes, lipases, and proteases capable of forming low molecular weight com-
pounds, such as peptides, amino acids, aldehydes, amines, and fatty acids that influence
texture and the development of aroma compounds.

Yeasts and molds are used less frequently as starter cultures. The application of
molds and yeasts as surface starter cultures, normally by immersion or spraying, can
improve specific sensory and external characteristics [13]. Surface starters form a protective
layer, which favors color formation and hinders the occurrence of premature autoxidation
phenomena of fats due to the activity of catalase [14].

Biogenic amines (BA) are nitrogenous compounds of low molecular weight formed
from amino acids by decarboxylation or from aldehydes and ketones by amination and
transamination [15]. The most prevalent biogenic amines in meat and meat products are
tyramine, putrescine, cadaverine, and histamine [16,17]. Formation of BA depends on the
availability of specific amino acids, the presence of bacteria with decarboxylase activity, and
on the establishment of conditions favorable to bacterial growth and enzymatic activity [4].
It should be noted that BA are thermostable, as further steps do not eliminate them [18]
and could contribute to the formation of nitrosamines with the nitrite derivatives [19,20].
Despite some studies that have reported the inefficiency of starters in reducing the content
of BA [21,22], recent works have shown that autochthonous starter cultures may control
the accumulation of BA in fermented meat products [1,23,24].

The aim of the present study was to evaluate the effects of different autochthonous
starter cultures used both in separate and in mixed cultures on the safety and quality of
Paio do Alentejo, a traditional Portuguese sausage manufactured on a small scale in a
local manufacturing unit in the Alentejo region. Moreover, starters were used to help in
the control of an existing problem with Listeria monocytogenes in the manufacturing unit,
together with other corrective and preventive measures.
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2. Materials and Methods
2.1. Dry-Cured Sausage Manufacturing and Sampling

Paio do Alentejo, a traditional dry-cured sausage, was manufactured in a local factory
using commercial black pig breed (Alentejano pig breed × Duroc pig breed) meat.

Pork meat trimmings (70% lean meat/30% fat) were mechanically cut into cubes
of approximately 25 mm and mixed with white wine (8.0% v/v), salt (2.5% w/w), red
pepper (Capsicum annuum L.) paste (2.5% w/w), garlic (Allium sativum L.) paste (0.8%
w/w), polyphosphates (0.06% w/w), nitrates (0.007% w/w), nitrites (0.003% w/w), ascor-
bic acid (0.03% w/w), and sodium ascorbate (0.02% w/w). A total of 150 kg of meat
batter was prepared and then divided into five portions of 30 kg each. Five treatments
were considered: 1—control (no starter cultures added); 2—Staphylococcus equorum S2M7;
3—Lactobacillus sakei CV3C2; 4—S. equorum S2M7/L. sakei CV3C2; and 5—S. equorum
S2M7/L. sakei CV3C2/yeast 2RB4.

Staphylococcus starter strains were selected for their performance in the phenotypic
characterization tests, namely nitrate reductase, lipolytic and proteolytic activities, as well
as absence of resistance to antimicrobials and decarboxylase activity [25]. Lactobacillus
starter strains were selected for their bacteriocinogenic profile and the absence of both
resistance to antimicrobials and decarboxylase activity [25,26].

Starter culture composition and concentrations were selected based on previous
trials [27] and were inoculated in the meat batter. All cultures were inoculated to achieve a
final concentration of each starter strain of 106 cfu/g of meat batter.

Three independent manufacturing batches of each treatment were prepared. Food
grade dextrose (0.25%) was added to all treatments.

Seasoned and inoculated meat batter was stored under controlled conditions at 5 ◦C
and 90% relative humidity (RH) for 72 h and then stuffed into desalted pork natural casings
50 to 55 mm in diameter. Sausages were smoked for 24 h at 18.0 to 24.0 ◦C and 28.0–72.0%
RH in a traditional smokehouse. After smoking, drying was carried out in a controlled
storeroom at 8.0–12.0 ◦C and at an RH between 60–80% for approximately 30 days 38–40%
initial weight loss was reached.

Two sausages per treatment and per batch were analyzed throughout the curing
process at three different steps: meat batter (immediately before stuffing), half-cured
sausage (10 days after stuffing), and end-product (38–40% weight loss).

pH, aW, microbiological parameters, and contents of biogenic amines were determined
at all curing steps. Color, texture profile and sensory analyses were performed only for
end-products. Samples were immediately processed for physicochemical, microbiological,
and sensory analyses and stored at −20 ◦C until analysis of the content of biogenic amines.

2.2. Physicochemical Analyses
2.2.1. Determination of pH and aW

For the determination of pH and aW, samples were prepared and measurements were
made as described previously [1], following ISO 2917 [28], for pH measurements. Five
replicates per sample were used for both determinations.

2.2.2. Color

Color CIELab chromatic coordinates were measured as described previously [1]. Five
replicates per sample were examined.

2.2.3. Texture Profile Analysis (TPA)

Texture profile analysis (TPA) was performed at room temperature (20 ± 1 ◦C) using
a Stable Micro System TA-Hdi (Stable Micro Systems, Godalming, United Kingdom), as
described previously [29,30]. Samples were prepared according to the procedures described
by Dias et al. [1]. Five replicates per sample were analyzed.
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2.3. Microbiological Analyses

Several microbiological parameters were analyzed following international standards
and established procedures: mesophiles ISO 4833-1 [31]; psychrotrophic microorganisms
ISO 17410 [32]; lactic acid bacteria ISO 15214 [33]; staphylococci [34]; yeasts and molds ISO
21527-2 [35]; enterobacteria ISO 21528-2 [36]; and Listeria monocytogenes ISO 11290-2 [37].
Salmonella spp. detection was performed with VIDAS (bioMérieux, Marcy-l’Étoile, France)
and confirmed according to ISO 6579-1 [38] as described previously [34]. All microbiological
analyses were performed in triplicate, and the results are expressed as log colony-forming
units (cfu)/g, except for L. monocytogenes counts, which are reported as cfu/g.

2.4. Biogenic Amine Profiles

The content of biogenic amines was assessed as described previously [34,39]. Briefly,
eight grams of each previously homogenized sample were extracted with 0.4 M perchloric
acid aqueous solution and filtered. 1,7-Diaminoheptane was used as internal standard.
Biogenic amines were then derivatized with dansyl chloride under alkaline conditions. The
extract was diluted in acetonitrile; filtered through an Acrodisc 25 mm GHP, GF 0.45 lm
membrane (Gelman Sciences, Inc., Port Washington, NY, USA); and injected in-to an HPLC
system (Thermo Scientific Dionex, Ultimate 3000, Waltham, MA, USA). Chromatographic
conditions were as follows: A RP-18 reverse phase column (5 µm of 4.0 × 125 mm and
100 Å) was used (Merck, Kenilworth, NJ, USA), coupled to an Alliance Separation Module
2695 (Waters, Milford, MA, USA), along with a gradient elution program that combines
aqueous ammonium acetate solution and ace-tonitrile (Panreac, Barcelona, Spain), and
detection was conducted at 254 nm using a Dual k UV/Vis Detector 2487 (Waters, Milford,
MA, USA).

All samples were extracted in duplicate; each replicate was twofold derivatized and
injected in duplicate. Tryptamine, β-phenylethylamine, putrescine, cadaverine, histamine,
tyramine, spermidine, and spermine were quantified and are expressed in mg/kg of
fresh weight. The content of vasoactive amines was calculated, summing tryptamine, β-
phenylethylamine, histamine, and tyramine [15]. The total content of biogenic amines was
the sum of each individual amine. Chromatographic data were analyzed with Chromeleon
software version 6.8 (Thermo Scientific Dionex, Waltham, MA, USA).

2.5. Sensory Analysis

Panelists were selected and trained according to ISO 8586-1 [40] in a sensory evaluation
room prepared in accordance with ISO 8589-1 [41].

Thirty minutes prior to each session, sausages were sliced (3 mm thick) and slices
randomly distributed in white dishes, each identified with a random three-digit number.
Crackers and mineral water were supplied to the panelists as palate cleansers.

The sensory evaluation attributes studied were color intensity, off-colors, marbled
appearance, aroma intensity, and off-aromas. The panelists were asked to evaluate these
attributes using a quantitative descriptive analysis with a scale ranging from 0 to 100 corre-
sponding to “no perception” or “maximum perception”. Due to the presence of Salmonella
spp. in some samples, only a visual and olfactive sensory analysis was performed. Each of
the 10 panelists evaluated six samples per session.

2.6. Statistical Analysis

Data were analyzed using STATISTICA v.12.0 software from Statsoft (StatSoft Inc,
1984–2014, Tulsa, OK, USA). Outliers were detected using the Grubbs test (α = 0.05).
Factorial or one-way ANOVAs were performed, and significantly different means were
compared with Tukey’s HSD test (p < 0.05).
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3. Results

3.1. pH and aW
Table 1 summarizes the results for pH and aW of sausages subjected to the different

treatments throughout the curing process.

Table 1. Effect of starter cultures on pH and aW of sausages.

Parameters Treatment
Curing Steps

Meat Batter Half-Cured Sausage End-Product

pH

1 5.48 A,ab ± 0.25 5.05 B,c ± 0.08 4.97 B,bc ± 0.14
2 5.46 A,ab ± 0.28 5.20 B,a ± 0.09 5.05 B,ab ± 0.14
3 5.48 A,a ± 0.31 5.13 B,b ± 0.09 4.94 B,c ± 0.07
4 5.29 A,b ± 0.51 5.06 B,c ± 0,09 5.10 AB,a ± 0.01
5 5.42 A,ab ± 0.32 5.19 B,a ± 0.09 5.10 B,a ± 0.10

aW

1 0.967 A,a ± 0.008 0.948 B,a ± 0.007 0.845 C,a ± 0.024
2 0.962 A,bc ± 0.006 0.937 B,bc ± 0.009 0.826 C,b ± 0.031
3 0.960 A,b ± 0.008 0.941 B,b ± 0.004 0.852 C,a ± 0.002
4 0.960 A,b ± 0.007 0.941 B,b ± 0.004 0.823 C,b ± 0.030
5 0.963 A,ab ± 0.002 0.934 B,c ± 0.004 0.824 C,b ± 0.014

Data are expressed as means ± SD. 1—Control; 2—S. equorum S2M7; 3—L. sakei CV3C2; 4—S. equorum S2M7/L. sakei CV3C2;
5—S. equorum S2M7/L. sakei CV3C2/yeast 2RB4. For the same treatment and in the same row, distinct capital letters (A–C) represent
significantly different means (p < 0.05). For each curing step and in the same column, distinct lowercase letters (a–c) represent significantly
different means (p < 0.05).

For pH, significantly different mean pH values were observed between meat batter
and the other two curing steps (half-cured sausages and end-products). Regarding an
evaluation by curing step, the sausages inoculated with S. equorum S2M7/L. sakei CV3C2
showed an initial mean value (5.29 ± 0.51) significantly lower than that of sausages with
L. sakei CV3C2 (5.48 ± 0.31). Regarding end-products, sausages inoculated with L. sakei
CV3C2 had the lowest mean pH value (4.94 ± 0.07), and the only pH mean value lower
than that of the control (4.97 ± 0.14).

As for aW, significant differences were observed between curing steps, with signif-
icantly lower mean values for the end-products. Concerning meat batter, inoculated
sausages generally showed lower aW values. Regarding half-cured sausages, control
sausages still had a significantly higher mean aW (0.948 ± 0.007). Except for the end-
products inoculated with L. sakei CV3C2 (0.852 ± 0.002), all other sausages presented a
significant reduction in the aW mean values when compared to the control (0.845 ± 0.024),
thus contributing to their safety.

3.1. Characterization of the Microbiota of Sausages

Table 2 shows no differences between control and inoculated sausages for the same
curing step. However, in end-products, inoculated sausages tended to have higher counts
of mesophiles, psychrotrophic microorganisms, and LAB. Regarding staphylococci, the
sausages inoculated with S. equorum S2M7/L. sakei CV3C2/yeast 2RB4 showed the high-
est number.

No significant differences were observed for enterobacteria between treatments; how-
ever, their mean values were significantly lower in end-products, probably associated with
the increase in LAB and the consequently lower pH and the lower aW values.

L. monocytogenes was present in all curing steps. When L. sakei CV3C2 was inoculated
alone or combined with S. equorum S2M7, the elimination of L. monocytogenes was more
effective, to levels below the legal limit of 100 cfu/g, according to regulation 2073/2005 [42].

Salmonella spp. were present throughout the curing process but absent in end-products,
with the exception of sausages inoculated with S. equorum S2M7.
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Table 2. Effect of starter cultures on microbiological parameters of sausages.

Parameters Treatment
Curing Steps

Meat Batter Half-Cured Sausage End-Product

mesophiles

1 7.00 B ± 0.77 8.46 A ± 0.67 7.38 B ± 0.60
2 7.23 B ± 0.96 7.70 A ± 0.65 7.65 AB ± 0.54
3 7.16 ± 0.70 7.77 ± 0.29 8.39 ± 0.97
4 7.72 ± 1.20 8.61 ± 0.82 8.03 ± 1.06
5 7.35 ± 0.76 8.12 ± 1.07 8.48 ± 1.19

psychrotrophicmicroorganisms

1 6.60 ± 1.17 7.01 ± 1.22 5.66 ± 0.29
2 6.81 A ± 0.99 6.50 AB ± 0.37 5.69 B ± 0.26
3 6.74 ± 0.75 6.51 ± 0.58 6.20 ± 0.18
4 7.32 ± 1.50 7.45 ± 1.29 5.89 ± 0.44
5 7.18 ± 1.09 7.01 ± 1.22 6.48 ± 0.52

LAB

1 6.64 B ± 0.57 7.95 A ± 0.30 8.06 A ± 0.77
2 6.58 B ± 0.39 7.59 A ± 0.28 7.96 A ± 0.67
3 6.32 B ± 0.27 7.70 A ± 0.45 8.49 A ± 1.15
4 6.80 B ± 0.60 7.93 AB ± 0.14 8.15 A ± 1.09
5 7.01 B ± 0.26 8.18 AB ± 1.11 8.56 A ± 1.10

staphylococci

1 9.14 ± 0.66 10.17 ± 1.77 8.68 ± 1.03
2 8.97 ± 1.42 9.26 ± 0.98 8.34 ± 0.49
3 7.57 ± 1.48 9.14 ± 0.79 8.49 ± 0.71
4 10.88 ± 3.96 10.47 ± 1.47 8.38 ± 2.14
5 8.40 ± 1.74 9.66 ± 1.10 10.31 ± 1.29

enterobacteria

1 5.99 A ± 0.49 6.35 A ± 1.13 2.75 B ± 0.36
2 6.55 A ± 1.16 5.54 A ± 0.24 2.69 B ± 0.50
3 6.73 A ± 0.67 5.63 A ± 0.40 2.24 B ± 0.39
4 7.02 A ± 1.34 6.45 A ± 1.04 2.48 B ± 0.40
5 6.54 A ± 0.42 6.62 A ± 1.30 2.51 B ± 0.55

yeasts

1 3.88 ± 0.48 4.33 ± 1.09 4.61 ± 0.35
2 3.78 B ± 0.23 3.15 C ± 0.18 4.70 A ± 0.47
3 3.90 ± 0.90 3.82 ± 0.85 4.85 ± 0.42
4 5.73 ± 2.44 4.56 ± 0.69 4.96 ± 0.74
5 4.04 ± 0.37 4.47 ± 0.77 4.74 ± 0.69

molds

1 0.17 ± 0.41 0.67 ± 1.21 0.58 ± 1.20
2 0.50 ± 0.84 0.25 ± 0.60 <DL
3 <DL <DL 0.33 ± 0.82
4 <DL <DL <DL
5 <DL <DL <DL

L. monocytogenes

1 2.22 ± 2.38 1.52 ± 1.91 2.06 ± 2.38
2 2.00 ± 2.10 1.82 ± 1.91 2.17 ± 2.37
3 2.12 ± 2.17 2.47 ± 2.73 <DL
4 2.14 ± 2.22 2.26 ± 2.06 <DL
5 2.50 ± 2.55 1.92 ± 1.87 2.17 ± 2.43

Salmonella spp.

1 present in 6/6 samples present in 6/6 samples ND
2 present in 5/6 samples present in 6/6 samples present in 1/6 samples
3 present in 1/6 samples present in 2/6 samples ND
4 present in 5/6 samples present in 4/6 samples ND
5 present in 3/6 samples present in 3/6 samples ND

Data are expressed as means ± SD. < DL: below the detection limit of the corresponding analytical method (10 cfu/g for molds and
100 cfu/g for L. monocytogenes). ND—Not detected (absence in 25 g). Results are expressed in log cfu/g. 1—Control; 2—S. equorum S2M7;
3—L. sakei CV3C2; 4—S. equorum S2M7/L. sakei CV3C2; 5—S. equorum S2M7/L. sakei CV3C2/yeast 2RB4. For the same treatment and in the
same row, distinct capital letters (A–C) represent significantly different means (p < 0.05).
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3.2. Biogenic Amines

Table 3 generally shows that the content of biogenic amines decreased throughout the
curing process. Moreover, the content of biogenic amines of inoculated sausages was lower
than that of control sausages throughout the entire process.

Table 3. Effect of starter cultures on the content of biogenic amines (mg/kg fresh weight) of sausages.

Parameters Treatment
Curing Steps

Meat Batter Half-Cured Sausage End-Product

tryptamine

1 50.42 A,ab ± 5.78 38.46 B,ab ± 5.80 26.21 C,ab ± 5.59
2 35.66 A,c ± 11.95 26.79 B,c ± 4.32 14.73 C,c ± 4.61
3 43.44 A,bc ± 5.42 31.50 B,bc ± 5.40 19.28 C,bc ± 5.20
4 40.32 A,bc ± 6.28 25.88 B,c ± 9.38 15.70 C,c ± 6.08
5 59.61 A,a ± 16.64 47.60 AB,a ± 16.97 35.60 B,a ± 16.43

β-phenylethylamine

1 20.22 A ± 0.84 12.75 B,a ± 0.87 4.80 C,a ± 0.83
2 17.63 A ± 5.50 11.75 B,ab ± 0.31 3.85 C,b ± 0.28
3 19.36 A ± 0.72 11.90 B,ab ± 0.72 3.98 C,b ± 0.70
4 19.08 A ± 0.56 10.77 B,b ± 3.09 3.69 C,b ± 0.51
5 20.47 A ± 0.47 13.00 B,a ± 0.46 5.16 C,a ± 0.57

putrescine

1 466.47 A,a ± 51.42 401.79 B ± 51.69 329.11 C ± 50.82
2 366.30 b ± 145.51 327.98 ± 91.38 255.70 ± 90.69
3 407.36 A,ab ± 50.99 342.86 B ± 51.05 270.25 C ± 50.34
4 422.68 A,ab ± 79.72 324.99 B ± 116.88 278.92 B ± 65.91
5 417.69 A,ab ± 67.86 352.77 A ± 67.19 283.86 B ± 77.31

cadaverine

1 570.34 A ± 100.89 517.32 AB,a ± 101.11 439.42 C ± 98.35
2 488.14 ± 157.62 483.83 ab ± 46.10 407.69 ± 47.15
3 533.10 A ± 72.79 480.35 A,ab ± 73.51 403.29 B ± 71.73
4 492.71 A ± 90.66 393.79 AB,b ± 128.61 353.27 B ± 49.91
5 485.12 A ± 51.29 431.95 B,ab ± 51.66 360.81 C ± 89.05

histamine

1 32.81 A,ab ± 9.10 25.72 A.ab ± 9.03 10.58 B,ab ± 8.01
2 29.54 A,ab ± 11.34 24.81 A,ab ± 6.72 10.13 B,ab ± 5.03
3 30.99 A,ab ± 7.51 23.93 A.ab ± 7.46 8.20 B,ab ± 6.92
4 26.50 A,b ± 2.24 18.06 B,b ± 5.57 3.17 C,b ± 2.20
5 36.21 A,a ± 4.01 29.13 B,a ± 4.01 12.96 C,a ± 3.92

tyramine

1 162.13 A ± 33.62 139.50 AB ± 33.49 113.99 B ± 32.99
2 141.65 ± 60.07 134.18 ± 41.76 108.80 ± 40.96
3 137.87 A ± 17.37 115.31 B ± 17.25 89.72 C ± 16.95
4 136.85 A ± 21.41 104.22 B ± 35.39 88.44 B ± 21.49
5 142.85 A ± 19.95 120.22 B ± 20.06 94.40 C ± 19.52

spermidine

1 12.48 A ± 1.34 12.01 AB ± 1.33 11.02 B ± 1.38
2 11.16 ± 3.71 11.79 ± 1.36 10.86 ± 1.34
3 12.19 A ± 1.14 11.72 AB ± 1.12 10.78 C ± 1.12
4 12.24 ± 0.73 10.83 ± 3.11 11.37 ± 0.94
5 12.75 A ± 0.90 12.28 AB ± 0.90 10.82 b ± 0.78

spermine

1 46.81 ± 11.12 42.89 ± 11.06 37.88 ± 10.92
2 40.71 ± 16.30 40.96 ± 10.39 35.97 ± 10.21
3 43.28 ± 9.46 39.37 ± 9.39 34.40 ± 9.31
4 44.26 A ± 6.05 36.77 B ± 11.58 38.16 AB ± 5.95
5 47.17 A ± 6.16 43.24 AB ± 6.16 35.29 B ± 6.24
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Table 3. Cont.

Parameters Treatment
Curing Steps

Meat Batter Half-Cured Sausage End-Product

vasoactive amines

1 265.58 A ± 36.90 216.44 B,a ± 36.64 155.58 C,a ± 37.29
2 224.48 A ± 80.05 197.53 A,ab ± 39.78 137.51 B,ab ± 39.95
3 231.66 A ± 21.72 182.64 B,ab ± 21.41 121.18 C,ab ± 21.95
4 222.75 A ± 22.37 158.93 B,b ± 48.96 111.00 C,b ± 23.66
5 259.15 A ± 20.21 209.95 B,a ± 20.03 148.12 C,a ± 20.75

total amines

1 1361.68 A ± 141.42 1190.45 B,a ± 141.92 973.01 C,a ± 140.14

2 1130.79 A ± 381.98 1062.09 AB,ab ±
146.00 847.73 C,ab ± 149.84

3 1227.58 A ± 102.13 1056.95 B,ab ± 103.01 839.90 C,ab ± 101.51
4 1194.64 A ± 177.13 925.30 A,b ± 295.33 792.72 B,b ± 175.93
5 1221.88 A ± 95.62 1050.20 B,ab ± 94.67 838.90 C,ab ± 94.05

Data are expressed as means ± SD. 1—Control; 2—S. equorum S2M7; 3—L. sakei CV3C2; 4—S. equorum S2M7/L. sakei CV3C2;
5—S. equorum S2M7/L. sakei CV3C2/yeast 2RB4. For the same treatment and in the same row, distinct capital letters (A–C) represent
significantly different means (p < 0.05). For each curing step and in the same column, distinct lowercase letters (a–c) represent significantly
different means (p < 0.05).

Natural polyamines, namely spermidine and spermine, did not show large variations
in their mean values during the curing process. Cadaverine, putrescine, and tyramine were
the most abundantly detected biogenic amines in end-products, in descending order.

The contents in histamine and tyramine reduced over time and were lower in end-
products (13 and 114 mg/kg, respectively).

Sausages inoculated with S. equorum S2M7/L. sakei CV3C2/yeast 2RB4 had the highest
mean values (148.12 ± 20.75 mg/kg), while the co-inoculation of S. equorum S2M7/L. sakei
CV3C2 significantly reduced the content of vasoactive biogenic amines. Moreover, the
total content of biogenic amines globally decreased during ripening, with higher contents
in control end-product sausages (973.01 ± 140.14 mg/kg) and sausages inoculated with
S. equorum S2M7/L. sakei CV3C2 (792.72 ± 175.93 mg/kg) showing significantly lower
contents. Concerning end-products, all treatments showed a mean content of total biogenic
amines below 1000 mg/kg.

3.3. Color

Table 4 summarizes the color data for each treatment. Regarding L*, significant
differences were observed between treatments with the sausages co-inoculated with
S. equorum/L. sakei CV3C2/yeast 2RB4 being the darkest. No significantly different results
were obtained for all other color parameters.

Table 4. Effect of starter cultures on the color parameters of end-product sausages.

Treatment
Color Parameters

L * (Lightness) a * (Redness/Greenness) b * (Yellowness/Blueness) C * (Chroma) H◦ (Hue Angle)

1 42.32 a ± 4.63 18.58 ± 2.86 15.64 ± 5.00 24.44 ± 6.74 39.16 ± 6.74
2 43.41 a ± 5.03 19.43 ± 3.66 15.72 ± 5.26 25.14 ± 5.81 38.13 ± 5.91
3 41.32 ab ± 4.26 19.15 ± 3.80 15.87 ± 5.53 25.00 ± 6.17 38.69 ± 6.14
4 42.00 a ± 4.66 19.13 ± 2.97 16.26 ± 4.40 25.21 ± 4.79 39.80 ± 5.31
5 38.14 b ± 5.24 18.37 ± 2.61 15.02 ± 4.79 23.90 ± 4.62 38.55 ± 6.42

Data are expressed as means ± SD. 1—Control; 2—S. equorum S2M7; 3—L. sakei CV3C2; 4—S. equorum S2M7/L. sakei CV3C2; 5—S. equorum
S2M7/L. sakei CV3C2/yeast 2RB4. In the same column, different letters (a and b) represent significantly different means (p < 0.05).
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3.4. Texture Profile Analysis (TPA)

The results for the texture profile analysis (TPA) are shown in Table 5. Hardness
values tended to be higher in control sausages. Regarding cohesiveness and resilience, no
statistical differences were observed between treatments. Nevertheless, sausages inoculated
with L. sakei CV3C2 showed the highest values, which might indicate more cohesive meat
batter. For chewiness, higher values were obtained in the control treatment, which indicates
that the inoculated sausages were easier to chew.

Table 5. Effect of starter cultures on TPA parameters of end-product sausages.

Treatment
Texture Parameters

Hardness (N) Adhesiveness
(N s−1) Cohesiveness Springiness Resilience Chewiness (N)

1 63.169 a ± 15.151 −3.398 ± 1.741 0.594 ab ± 0.035 0.881 ± 0.094 0.133 ab ± 0.014 33.325 a ± 10.504
2 49.606 c ± 10.171 −2.778 ± 1.529 0.600 ab ± 0.053 0.913 ± 0.097 0.134 ab ± 0.029 27.036 b ± 6.168
3 58.404 ab ± 14.308 −2.837 ± 1.852 0.622 a ± 0.058 0.901 ± 0.173 0.144 a ± 0.022 32.158 ab ± 8.002
4 52.785 bc ± 9.826 −3.003 ± 1.827 0.581 b ± 0.044 0.889 ± 0.070 0.128 b ± 0.025 27.192 b ± 5.355
5 51.220 bc ± 11.199 −2.629 ± 1.553 0.609 ab ± 0.046 0.966 ± 0.256 0.136 ab ± 0.016 29.777 ab ± 8.926

Data are expressed as means ± SD. 1—Control; 2—S. equorum S2M7; 3—L. sakei CV3C2; 4—S. equorum S2M7/L. sakei CV3C2; 5—S. equorum
S2M7/L. sakei CV3C2/yeast 2RB4. In the same column, different letters (a–c) represent significantly different means (p < 0.05).

3.5. Sensory Analysis

Regarding sensory analysis (Table 6), the panelists did not detect significant differences
for any of the evaluated attributes. Nevertheless, L. sakei CV3C2 inoculated sausages
presented the highest mean color intensity (74 ± 15) and lowest mean value for off colors
(0 ± 1). Control sausages had a lower aroma intensity (67 ± 17), and those inoculated with
S. equorum S2M7/L. sakei CV3C2/yeast 2RB4 the highest (74 ± 13).

Table 6. Effect of starter cultures on the sensory attributes of sausages evaluated in end-products.

Treatment
Sensory Attributes

Color Intensity Off Colors Marbled Aroma Intensity Off Aromas

1 72 ± 15 1 ± 2 64 ± 16 67 ± 17 3 ± 4
2 73 ± 14 1 ± 2 66 ± 16 71 ± 11 3 ± 4
3 74 ± 15 0 ± 1 67 ± 17 73 ± 17 3 ± 4
4 67 ± 18 1 ± 3 67 ± 16 72 ± 11 3 ± 5
5 69 ± 19 1 ± 3 63 ± 19 74 ± 13 3 ± 6

Data are expressed as means ± SD. 1—Control; 2—S. equorum S2M7; 3—L. sakei CV3C2; 4—S. equorum S2M7/L. sakei CV3C2; 5—S. equorum
S2M7/L. sakei CV3C2/yeast 2RB4. In the same column, different letters represent significantly different means (p < 0.05).

4. Discussion

Paio do Alentejo is a traditionally manufactured dry-cured high-quality sausage with
characteristic organoleptic features that however needs to meet all legal standardization
and food safety criteria.

Although pH and aW usually contribute to the stability of sausages [13], in this work,
starters did not have a noticeable effect on the pH of sausages. The fact that starters
were not able to significantly lower pH, compared to the control, indicates that the lactic
microbiota naturally present in the meat batter (to which dextrose was provided) also
exhibits a high acidifying ability. In fact, dextrose can be immediately metabolized by all
LAB present in the meat batter, autochthonous and starters, as their main source of energy.
Our pH values were lower than those of Elias et al. [43] for Paio do Alentejo inoculated
with a commercial culture (TEXEL® ELSE BR) of Lactobacillus spp., Micrococcaceae, and yeast
and an experimental starter culture with L. sakei/S. xylosus, and those of Simion et al. [44]
for traditional Romanian sausages (Dacia) inoculated with a mixed culture of L. sakei
CECT5764 and S. equorum SA25. One possible reason for our lower pH values is the use of
dextrose (0.25%).



Int. J. Environ. Res. Public Health 2021, 18, 7100 10 of 14

Regarding aW, inoculated sausages generally showed lower values, therefore con-
tributing to food safety. pH also contributes to the drying process, due to the decrease in
the water holding capacity of meat proteins, when pH values reach the isoelectric point
(5.0-5.2), with the consequent reduction in aW [45,46]. Control sausages (0.845 ± 0.024)
and sausages inoculated with L. sakei CV3C2 (0.852 ± 0.002) had significantly higher aW
values, probably because they had lower pH values when compared to the other treat-
ments. Our aW values are similar to those of Simion et al. [44] and lower than those of
other authors [1,43,47].

Enterobacteria counts were 2.24–2.75 log cfu/g in end-product sausages, which are bor-
derline values for ready-to-eat foods according to the Health Protection Agency guidelines
(2–4 log cfu/g) [48]. However, similar results been reported previously for dry-fermented
sausages from Portugal and other Mediterranean countries [25,29]. Nevertheless, these
values are higher than those reported by other authors for Portuguese and Italian sausages,
respectively [1,49], indicating the need to improve hygiene procedures and to use better
quality raw materials.

In present study, L. monocytogenes was present in most analyzed samples. Other au-
thors reported the presence of L. monocytogenes in inoculated and non-inoculated sausages,
but this presence was drastically reduced throughout the curing process, in some cases,
to values below the detection limit of the method [47,50]. However, Lebert et al. [51]
confirmed the presence of L. monocytogenes in three of nine ready-to-eat sausages produced
in France, with mean values between 1.2 and 2.8 log cfu/g, i.e., values sometimes higher
than those obtained in the present study and exceeding the legal limit (100 cfu/g) [42].

Salmonella spp. were absent in end-products, except in those inoculated with S. equorum
S2M7. Some outbreaks caused by Salmonella spp. have been identified in European fermented
sausages, such as those reported by Gossner et al. [52] and Kuhn et al. [53] for a French
sausage and a Danish salami, respectively. Biogenic amines levels generally decreased
throughout the curing process. Although this is not always the case, other authors have
reported a similar behavior [54]. On the contrary, Xie et al. [55] verified increases throughout
the production process. Laranjo et al. [56] and Simion et al. [44] showed average values
that did not follow the same trend for all amines, i.e., some contents increased, others
decreased, and others increased until the intermediate stage of curing and decreased again
in the finished product. These variations are likely associated with the manufacturing
process as well as with the microbiota that has a major influence on the decarboxylation of
amino acids, precursors of biogenic amines [13,20].

Dry-fermented sausages can easily accumulate high levels of BA, especially putrescine,
cadaverine, and tyramine, the most abundant biogenic amines in the present study [16,17,57],
probably due to the high numbers of enterobacteria, LAB, and staphylococci, the main
bacterial groups responsible for the formation of BA [15].

Histamine and tyramine are the most toxic biogenic amines [58,59] and are conse-
quently very relevant for food safety [60]. Nuñez et al. [61] reported that for healthy adults,
foods containing more than 500 mg/kg histamine and 1000 mg/kg tyramine are considered
toxic or likely to jeopardize consumer health. The concentrations of histamine (3.17 ± 2.20
to 12.96 ± 3.92 mg/kg) and tyramine (88.44 ± 21.49 to 113.99 ± 32.99 mg/kg) obtained in
end-products in the present work were much lower than those indicated by [61], and the
treatment with S. equorum S2M7/L. sakei CV3C2 showed the lowest concentrations in all
curing steps.

The co-inoculation of S. equorum S2M7 with L. sakei CV3C2 promoted of 70% reduction
in the histamine content when compared to the control sausages in end-products. Authors
such as Wang et al. [62] and Casquete et al. [63] also observed pronounced reductions in
the content of histamine in sausages inoculated with starter cultures.

For vasoactive amines, Papavergou et al. [64] suggest 200 mg/kg as an indicator of
good manufacturing practices and safe consumption. In the present study we observed a
reduction throughout the curing process, and in end-products all sausages showed values
below 200 mg/kg. Nevertheless, sausages inoculated with S. equorum S2M7/L. sakei CV3C2
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significantly had the lowest mean value, representing 28.65% fewer vasoactive amines
(111.00 ± 23.66 mg/kg), than control sausages (155.58 ± 37.29 mg/kg). This corroborates
the previous starter selection, which showed that S. equorum S2M7 and L. sakei CV3C2 were
low producers of biogenic amines [26].

In general, inoculated sausages had lower concentrations of biogenic amines in end-
products, except for the treatment with the yeast strain, which seemed to increase the
levels of tryptamine and histamine. Higher contents in biogenic amines had been reported
previously for sausages inoculated with Debaryomyces and Candida strains [65].

In the present work, no significant differences were observed between the different
treatments regarding most color parameters, as had been reported previously by [62,66–68]
contrary to the findings of Ravyts et al. [69] and Talon et al. [70], who reported the positive
contribution of starter cultures to sausage color.

The fact that the control sausages were harder could be associated with some prote-
olytic action of starters that softened the inoculated sausages [71,72].

In general, we may conclude that inoculation with starters did not depreciate the
sensory characteristics of the sausages as had been reported previously by others [44] and
even seemed to have some positive effect, namely in terms of aroma intensity, which had
also been reported by other authors [73,74].

5. Conclusions

The inoculation of Paio do Alentejo with starters did not have a noticeable effect on the
pH or improve color. However, significantly lower aW values were obtained for inoculated
sausages, except for sausages inoculated with L. sakei CV3C2.

The absence of significant differences, particularly for LAB, staphylococci, and yeasts,
between inoculated and control sausages could be explained by the fact that starters do not
“add” to the established microbiota but rather replace it by competitive exclusion.

The co-inoculation of S. equorum S2M7 and L. sakei CV3C2 promoted a reduction close
to 30% and 20% respectively for vasoactive and total amines.

Regarding texture parameters, control sausages showed higher hardness values, and
the use of starter cultures promoted the cohesiveness of meat batter and the reduction
of chewiness.

In summary, the co-inoculation of Paio do Alentejo with S. equorum and L. sakei signifi-
cantly reduced vasoactive biogenic amines. Moreover, the use of starter cultures did not
compromise the quality of traditional dry-cured sausages regarding their sensory taccept-
ability.
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