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ABSTRACT
Age-related macular degeneration (AMD) is the most 
common eye disease in elderly patients, which could 
lead to irreversible vision loss and blindness. Increasing 
evidence indicates that amyloid β-peptide (Aβ) might be 
associated with the pathogenesis of AMD. In this review, 
we would like to summarise the current findings in this 
field. The literature search was done from 1995 to Feb, 
2021 with following keywords, ‘Amyloid β-peptide and 
age-related macular degeneration’, ‘Inflammation and 
age-related macular degeneration’, ‘Angiogenesis and 
age-related macular degeneration’, ‘Actin cytoskeleton 
and amyloid β-peptide’, ‘Mitochondrial dysfunction and 
amyloid β-peptide’, ‘Ribosomal dysregulation and amyloid 
β-peptide’ using search engines Pubmed, Google Scholar 
and Web of Science. Aβ congregates in subretinal drusen 
of patients with AMD and participates in the pathogenesis 
of AMD through enhancing inflammatory activity, inducing 
mitochondrial dysfunction, altering ribosomal function, 
regulating the lysosomal pathway, affecting RNA splicing, 
modulating angiogenesis and modifying cell structure 
in AMD. The methods targeting Aβ are shown to inhibit 
inflammatory signalling pathway and restore the function 
of retinal pigment epithelium cells and photoreceptor cells 
in the subretinal region. Targeting Aβ may provide a novel 
therapeutic strategy for AMD.

INTRODUCTION
Age-related macular degeneration (AMD) 
has been regarded as the leading cause of 
progressive central vision loss and blindness 
in the elder individuals due to the impair-
ment of photoreceptor cells (PRCs) and 
retinal pigment epithelium (RPE) cells 
caused by the formation of drusen in Bruch’s 
membrane and the growth of leaky blood 
vessels beneath the retina.1–4 In the past 10 
years, considerable attention has been paid 
to the significant role of oligomeric amyloid 
β-peptide (Aβ) in the developed pathogen-
esis of AMD. Aβ comprises peptides between 
39 and 43 amino acid residues which are 
produced by the proteolytic cleavage process 
of amyloid precursor protein (APP) with the 
utilisation of multisubunit enzyme complex 
and membrane-bound aspartyl protease.5–7

Previous studies suggested that oligomeric 
Aβ has been crucially involved in the patho-
genesis of Alzheimer’s disease (AD). Under 
conditions with Aβ, microglia could be stim-
ulated and activated chronically, which leads 
to extensive neuronal apoptosis. Moreover, 
aggregation of Aβ could induce the dysfunc-
tion of microtubules associated protein-2, 
which successively disrupts the microtubules 
structure and process of axonal transport.8 
Aβ can also disrupt the glucose metabo-
lism in the brain by vying with insulin for 
binding to its receptor.9 Increasing evidence 
indicates that AD and AMD share similar 
pathophysiological features, such as neuroin-
flammation and oxidative stress.10 11 Aβ has 
been affirmed to be specifically prevalent 
in the extracellular soft drusen deposits of 
patients with AMD.12–14 Administration of Aβ 
in the subretinal region of C57BL/6 mice 
has shown similar pathology with AMD which 
exacerbates the senescence of RPE cells and 
retinal degeneration, suggesting that Aβ 
may be responsible for the characteristics 
of AMD.15 Recent studies have identified 
multiple different isoforms of Aβ, 40-residue 
peptide Aβ (1-40) and 42-residue peptide Aβ 
(1-42), which were the major constituents 
of drusen deposits in the subretinal space 
of patients with AMD.16 17 The overexpres-
sion of Aβ (40-residue and 42-residue) leads 
to the formation of drusen-like deposits in 
subretinal space in the eye and produces RPE 
atrophy.13 16 18 19 Moreover, senescent models 
with AMD present increasing amount of Aβ 
drusen in outer segments layer, leading to the 
outcome of PRCs loss and aberrant localisa-
tion of RPE cells.5 20 Several pathways involved 
in Aβ enhancing the formation of AMD have 
been clarified in current researches.

Aβ induces inflammasome in AMD
Inflammatory activity is a rapidly deteriorating 
mechanism and induced by several stress 
factors such as increased oxidative stress and 
decreased proteostasis, which has been tightly 
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related to the pathogenesis of AMD.21 22 Previous evidence 
has shown that Aβ-induced inflammatory activity has a 
significant impact on the pathology of AMD and could 
be induced in distinct pathways.21 In the RPE cells, Aβ 
(1-40) and Aβ(1-42) can stimulate the expression of toll-
like receptor 4 and Rel proteins and activate the nuclear 
factor-κB (NF-κB) signalling pathway.23 24 Activation of 
this pathway can upregulate the expression of proin-
flammatory cytokines, such as interleukin (IL)-6, tumour 
necrosis factor α (TNF-α), IL-1β, IL-18, which results in 
the event of nucleotide-binding oligomerisation domain-
like receptors family pyrin domain containing 3 (NLRP3) 
inflammasome activity, and other apoptotic factors in the 
choroid and the neuroretina.23 25 26 Prolonged NLRP3 
inflammasome activity induced by Aβ via nicotinamide 
adenine dinucleotide phosphate (NADPH) oxidase and 
mitochondria-dependent reactive oxygen species (ROS) 
production leads to mitochondrial DNA damages, which 
eventually activates pyroptosis and apoptosis in RPE 
cells.27 28 Thus, the suppression of NLRP3 inflammasome 
activation may decrease the inflammation in RPE cells.29 
Also, a new finding has illustrated that Aβ(1-42) can 
activate primary microglial, which results in the overpro-
duction of proinflammatory cytokines, such as IL-1β and 
cyclooxygenase-2 (cox-2), and exacerbate the deteriora-
tion of visual function and PRCs apoptosis.30 Moreover, 
the activation of liver X receptor α (LXR α) and ATP 
binding cassette subfamily A member 1 (ABCA1) down-
regulates the expressions of proinflammatory cytokines, 
such as IL-6 and TNF-α, and suppresses the Aβ-induced 
inflammatory activity and senescent responses in RPE 
cells.31 Intravitreal injection of oligomeric Aβ suppresses 
the protein expressions of LXR α and ABCA1, which 
provokes inflammatory activity by upregulation of proin-
flammatory cytokines.32 Several medical agents, such as 
Brimonidine, Puerarin and Baicalin, have been shown 
to alleviate intracellular pyroptosis and viability damage 
through preventing Aβ-induced oxidative stress damage 
and inflammatory activity.33–35 Also, sirtuin 1 (SIRT1) has 
been identified as a protective factor, which suppresses 
the activation of NF-κB signalling pathway induced by Aβ 
in AMD.36 These results have shown the proinflammatory 
role of Aβ in AMD.

Aβ induces mitochondrial dysfunction in AMD
In AMD, Aβ dysregulates the level of mitochondria-
associated proteins, such as pyruvate dehydrogenase and 
the electron transport chain complex IV, and disrupts 
the translocation of hydrogen from the matrix to the 
intermembrane space, which results in abnormal mito-
chondrial electrical activity and ROS increase.37 38 These 
aberrant activities could induce alterations in mito-
chondrial DNA and mitochondrial lipids, leading to 
mitochondrial impairment.37 38 Previous study has indi-
cated that mitochondrial oxidative phosphorylation is 
inhibited by Aβ in AD.39 Recent study has shown mito-
chondrial impairment in AMD accompanied along 
with oxidative phosphorylation.40 The level of proteins 

related to the oxidative phosphorylation and mitochon-
drial dysfunction, such as Ndufs4 and Atp6v1g1, has 
been significantly downregulated in the initial stage of 
Aβ exposure and recovered after 24-hour exposure of Aβ 
in 661W cone PRCs.40 This mechanism is regulated by 
sirtuin signalling pathway, which has been shown to be 
involved in neuroprotection against toxicity in retina,41 
and also tau protein, which is thought to be coexisted 
with Aβ42 and cause the suppression of oxidative phos-
phorylation.39 Tau protein in accumulation with Aβ 
induces the decline in oxidative phosphorylation in 
early stage of AMD.40 Moreover, under the presence of 
transcription factor PU.1/SPI1 induced by Aβ, NADPH 
oxidase activation occurs and induces the expression of 
NADPH oxidase (NOX) complex, such as NOX4-p22phox 
complex, leading to the outcome of mitochondrial 
dysfunction and excessive oxidative stress in RPE cells.43 
Silencing of PU.1/SPI1 has been shown to impede the 
process of ROS production and mitochondrial dysfunc-
tion and protect the retinal structure and function 
from oxidative damage.43 This novel finding brings out 
new insight into preventing mitochondrial dysfunction 
induced by Aβ in RPE cells. From above, it is suggested 
that Aβ could lead to the consequence of mitochondrial 
dysfunction in AMD.

Aβ alters the function of ribosome in AMD
In initial stage of AMD, ribosomal protein synthesis has 
been aberrantly altered. Protein translation initiation 
factors, eIF2α, eIF3η and eIF5, and elongation factor, 
eEF2, are abnormally regulated, which induces ribosomal 
dysfunction in AMD.44 In recent study, ribosomal proteins 
are downregulated in the initial stage of the neurotox-
icity induced by Aβ in AMD.40 Interestingly, after 24-hour 
treatment with Aβ, ribosomal proteins, such as Rpl29 and 
Rps19, are alleviated to its normal level in 661W cells.40 
Meanwhile, it has been demonstrated that the differential 
effect of Aβ may be due to the recuperation of PRCs from 
oxidative stress.40 Thus, ribosomal proteins are negatively 
influenced in the early stage of the toxicity induced by Aβ 
treatment in AMD.

Aβ regulates the lysosomal pathway in AMD
Autophagy-lysosomal pathway has been elucidated to be 
a remarkable mechanism to prevent the accumulation 
of Aβ in the intracellular space in AMD.45 Previously, 
autophagy has been reported to be significantly involved 
in the process of Aβ clearance and degradation due to 
its property of clearing proteins. Successive autophagy 
activity could inhibit the accumulation of deleterious 
proteins, preventing the degeneration of RPE cells and 
decelerating the ageing process.46 In fact, Aβ could 
induce autophagy in RPE, which forms resistance to the 
formation of Aβ deposition, but the underlying molec-
ular mechanisms are still unclear, which needs to be 
further explored.47 Previous findings have proved that 
autophagy-lysosomal system maintains retinal homeo-
stasis and prevents retinal degeneration in AMD.48 Recent 
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research has observed that lysosomal proteins are upreg-
ulated in the early stage of Aβ treatment, which protects 
cells from Aβ aggregation.40 However, after 24-hour Aβ 
exposure, lysosomal proteins are subtly downregulated, 
which indicates that Aβ might accumulate after long Aβ 
exposure.40 This has also been proved by a new research 
which found that Aβ accumulates in lysosomes under 
the circumstances of late-endocytic compartments and 
damages the function of RPE cells chronically.49 From 
this information, self-protection is induced through acti-
vating the autophagy-lysosomal pathway in the initial 
stage of Aβ exposure,40 rather than in the late stage.

Aβ affects RNA splicing in AMD
Spliceosome, a ribonucleoprotein (RNP) complex, 
comprising small nuclear RNAs (snRNA) and numerous 
proteins, has a significant role in the process of pre-mRNA 
splicing.50 Defects of mRNA processing and splicing 
are detected in AD according to previous research.51 
Previous studies have also reported that the alterations in 
ubiquitous core snRNP proteins, pre-mRNA processing 
factor 3 (PRPF3), and splicing factor, retinitis pigmen-
tosa 9, induce the aggregation of misfolded proteins, 
such as T494M mutant PRPF3, in PRCs, and lead to 

retinal degeneration.52 53 Recent finding has shown 
that, in the initial stage of Aβ treatment, several snRNP 
proteins reveal no change or subtle downregulation in 
PRCs. However, after 24-hour treatment with higher Aβ 
concentrations, proteins, such as Acin1 and Rbmx, are 
upregulated, which presents that aberrant alterations in 
RNA splicing is induced at a chronic exposure to Aβ.40 
Thus, RNA splicing in AMD is abnormally influenced in 
late stage of Aβ exposure.40

Aβ modulates angiogenesis in AMD
Angiogenesis has been thought to be induced by the 
imbalance of angiogenesis-related factors.54 In AMD, 
vascular endothelial growth factor (VEGF) is highly 
expressed in subfoveal fibrovascular membrane, the 
surrounding tissue and the RPE cells, which stimu-
lates the growth of new blood vessels in the subretinal 
region.55 Under the condition of low concentration 
of Aβ, RPE cells secrete significant level of pigment 
epithelium-derived factor (), an antiangiogenetic factor, 
through Aβ-receptor for advanced glycation endproducts 
pathway, which inhibits the apoptotic pathway leading to 
RPE cell growth.56 However, high concentration of Aβ 
treatment induces high expression of mRNA of VEGF in 

Figure 1  The mechanistic pathwayof amyloid β-peptide in AMD. Aβ, amyloid β-peptide; AMD, age-related macular 
degeneration; GSK3β, glycogen synthase kinase 3 beta; IL, interleukin; LXR α, liver X receptor α; NF-κB, nuclear factor-κB; 
PEDF, pigment epithelium derived factor; VEGF, vascular endothelial growth factor.
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RPE cells and increases the death of RPE cells.56 More-
over, Aβ-induced mitochondrial ROS have been shown 
to promote the production of Aβ-stimulated angiogenic 
factor in ARPE-19 cells.57 These findings have shown that 
Aβ could regulate angiogenesis-related factors. Due to 
the accumulation of Aβ in AMD, it is speculated that Aβ 
could cause the growth of new blood vessels, which needs 
to be further explored.

Aβ alters actin cytoskeleton in AMD
Previous research has shown that Aβ can stimulate the 
loss of actin cytoskeleton integrity and function through 
abnormal phosphorylation events which induces micro-
tubules instability and actin dynamics imbalance in AD.58 
Recent findings suggest that accumulation of Aβ in intra-
cellular region can also induce disorganisation of actin 
cytoskeleton and disruption of tight junction via NF-κB 
activation in AMD.40 59 Subretinally injected Aβ dislocates 
occludin and decreases the levels of occludin and zonula 
occludens‐1 mRNA expression in RPE cells.60 This 
molecular alteration destabilises the link between trans-
membrane and actin cytoskeleton and influences the 
transepithelial permeability of RPE cells.60 Recent find-
ings have also shown that Tau, a microtubule-associated 
protein, is highly phosphorylated by the activation of 
glycogen synthase kinase 3 beta (GSK3β) in response 
to high concentration Aβ treatment, which upregu-
lates the expression of cytoskeleton-associated proteins 
and induces reorganisation of cytoskeleton networks in 
PRCs.40 GSK3β inhibition has been observed in the early 
stages of Aβ exposure, which indicates the countering 
activity of the PRCs in response to Aβ-induced neuro-
toxicity.40 Moreover, keratins, intermediate filament 
proteins, are remarkably enriched in early timepoint and 
return to normal level after prolonged (24 hours) Aβ 
treatment in 661W cells, which suggests that keratin fila-
ments are significantly influenced in early Aβ treatment.40 
From above, it is suggested that Aβ could disorganise the 
cytoskeleton in RPE cells and PRCs in AMD.

Protective role of targeting Aβ in AMD
The approach to decrease or eliminate the accumula-
tion of Aβ in the subretinal region has been imperatively 
developed in order to inhibit inflammatory activity and 
prevent visual loss efficiently. Evidence has shown that 
immunotherapeutic strategies, such as anti-Aβ antibodies 
treatment, could reduce neuronal damages in the retina 
and may recover the visual function.61 Moreover, anti-Aβ 
monoclonal antibody treatment can lead to the reduction 
of Aβ deposition and deactivates the plasma proteins in the 
complement system, which prevents or reverses the loss 
of eye vision.61 62 Previous research has reported that the 
mutation and loss-of-function of the triggering receptor 
expressed in myeloid/microglial cells-2 (TREM2) could 
negatively impact the efficiency of Aβ clearance.63 
However, with incubating anti-miRNA-34a, TREM2 can 
be restored back to the normal homeostatic level, which 
recovers the ability to eliminate Aβ.63 Moreover, when 

NF-κB pathway induces and upregulates the expression 
of miRNA-34a, downregulation of TREM2 expression 
has been observed in human AMD.63 Thus, the discov-
ered finding of NF-κB regulated, miRNA-34a-mediated 
TREM2 sensor-receptor circuit give novel thought about 
the utilisation of anti-NF-κB and anti-miRNA-based 
therapeutic strategies to clear Aβ deposits.63 Moreover, 
previous findings have shown that the possible reason for 
increasing amount of Aβ in the senescent models is the 
curtailment in the expression of neprilysin level and the 
growing activity of beta-secretase-1 leading to the higher 
level of Aβ synthesis in the RPE cells.64 65 Recent research 
has shown that intravitreal injections of neprilysin in 
mice model with AMD have shown the reduction of Aβ 
accumulation, which represents a potential method to 
slow down the development of AMD pathogenesis.66

Up-to-date research has recently revealed that fucox-
anthin, an orange-coloured pigment presented in brown 
seaweeds, plays a momentous potential in inhibiting the 
pathogenesis of oxidative stress-induced AMD.67 Pretreat-
ment of fucoxanthin significantly suppresses oxidative 
stress by reducing ROS and malondialdehyde concen-
tration, nuclear phosphorylated histone deposition and 
production of senescence-associated β galactosidase.67 
Compared with control group, pretreated groups have 
shown less Aβ deposition, low expression of beta-site 
APP-cleaving enzyme 1 and the prevention of tight junc-
tion disruption.67

These new discoveries could eventually impede Aβ-in-
duced ROS production and oxidative stress and other 
Aβ-induced injuries in retina cells and also broaden the 
potential for curing exudative and non-exudative AMD 
in the future.

CONCLUSION
Aβ-induced inflammatory activity, ribosomal dysfunction, 
oxidative phosphorylation dysregulation, spliceosome 
impairment, angiogenesis and cytoskeleton destabilisa-
tion cause numerous damages in the subretinal region, 
which is associated with the pathogenesis of AMD 
(figure 1). Future research on the molecular mechanism 
of Aβ-mediated pathogenesis of AMD may provide novel 
thoughts about potential therapies of AMD related to Aβ.
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