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Abstract: The multi-system of electro-phytotechnology using a woody ornamental cadmium (Cd)
hyperaccumulator (Lonicera japonica Thunb.) is a new departure for environmental remediation.
The effects of four electric field conditions on Cd accumulation, growth, and photosynthesis of
L. japonica under four Cd treatments were investigated. Under 25 and 50 mg L−1 Cd treatments,
Cd accumulation in L. japonica was enhanced significantly compared to the control and reached
1110.79 mg kg−1 in root and 428.67 mg kg−1 in shoots influenced by the electric field, especially
at 2 V cm−1, and with higher bioaccumulation coefficient (BC), translocation factor (TF), removal
efficiency (RE), and the maximum Cd uptake, indicating that 2 V cm−1 voltage may be the most
suitable electric field for consolidating Cd-hyperaccumulator ability. It is accompanied by increased
root and shoots biomass and photosynthetic parameters through the electric field effect. These results
show that a suitable electric field may improve the growth, hyperaccumulation, and photosynthetic
ability of L. japonica. Meanwhile, low Cd supply (5 mg L−1) and medium voltage (2 V cm−1) improved
plant growth and photosynthetic capacity, conducive to the practical application to a plant facing low
concentration Cd contamination in the real environment.

Keywords: electric fields; cadmium; Lonicera japonica Thunb.; hyperaccumulator; phytoremediation

1. Introduction

With the rapid development of industrialization and urbanization in the past few
decades, a growing number of heavy metals are deposited in soil, mainly derived from
mining activities, vehicle emissions, and industrial dust, have caused severe harm to human
health and the environment [1–5]. Among those heavy metals, cadmium (Cd), one of the
most toxic pollutants, has become a global concern due to its high persistency, strong
water-solubility, and potential carcinogenicity [6–10]. Soil Cd exceeding the environmental
standard not only poses great harm to plants, including leaf chlorosis, growth inhibition,
stomatal closure, and photosynthesis inhibition but threatens human health through the
food chains [11–17]. It is consequently urgent to develop a more efficient technique for
removing Cd from contaminated soils [18].

Phytoremediation—hyperaccumulator or accumulator absorption of toxic heavy met-
als from soils to plant organs—has become a promising technique that is inexpensive, easily
applied, and eco-friendly [19–21]. The hyperaccumulators have been considered to extract
and accumulate Cd above 0.01% dry tissue (100 µg g−1) [22–24]. However, phytoreme-
diation also shows such typical limitations in practice as deep treatment zone, long-time
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consumption, and low bioavailability of soil pollutants [25,26]. Recently, the combination of
phytoremediation and electrokinetic remediation has increasingly been used to overcome
the limitations of phytoremediation and enhance remediation efficiency [27–32]. Some
studies have reported that the application of electric fields could improve the bioavail-
ability of pollutants in soils and heavy metal accumulation in plants [28,33–35], and other
studies investigated electric field-assisted enhancements in seed germination, plant growth,
and self-organization ability under different environmental stress [36–40]. Nevertheless,
these studies were mainly focused on crops, herbs, and aquatic plants, including lettuce,
maize, tomato, ryegrass, and Canadian waterweed [41–48]. Early researchers indicated
Cd-induced changes in photosynthesis, such as net photosynthesis (Pn), stomatal con-
ductance (Gs), and transpiration rate (Tr) [49–56]. However, little information is available
on the electric field-assisted effects on the characteristics of cadmium accumulation and
photosynthesis in woody ornamental hyperaccumulators.

Nowadays, more and more ornamental plants are widely used for gardening and
greening across the human living environment [57–59]. Ornamental plants not only clean
up the soil contaminated by heavy metals but also contribute to the beautification and
decoration of the living environment [60,61]. Lonicera japonica Thunb.—a popular woody
ornamental plant—has become established in temperate and tropical regions worldwide in
the past 150 years [62]. The plant has the characteristics of easy cultivation, high biomass,
wide geographic distribution, and strong resistance to environmental stress [63]. L. japon-
ica was chosen in the study based on our previous findings, which showed that it is a
new-found woody Cd-hyperaccumulator [53,64,65]. Therefore, in the present study, we
selected L. japonica as a model plant to show the effect of different electric fields on Cd
accumulation and transport, and investigate the responses of plant growth and photo-
synthesis under different Cd concentrations. The specific objectives are to confirm the
phytoremediation potential of a woody ornamental Cd-hyperaccumulator assisted by elec-
tric fields and develop a practical multi-system of electro-phytotechnology used to prevent
contaminated soils.

2. Materials and Methods
2.1. Plant Cultivation and Treatments

Seedlings of L. japonica were collected from the non-contaminated experimental field
of Shenyang Agricultural University and propagated in sterilized sand with a nutrient
medium. The nutrient medium was Hoagland solution modified by the following composi-
tion (mmol L−1): Ca(NO3)2 × 4 H2O 5.00, MgSO4 × 7 H2O 2.00, KNO3 5.00, KH2PO4 1.00,
H3BO3 0.05, ZnSO4 × 7 H2O 0.80 × 10−3, MnCl2 × 4 H2O 9.00 × 10−3, CuSO4 × 5 H2O
0.30 × 10−3, (NH4)6Mo7O24 × 4 H2O 0.02 × 10−3, Fe-EDTA 0.10 [64,66]. The pH was
adjusted daily to 5.8 ± 0.1 with HCl or NaOH. The plants were grown in a greenhouse
of Shenyang Agricultural University at 23 ± 2 ◦C (800–1000 µmol m−2 s−1 PPFD, 16/8 h
light/dark, 70–80% relative humidity).

After 8 weeks of cultivation, L. japonica were transferred into adumbral containers
(45 × 22 × 15 cm3) with 6 L Hoagland nutrient medium, 4 plants for each. The nutrient
medium was renewed once every 3 days. Subsequently, Cd2+ (CdCl2 × 2.5 H2O, Kermel
Chemical Reagent Co., Ltd., Tianjin, China, >99%) was added into the nutrient medium to
get: 0, 5, 25 and 50 (mg L−1), respectively. Additionally, a homogeneous electric field with
a pair of graphite electrodes (10.0 cm length, R = 3 mm) connected to a DC power supply
(220 V, 50 Hz) was applied for 6 h per day, and the electrical setting of the experiment is
shown in Figure 1. The voltage gradients of 0, 1, 2, and 3 (V cm−1) are shown in Table 1. The
experiment was repeated 3 times, and the plants were harvested 1 week later for analysis.
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Figure 1. The electrical setting of the experiment.

Table 1. Various experimental treatments.

Treatment Test Number Voltage Gradient
(V cm−1)

Cd Concentration in
the Medium

(mg L−1)

T1 V0-Cd0 0 0
T2 V0-Cd5 0 5
T3 V0-Cd25 0 25
T4 V0-Cd50 0 50
T5 V1-Cd0 1 0
T6 V1-Cd5 1 5
T7 V1-Cd25 1 25
T8 V1-Cd50 1 50
T9 V2-Cd0 2 0

T10 V2-Cd5 2 5
T11 V2-Cd25 2 25
T12 V2-Cd50 2 50
T13 V3-Cd0 3 0
T14 V3-Cd5 3 5
T15 V3-Cd25 3 25
T16 V3-Cd50 3 50

2.2. Measurements of Photosynthetic Parameters

Photosynthetic parameters were measured in fully expanded leaves under the electric
field using a portable photosynthesis system (LI-6400, Li-Cor Inc. Lincoln, NE, USA). The
photosynthetic parameters contained net photosynthetic rate (Pn, µmol m−2 s−1), stomatal
conductance (Gs, mol m−2 s−1), transpiration rate (Tr, mmol m−2 s−1), and intercellular
CO2 concentration (Ci, µL L−1). Light level, CO2 concentration, and leaf temperature
inside the leaf chamber were kept constant at 1000 µmol m−2 s−1 PPFD, 25 ± 0.3 ◦C,
and 380 ± 5 µmol CO2 mol−1, respectively. Eight leaves per treatment were used for
the determination.

2.3. Assays of Plant Biomass and Cd Content

After harvesting, L. japonica were washed with tap water, and the plant roots were
immersed in 20 mM Na2-EDTA for 15 min and then rinsed with tap and de-ionized water
to remove Cd adhering to the root surface. The plants were separated into shoots and roots.
These portions were then dried at 105 ◦C for 20 min, then at 70 ◦C until a constant weight
was reached. Afterward, root and shoots biomass dry weight was obtained.

Dried plant materials were ground to a fine powder. The powders were digested
with a concentrated acid mixture of HNO3/HClO4 (3:1, v/v). The Cd concentration in
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plant tissues was determined using an atomic absorption spectrophotometer (AAS 3110
Perkin-Elmer, Waltham, MA, USA).

2.4. Data Analysis

The bioaccumulation coefficient (BC) indicated the ability of plants to accumulate
cadmium in the medium. It was shown as:

BC =
the cadmium concentration in the plant

the cadmium concentration in the solution
(1)

The translocation factor (TF) reflected the different abilities of plants to translocate
cadmium from a different portion of plants. It was described as:

TF =
the cadmium concentration in shoots
the cadmium concentration in roots

(2)

To assess the effects of cadmium on phytoextraction by plants, the removal efficiency
(RE) was described as [19,67].

RE =
(Metalshoot × Massshoot)

(Metalmedium × Massmedium)
(3)

where Metalshoot is the contents (mg kg−1) of cadmium in the harvested shoots of plants;
Metalmedium is the initial cadmium content (mg kg−1) of the medium; Massshoot and Massmedium
are the masses (g) of the shoots and medium of the harvested plants, respectively.

The cadmium uptake was measured as [65].

Uptake
(
µg plant−1d−1

)
=

M2W2 − M1W1

T2 − T1
(4)

where M1 and M2 are the cadmium concentrations in the plant tissue, and W1 and W2 are
the plant biomass at time T1 (initial sampling) and T2 (final sampling).

2.5. Statistical Analyses

All experimental measurements were set for three replicates. Average values and
standard deviations (SD) were calculated by Microsoft Office Excel 2016 for all the data in
the present study. The experimental data were presented as the means ± SD. The statistical
analysis of variance was carried out with the SPSS 22.0 software tool. The significant
difference was performed between treatments at p < 0.05. Multiple comparison was also
determined using the least significant difference (LSD) test.

3. Results and Discussion
3.1. The Effect of Electric Field on Cd Accumulation in Plants

Under different treatments, Cd accumulation in roots and shoots of L. japonica was
shown in Figure 2. Under T1–T4 treatments (under Cd stress without electric field),
Cd concentration in roots had a slightly increasing trend which ranged from 103.72 to
657.58 mg kg−1. Under T5–T16 treatments, the electric field significantly enhanced the
concentrations of Cd in roots compared with the control, especially exposed to high concen-
trations (25 and 50 mg L−1) Cd. The Cd concentrations in roots were enhanced significantly
by 2 and 3 V cm−1 voltages, which reached 1110.79 and 1608.24 mg kg−1 (T11 and T12),
1291.95 and 1692.37 mg kg−1 (T15 and T16), respectively. Despite that, Cd concentrations in
shoots were enhanced significantly in the electric field. The different voltages promoted Cd
concentrations in shoots above 180 mg kg−1 under 25 and 50 mg L−1 Cd stress. The maxi-
mum Cd concentrations in shoots increased by 2 V cm−1 voltage (exposed to 50 mg L−1

Cd) were added to 428.67 mg kg−1, 2.44 times of T4 treatment (V0-Cd50). Other studies
also reported that heavy metal (Cd, Cu, Zn, and Pb) concentrations in plants increased
with the application of an electric field [29,68]. The beneficial effect of the electric field
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may be associated with the changes in cell membrane properties and metal ions polarity
inside plants [42,45]. Our present study is in agreement with the observation of [35,46],
which showed that electric fields could enhance the rate of membrane polarization and
cell metabolism, which accelerate heavy metal transport by activating ion channels such as
Ca2+ into cytosol and enzyme cascades.
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Figure 2. The relationship of different treatments and Cd contents in roots and shoots of L. japonica.
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3.2. The Effect of Electric Field on Hyperaccumulation Characteristics

The measured results of the bioaccumulation coefficient (BC), translocation factor (TF),
removal efficiency (RE), and heavy metal uptake are shown in Table 2. The values of BC,
TF, RE, and heavy metal uptake refer to the plant’s characteristic to absorb metal elements
from the soil, then transfer, mobilize and store these elements in plant tissues [38,47,69–72].
Therefore, these results, including BC, TF, RE, and Cd uptake, are very important to
understanding the action of ion exchange in the soil environment and hyperaccumulation
characteristics in the tissues of L. japonica. The electric fields enhanced root BC significantly
and shoots BC of L. japonica exposed to different concentrations of Cd compared with
T1–T4 treatments (under Cd stress without electric fields). Under different concentrations
of Cd stress, root BC and shoots BC were promoted significantly by 2 V cm−1 voltage and
3 V cm−1 voltage, which reached above 32.16 (T12) and 8.11 (T16). When exposed to higher
concentrations of Cd, the TF of the plants was enhanced significantly by 1 V cm−1 voltage
and 2 V cm−1 voltage. Exposed to 5 mg L−1 Cd stress, the RE of the plants was increased
from 14.02 under no voltage (T2) treatment to 36.78 under 3 V cm−1 voltage treatment
(T14). With the increase of Cd concentration in the medium, the maximum RE in the plants
was 4.00 and 2.61 times of T3 (V0-Cd25) and T4 treatment (V0-Cd50). Compared with the
treatments (under Cd stress without electric field), different voltages enhanced the uptake
of Cd in the plants exposed to different concentrations of Cd. The maximum Cd uptake of
the plants reached 53.02 µg plant−1 day−1 promoted by 2 V cm−1 voltage (T11).
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Table 2. The effect of electric field on Cd hyperaccumulation characteristics of L. japonica.

Treatment Test Number Root BC Shoots BC TF RE Uptake (µg plant−1 day−1)

T1 V0-Cd0 — — — — —
T2 V0-Cd5 20.74 a 6.74 ab 0.33 a 14.02 ab 5.43 abc ± 0.04
T3 V0-Cd25 13.04 b 3.72 c 0.29 bc 7.39 c 10.68 d ± 0.08
T4 V0-Cd50 13.15 b 3.51 d 0.27 d 6.87 d 14.68 ef ± 0.06
T5 V1-Cd0 — — — — —
T6 V1-Cd5 31.85 cd 7.94 cde 0.25 b 18.18 ef 8.95 de ± 0.05
T7 V1-Cd25 18.92 e 7.27 ab 0.38 a 15.37 ab 20.86 g ± 0.12
T8 V1-Cd50 18.61 e 5.40 e 0.29 bc 10.77 g 19.18 gh ± 0.23
T9 V2-Cd0 — — — — —

T10 V2-Cd5 57.93 ef 13.73 cdef 0.24 b 33.36 h 18.46 ghi ± 0.11
T11 V2-Cd25 44.43 g 13.17 de 0.30 a 29.56 i 53.02 j ± 0.38
T12 V2-Cd50 32.16 cd 8.57 abc 0.27 cd 17.92 efgh 16.36 abcd ± 0.15
T13 V3-Cd0 — — — — —
T14 V3-Cd5 65.81 h 17.10 g 0.26 b 36.78 jk 17.80 fg ± 0.09
T15 V3-Cd25 51.68 efg 13.56 def 0.26 b 27.92 hi 50.27 ijk ± 0.40
T16 V3-Cd50 33.85 cd 8.11 ab 0.24 bcd 16.02 abc 14.55 cdef ± 0.07

Data are means ± SD. BC: the bioaccumulation coefficient; TF: the translocation factor; RE: the removal efficiency.
Different letters indicate significant differences at the 5% level according to the LSD test. “—” Unavailable under
the tested concentrations.

3.3. The Effect of Electric Field on Root and Shoots Dry Weight

The root and shoots biomass of the plant are considered highly sensitive indicators
in their response to heavy metal and other environmental stress [37,73–75]. The growth
responses of L. japonica in terms of root and shoots biomass dry weight under different
treatments are shown in Figure 3. Under T1–T4 treatments (under Cd stress without electric
field), the dry weight of root biomass increased exposed to 5 and 25 mg L−1 Cd, and
decreased slightly exposed to 50 mg L−1 Cd, indicating that the plants had a good tolerance
to Cd stress. Under T5, T9, and T13 treatments (under electric field without Cd stress),
the dry weight of root biomass significantly increased, especially under 2 V cm−1 voltage
(T9), 22.02% higher than the control. Under T6–8, T10–12, and T14–16 treatments (under
electric field and Cd stress), different voltages enhanced the dry weight of root biomass
exposed to different concentrations of Cd compared to the control. Furthermore, under
2 V cm−1 voltage, the dry weight of root biomass exposed to 5 (T10) and 25 mg L−1 Cd
(T11) were enhanced significantly by 52.38% and 37.50% higher than the control. A similar
phenomenon [43] also shows that the application of a pulsed electric field increased the
root dry weight of maize under drought stress, and the enhancement could result from the
improved respiration metabolism under the influence of the pulsed electric field to affect
the synthesis and substance transformation. When the plants were exposed to 50 mg L−1

Cd stress, different voltages promoted the dry weight of root biomass compared with T4
treatment (V0-Cd50).

By comparison, under T1–T4 treatments (under Cd stress without electric field), the
dry weight of shoots biomass increased when exposed to different concentrations of Cd.
The earlier study [42] showed that the stronger electric field had a limited influence on
the growth of hydroponically cultivated tomatoes. However, our results divulged that
under T5, T9, and T13 treatments (under electric field without Cd stress), the dry weight
of shoots biomass increased significantly, especially under 2 V cm−1 voltage (T9), 13.21%
higher than the control. It agrees with the study [30], which reported that Brassica rapa
L. showed fast growth and biomass production with a low or moderate voltage gradient.
Under T6–8, T10–12, and T14–16 treatments (under electric field and Cd stress), there is a
similarly increased trend regarding the dry weight of root biomass. Furthermore, under
2 V cm−1 voltage, the dry weight of shoots biomass exposed to 5 mg L−1 Cd (T10) was
enhanced significantly by 25.91% higher than the control. When the plants were exposed to
50 mg L−1 Cd stress, the dry weight of shoots biomass was enhanced by different voltages
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compared with T4 treatment (V0-Cd50), which showed the electric field could promote the
tolerance responses of the plants to high concentrations of Cd.
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Above all, applying a medium-strength electric field enhanced the root and shoots
growth of L. japonica. In the present study, under 2 V cm−1 voltage, the dry weight of root
and shoots biomass was significantly enhanced to 5 mg L−1 Cd compared with the control.
Our present results agree with previous reports proving that the electric field stimulated
plant biomass production and growth by regulating the transport and distribution of plant
growth hormones [27,28,33,42,46].

3.4. The Effect of Electric Field on Photosynthetic Parameters

Photosynthesis, one of the most important biological processes for plant growth and
food production, is especially sensitive to Cd stress [76–79]. As shown in Figure 4, the net
photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), and intercel-
lular CO2 concentration (Ci) in the leaves of L. japonica under different treatments were
evaluated. The significant stimulating effect of Pn exposed to low concentrations of Cd
resulted in the improvement of gas exchange and transpiration in terms of the increase
in Gs, Tr, and Ci, indicating the positive effect of low Cd concentrations on the contents
of Rubisco [22]. A similar phenomenon was also found in maize plants [49]. The Pn, Gs,
and Tr of the plants exposed to Cd stress concentrations had a similar response visualized
as an inverted U-shaped curve under different voltages. Under different concentrations
of Cd stress, the maximum Pn, Gs, and Tr of the plants reached 22.95 µmol m−2 s−1,
1.19 mol m−2 s−1, and 3.33 mmol m−2 s−1, and all were enhanced significantly by 2 V cm−1

voltage (T10, V2-Cd5). It is coincident with root and shoots biomass dry weight, indicating
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the combination of the low Cd supply (5 mg L−1) and medium voltage (2 V cm−1) was
beneficial to elevate the photosynthetic capacity and growth of the plants. A similar phe-
nomenon is also described as the hormesis effect [53]. When the plants were exposed to
higher concentrations (25 mg L−1), different voltages significantly enhanced the Pn, Gs, Tr,
and Ci of the plants. However, with the increase of Cd concentration in the medium, the
effects were not obvious compared with T3 treatment (V0-Cd25; p < 0.05). Some studies
reported that Cd negatively affected photosynthesis [80–82], which may be attributed to the
inhibition of chlorophyll biosynthesis, pigment-protein complexes, thylakoids, or reduction
in growth [80,83,84]. However, in our present study, increased or unimpacted photosyn-
thesis showed that L. japonica did not suffer metal toxicity and produced metabolites for
absorption, defense, growth, and development, which may be related to good tolerance
and hyperaccumulation characteristics of the plant to stress [85]. Under T13-T16 treatments,
the increased Ci with the increase of Cd concentration in the medium may result from
inhibiting chloroplast metabolism via hampering light and dark reactions of photosynthesis
or Calvin cycle enzymes and the photosynthetic electron transport chain [86].
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4. Conclusions

In the present study, the electric field significantly enhanced the concentrations of Cd
in roots and shoots compared with the control, especially exposed to high concentrations
(25 and 50 mg L−1) Cd. The Cd concentrations in roots were enhanced significantly by
2 and 3 V cm−1 voltages, which reached above 1110.79 mg kg−1 (T11 and T12) and nearly
1700.00 mg kg−1 (T15 and T16), respectively. By comparison, the different voltages pro-
moted Cd concentrations in shoots above 180 mg kg−1 under 25 and 50 mg L−1 Cd stress.
The maximum Cd concentrations in shoots increased by 2 V cm−1 voltage (exposed to
50 mg L−1 Cd) were added to 428.67 mg kg−1, which was 2.44 times higher than T4 treat-
ment (V0-Cd50). Root BC, shoots BC, TF, and the maximum Cd uptake of the plant were
also promoted significantly by 2 V cm−1 voltage. The above results showed that 2 V cm−1

voltage might be the most suitable electric field for improving the hyperaccumulation
ability of the plant.

At the same time, under 2 V cm−1 voltage, the root and shoots biomass dry weight of
L. japonica exposed to 5 mg L−1 Cd increased significantly compared to the control. The
maximum Pn, Gs, and Tr of the plants exposed to different concentrations of Cd were also
enhanced significantly by 2 V cm−1 voltage (T10, V2-Cd5), which indicated that the syner-
gistic benefits of low Cd supply (5 mg L−1) and medium voltage (2 V cm−1) contributed
to the elevated plant growth and photosynthetic capacity. This characteristic is conducive
to the practical application of the plant facing low concentration Cd-contamination in the
real environment. Under T1-T4 treatments (under Cd stress without electric field), the dry
weight of root biomass decreased slightly exposed to 50 mg L−1 Cd, indicating the good
tolerance of the plant to Cd. However, under T6–8, T10–12, and T14–16 treatments (under
electric field and Cd stress), different voltages promoted the dry weight of root biomass
compared with T4 treatment (V0-Cd50), indicating the electric field could promote the
tolerant ability of the plant to higher concentration Cd.

Moreover, different voltages significantly enhanced the Pn, Gs, Tr, and Ci of the plants
exposed to 25 mg L−1 Cd. With the increase of Cd concentration in the medium, the effects
were not obvious compared with T3 treatment (V0-Cd25). Increased or unimpacted photo-
synthesis showed that L. japonica did not suffer metal toxicity and produced metabolites for
absorption, defense, growth, and development, along with the improved growth tolerance
and hyperaccumulation ability of the plant in the electric field under external Cd stress.

According to the results above, on the one hand, it is feasible to develop a multi-system
of electro-phytotechnology using a woody Cd-hyperaccumulator (L. japonica) to remediate
Cd contamination. On the other hand, L. japonica, as a popular ornamental, had dual merits
of phytoremediation and decoration, which will bring social and environmental benefits.
The present study would provide a reference for promoting large-scale soil remediation
by electric field-assisted phytoremediation, and future researchers need to consider the
economic feasibility.
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