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Abstract Since Flemming described a nuclear substance in
the nineteenth century and named it “chromatin,” this sub-
stance has fascinated biologists. What is the structure of
chromatin? DNA is wrapped around core histones, forming
a nucleosome fiber (10-nm fiber). This fiber has long been
assumed to fold into a 30-nm chromatin fiber and subsequent-
ly into helically folded larger fibers or radial loops. However,
several recent studies, including our cryo-EM and X-ray scat-
tering analyses, demonstrated that chromatin is composed of
irregularly folded 10-nm fibers, without 30-nm chromatin
fibers, in interphase chromatin and mitotic chromosomes.
This irregular folding implies a chromatin state that is physi-
cally less constrained, which could be more dynamic com-
pared with classical regular helical folding structures. Consis-
tent with this, recently, we uncovered by single nucleosome
imaging large nucleosome fluctuations in living mammalian
cells (∼50 nm/30 ms). Subsequent computational modeling
suggested that nucleosome fluctuation increases chromatin
accessibility, which is advantageous for many “target
searching” biological processes such as transcriptional regu-
lation. Therefore, this review provides a novel view on chro-
matin structure in which chromatin consists of dynamic and
disordered 10-nm fibers.

Introduction

There are 60 trillion cells in the human body. Each cell
contains 2 m of genomic DNA in a small nucleus with an
approximately 10-μm diameter (a volume of only ∼100 fL to
1 pL), and yet, it is able to search and read the information in
its genomic DNA to execute diverse cellular functions. There-
fore, it is important to understand how this long genomic
DNA is organized in the nucleus. In the nineteenth century,
W. Flemming described a nuclear substance that was clearly
visible after staining with a basic dye using primitive light
microscopes and named it “chromatin.” This is now thought
to be the basic unit of genomic DNA organization (Olins and
Olins 2003). Since then, even before the discovery of the
structure of DNA (Watson and Crick 1953), chromatin has
attracted significant interest from biologists. In this review
article, we assess the available data to provide a novel view
of chromatin in which “chromatin is a dynamic and disordered
10-nm fiber.”

DNA and nucleosomes

Deoxyribonucleic acid (DNA) is a negatively charged poly-
mer that produces electrostatic repulsion between adjacent
DNA regions. Therefore, it would be difficult for a long
DNA molecule alone to fold into a small space like the
nucleus (Bloomfield 1996; Yoshikawa and Yoshikawa
2002). To overcome this problem, the long, negatively
charged polymer is wrapped around a basic protein complex
known as a core histone octamer, which consists of the histone
proteins H2A, H2B, H3, and H4, to form a nucleosome
(Fig. 1) (Olins and Olins 1974; Kornberg 1974; Woodcock
et al. 1976). The structure of a nucleosome is well known at
atomic resolution (1.9 Å) (Davey et al. 2002): 147 base pairs
(bp) of DNA are wrapped in 1.7 left-handed superhelical turns
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around a histone octamer, whose surface is positively charged.
Each nucleosome particle is connected by linker DNA (20–
80 bp) to form repetitive motifs of ∼200 bp; this was described
originally to resemble “beads on a string” (Fig. 1) (Olins and
Olins 2003). This nucleosome fiber is also known as the 10-
nm fiber (Fig. 1). A single histone octamer in the nucleosome
has ∼220 positively charged lysine and arginine residues and
∼74 negatively charged aspartic acid and glutamic acid resi-
dues. There are also 400 negative charges in the phosphate
backbone of 200 bp of DNA. Because only about half of the
negative charges in the DNA are neutralized, the remaining
charge must be neutralized by other factors (e.g., linker his-
tone H1, cations, and other positively charged molecules) for
further folding.

Discovery of 30-nm chromatin fibers in vitro

In 1976, Finch and Klug first found, under transmission
electron microscopy (EM), that purified nucleosome fibers
(10-nm fibers) with linker histone H1 or Mg2+ ions were
folded into fibers with a diameter of 30 nm. They named these

fibers “30-nm chromatin fibers” (Figs. 1 and 2a, b) (Finch and
Klug 1976). In their structural model of the 30-nm fibers
called “solenoids,” consecutive nucleosomes are located ad-
jacent to one another in the fiber and folded into a simple
“one-start helix” (Fig. 2a). Subsequently, a second model of
the “two-start helix” was proposed based on microscopic
observations of isolated nucleosomes (Fig. 2b) (Woodcock
et al. 1984). The second model assumed that nucleosomes
were arranged in a zigzag manner, where a nucleosome in the
fiber was bound to the second neighbor (Bassett et al. 2009)
(Fig. 2b). In addition to these two famous structural models,
many other structural variations of 30-nm chromatin fibers
have been proposed (van Holde and Zlatanova 2007).

Fig. 1 Old and novel views of chromatin structure. A long DNA mole-
cule with a diameter of ∼2 nm is wrapped around a core histone octamer
and forms a nucleosome with a diameter of 11 nm (Alberts et al. 2007).
The nucleosome has long been assumed to fold into 30-nm chromatin
fibers (left) and subsequently into the higher order organization of inter-
phase nuclei or mitotic chromosomes. The right panel shows the novel
hypothesis of irregularly folded nucleosome fibers

Fig. 2 Two classical models of 30-nm chromatin fibers and higher order
chromatin structures. a One-start helix (solenoid), b two-start helix
(zigzag). (Top) A scheme of the two different topologies of chromatin fibers
is shown (Robinson and Rhodes 2006). Positions from the first (N1) to the
eighth (N8) nucleosome are labeled. c Two classical higher order chromatin
structure models: the hierarchical helical folding model (Sedat and
Manuelidis 1978) and the radial loop model (Laemmli et al. 1978). In the
radial loop model, many loop structures of the 30-nm fiber (red) wrap
around the scaffold structure (gray) (Laemmli et al. 1978), which consists
of condensin and topoisomerase IIα (Maeshima and Laemmli 2003)
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Although 30-nm chromatin fibers have been studied exten-
sively using various techniques, including biochemistry, bio-
physics, X-ray crystallography, conventional EM, cryo-EM,
and small-angle X-ray scattering (SAXS) (Finch and Klug
1976; Woodcock et al. 1984; Widom and Klug 1985; Dorigo
et al. 2004; Schalch et al. 2005; Robinson et al. 2006; Bordas
et al. 1986; Langmore and Paulson 1983; Hansen 2002;
Gilbert et al. 2004; Bystricky et al. 2004; Kruithof et al.
2009), their definitive structure remains elusive (van Holde
and Zlatanova 2007; Tremethick 2007; for more recent
reviews, see Grigoryev and Woodcock 2012; Ghirlando and
Felsenfeld 2013; Bian and Belmont 2012). Defining a specific
structure for the 30-nm chromatin fibers may not be valid for
several reasons. First, the Rhodes group suggested that the
solenoid or zigzag method of compaction was defined by the
length of the nucleosomal linker DNA (Routh et al. 2008).
Second, Grigoryev et al. demonstrated that two-start zigzag
and one-start solenoids could be present simultaneously in a
30-nm chromatin fiber under certain conditions (Grigoryev
et al. 2009; Grigoryev and Woodcock 2012). It should be
emphasized that even a variation in linker DNA length of
1 bp will correspond to a 36° rotation of one nucleosome with
respect to its neighbor and will cause significant structural
changes in the fiber (van Holde and Zlatanova 2007).

Although the defined structure of 30-nm chromatin fibers
remains unclear, it has long been assumed that the 10-nm
nucleosome fibers form a 30-nm chromatin fiber and, subse-
quently, the higher order chromatin structures of interphase
nuclei and mitotic chromosomes. Several models have been
proposed to describe the structure of higher order chromatin.
The “hierarchical helical folding model” suggests that a 30-nm
chromatin fiber is folded progressively into larger fibers, includ-
ing ∼100-nm and then ∼200-nm fibers, to form large interphase
chromatin fibers (chromonema fibers) or mitotic chromosomes
(Fig. 2c) (Sedat and Manuelidis 1978; Belmont et al. 1989;
Belmont and Bruce 1994; for a review, see Horn and Peterson
2002). In contrast, the “radial loop model” assumes that a 30-nm
chromatin fiber folds into radially oriented loops to form mitotic
chromosomes (Fig. 2c) (Paulson and Laemmli 1977; Laemmli
et al. 1978; Marsden and Laemmli 1979).

Does the 30-nm chromatin fiber exist in vivo?
The cryo-EM study

In 1986, the Dubochet group performed a pioneering study to
visualize native cellular structures using cryo-EM (Dubochet
et al. 1986). Mammalian mitotic cells were frozen rapidly,
sectioned, and observed directly under a cryo-EM with no
chemical fixation or staining (cryo-EM of vitreous sections,
CEMOVIS). The Dubochet group first observed “native”
mammalian chromosomes in these sections. Mitotic chromo-
somal regions were apparent because they were excluded

from electron-dense ribosomes and, therefore, were distin-
guishable from the cytoplasmic regions, which are full of
ribosomes (Dubochet et al. 1986; see also Maeshima and
Eltsov 2008). Surprisingly, the chromosomes had a homoge-
neous, grainy texture with ∼11-nm spacing. No higher order
or periodic structures, including 30-nm fibers, were observed.
This suggested that the basic structure of the chromosomewas
a liquid-like compact aggregation of 10-nm, not 30-nm, nu-
cleosome fibers (Dubochet et al. 1988).

Interphase chromatin has also been visualized using cryo-
EM. Although the chromatin regions in interphase nuclei are
not as obvious as those in mitotic chromosomes because there
is no efficient chromatin marker in interphase nuclei, it was
suggested that interphase nuclei in most higher eukaryote cells
might not contain 30-nm chromatin fibers (Dubochet and
Sartori Blanc 2001; Bouchet-Marquis et al. 2006; Fakan and
van Driel 2007). For example, typical heterochromatin re-
gions in plant or mammalian nuclei resembled mitotic chro-
mosomes by cryo-EM, forming a homogeneous texture with-
out 30-nm structures (Bouchet-Marquis et al. 2006; Fakan and
van Driel 2007).

On the other hand, it is unclear whether the absence of 30-nm
structures in cryo-EM images truly demonstrates a lack of 30-nm
chromatin fibers because when researchers capture cryo-EM
images, they use a technique called “defocusing” to produce
high-contrast images. This process results in artificial amplifica-
tion or suppression of the signal intensity, which affects different
structural features depending on the defocus value (contrast
transfer function [CTF] effect; for a review, see Frank 2006). It
is thus possible that the degree of defocusing needed to image
chromosomes or chromatin with high contrast prevents the
visualization of 30-nm chromatin fibers. To solve this problem,
we collaborated with Eltsov, Frangakis, and Dubochet to com-
pensate for the CTF effect by merging several images taken at
different levels of defocus into a single image (Conway and
Steven 1999). Even after this correction, we were unable to
detect 30-nm structures in the chromosomal areas. In addition,
the detection of periodic structures in the chromosomal region by
power spectral (Fourier transform) analysis revealed a prominent
peak at 11 nm, but not at 30 nm. This cryo-EM study suggested
that 30-nm chromatin fibers were essentially absent frommitotic
chromosomes; therefore, we proposed that 10-nm nucleosome
fibers exist in a highly disordered, interdigitated state similar to a
“polymer melt” (Figs. 1 and 4) (Eltsov et al. 2008; Maeshima
et al. 2010a).

Small-angle X-ray scattering analyses revealed no 30-nm
chromatin structures in interphase nuclei and mitotic
chromosomes

Although our cryo-EM study did not detect any 30-nm struc-
tures in mitotic chromosomes, it might be impossible to
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observe potential hierarchical regular structures because
only a small number of 50-nm sections were examined
(Eltsov et al. 2008). Langmore and Paulson (Langmore and
Paulson 1983; Paulson and Langmore 1983) detected a 30-nm
structure in interphase nuclei and mitotic chromosomes using
small-angle X-ray scattering (SAXS) analysis, which can
detect bulky periodic structures in non-crystal materials in
solution without chemical fixation or staining (Fig. 3a, b)
(Roe 2000). Therefore, this study provided evidence for the
existence of 30-nm chromatin fibers in interphase chromatin
and mitotic chromosomes (Langmore and Paulson 1983;
Paulson and Langmore 1983). Because these findings were
inconsistent with the cryo-EM findings described above, we
performed a comprehensive investigation of the structure of
interphase nuclei and mitotic chromosomes using SAXS and
cryo-EM (Nishino et al. 2012; Joti et al. 2012; for a review, see
Hansen 2012). Isolated human interphase nuclei and
mitotic chromosomes were exposed to synchrotron X-ray
beams (Fig. 3a). A typical scattering pattern of interphase

nuclei and mitotic chromosomes exhibited three peaks at
30-, weakly at 11-, and 6-nm (Fig. 3c, left) (Nishino et al.
2012; Joti et al. 2012). This was consistent with the previous
findings of Langmore and Paulson (1983), who suggested
that the 6- and 11-nm peaks were derived from the face-to-
face and edge-to-edge positioning of nucleosomes, respec-
tively. They concluded that the 30-nm peak represented the
side-by-side packaging of 30-nm chromatin fibers. However,
this fails to explain why the 30-nm structures were not
observed in interphase chromatin and mitotic chromosomes
using cryo-EM.

To understand the nature of the 30-nm peak observed using
SAXS, isolated chromosomes were examined using cryo-EM
(Nishino et al. 2012; Joti et al. 2012). Again, no 30-nm
chromatin fibers were observed in chromosomes. However,
the cryo-EM images revealed that the surface of the chromo-
some was coated with electron-dense granules the size of
ribosomes. Subsequent immunostaining and Western blotting
confirmed that the chromosome surface was contaminated

Fig. 3 Small angle X-ray
scattering (SAXS) analysis of
chromatin structure. a
Experimental design. The
chromosome pellet in a quartz
capillary tube was exposed to
synchrotron X-ray beams, and the
scattering patterns were recorded
using the imaging plate (Nishino
et al. 2012). b When non-crystal
materials were irradiated with X-
rays, scattering at small angles
generally reflected periodic
structures. Images a and b were
reproduced from Joti et al. (2012),
with somemodifications. cUpper
left Typical SAXS patterns of
purified mitotic HeLa
chromosome fractions. Three
peaks at ∼6, ∼11 (weak), and
∼30 nm were detected (arrows).
(Upper right) After the removal
of ribosome aggregates, the 30-
nm peak disappeared, whereas the
other peaks remained. (Bottom) A
model whereby the 30-nm peak in
SAXS results from regularly
spaced ribosome aggregates and
not from the chromosomes.
Image c was reproduced from
Nishino et al. (2012), with some
modification
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with ribosomes. The ribosomes were stacked regularly at ∼30-
nm intervals, which could explain the ∼30-nm peak observed
using SAXS. To test this hypothesis, we removed ribosomes
from the surface of the chromosome by washing with an
isotonic buffer-containing polyamine and EDTA (Lewis and
Laemmli 1982) while maintaining the size and shape of the
chromosomes and then analyzed mitotic chromosomes using
SAXS. Importantly, no 30-nm peaks were detected (Fig. 3c,
right), but the 11- and 6-nm peaks resulting from the internal
structure of the nucleosomes remained (Fig. 3c, right). Simi-
larly, when we examined the nuclei after ribosome removal,
the 30-nm peak in the SAXS pattern disappeared (Joti et al.
2012). These results suggested the absence of a 30-nm chro-
matin fiber in interphase chromatin and mitotic chromosomes.

Next, we investigated the larger scale chromatin structure
of interphase nuclei and mitotic chromosomes using a newly
developed apparatus for ultra-small-angle X-ray scattering
(USAXS) (Nishino et al. 2009). Consistent with our previous
observations, there were no regular periodic structures be-
tween ∼30- and 1,000-nm in interphase nuclei and mitotic
chromosomes. This contradicts the hierarchical helical folding
model (Fig. 2c) (Nishino et al. 2012; Joti et al. 2012). The
scattering properties also suggested the existence of a scale-
free structure or fractal nature up to ∼275-nm in interphase
chromatin and ∼1,000-nm in mitotic chromosomes. This sug-
gests that interphase and mitotic chromatin share the common
structural features of up to ∼275 nm of condensed and irreg-
ularly folded 10-nm nucleosome fibers without 30-nm struc-
tures (discussed below). Taken together, the cryo-EM, SAXS,
and USAXS data suggest that irregularly folded 10-nm nucle-
osome fibers form the bulk structure of human interphase
chromatin and mitotic chromosomes (Nishino et al. 2012;
Joti et al. 2012). Nevertheless, it is possible that short stretches
of 30-nm fibers or other regularly folded hierarchies occur in
human interphase chromatin and mitotic chromosomes.

Other evidence supporting the absence of 30-nm
chromatin fibers

Dekker (2008) used the chromosome-conformation-capture
(3C) technique to investigate the folding of a specific genomic
DNA region within yeast cells. He measured the average
distance between two loci in the genome by confocal micros-
copy and the flexibility of the intervening chromatin fiber by
the 3C technique. In combination with polymer modeling, the
mass density of the chromatin fiber was determined. His
conclusion was that yeast chromatin in a transcriptionally
active domain did not form a compact 30-nm chromatin fiber
but rather was extended with a loose arrangement of 10-nm
nucleosome fibers.

More recently, Bazett-Jones et al. used electron spectro-
scopic imaging (ESI), a process that involves electron

microscopy with an energy filter. ESI makes it possible to
perform phosphorus and nitrogen mapping in cells with high
contrast and resolution (Ahmed et al. 2009; Fussner et al.
2011a, b). The signals from phosphorus and nitrogen, which
are the main components of DNA, may be used to assess the
folding of genomic DNA and can distinguish 10- from 30-nm
fibers. They observed that pluripotent cells were characterized
by a highly dispersed mesh of 10-nm, but not 30-nm, fibers
(Fussner et al. 2011a, b, 2012). In contrast, differentiated cells
form compact chromatin domains leave a large space in the
nucleus that is devoid of DNA. Surprisingly, ESI combined
with tomography methods revealed that condensed hetero-
chromatin domains such as chromocenters consisted of 10-
nm, rather than 30-nm, chromatin fibers (Fussner et al. 2012;
for a review, see Quenet et al. 2012), consistent with the
observations using cryo-EM. Furthermore, Gan et al. investi-
gated the picoplankton Ostreococcus tauri, the smallest
known free-living eukaryote, using cryo-EM tomography of
ice sections and subsequent computational analysis (Gan et al.
2013). They demonstrated thatO. tauri chromatin resembles a
disordered assembly of nucleosomes without the 30-nm chro-
matin structure compatible with the polymer melt model.
Therefore, several lines of evidence suggest the absence of
regular 30-nm chromatin fibers in eukaryotic cells.

The absence of a 30-nm chromatin fiber in native chroma-
tin may not be a surprise. Generally, native chromatin does not
have regularly spaced nucleosomes, so linker DNA lengths
vary. As pointed out by van Holde and Zlatanova (2007), even
the addition of a single base to linker DNA changes the
relative orientation of one nucleosome to the next by 36°.
Unless nucleosome-nucleosome interactions are sufficient to
overcome such variations, the formation of a regular chroma-
tin fiber is impossible.

Why can 30-nm chromatin fibers be observed in vitro?

Although the near absence of 30-nm chromatin fibers in
eukaryotic cells was suggested, these structures are shown in
EM images in molecular biology textbooks. We propose that
most 30-nm chromatin fibers in EM images are in vitro arti-
facts caused by the low-salt buffer conditions. The formation
of 30-nm chromatin fibers requires the selective binding of
nucleosomes, which are close neighbors on the DNA strand,
via intra-fiber nucleosomal association (Fig. 4a). In low-salt
buffer conditions of <1 mM MgCl2 or <100 mM NaCl,
nucleosomal fibers gently repel each other due to their nega-
tive charges. This “isolation of nucleosome fibers” facilitates
the intra-fiber nucleosomal association and the subsequent
formation of stable 30-nm chromatin fibers (Fig. 4a, b). In
conventional EM imaging studies, these 30-nm fibers might
be stabilized through chemical cross-linking (such as
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glutaraldehyde fixation) and then shrunk further after alcohol
dehydration during sample preparation (Maeshima et al.
2010b).

Polymer melt

It is important to assess chromatin structure under more
physiological salt conditions. Under these conditions, inter-
fiber nucleosome interactions become increasingly dominant
(Fig. 4a, b) (Maeshima et al. 2010a). Nucleosome fibers
(10 nm) are forced to interdigitate, which interferes with
the formation and maintenance of 30-nm chromatin fibers.

This leads to the polymer melt (Maeshima et al. 2010a) or
“self-oligomer” state (for a review, see Hansen 2002; Hansen
2012) (Fig. 4a, b). In addition, inter-fiber nucleosome inter-
actions increase significantly in the presence of >2 mMMg2+

ions (Zheng et al. 2005; Kan et al. 2009). However,
it is important to note that the tail domain of histone H4
mediates both 30 nm fiber formation (Dorigo et al. 2003)
and inter-fiber nucleosome association (Kan et al. 2009).
Consequently, inter-fiber nucleosome association can prevent
the formation of 30-nm fibers by sequestering the H4 tail
domain (Hansen 2012).

Presence of 30-nm chromatin fibers in specific cells

Although inter-fiber nucleosome associations supposedly
dominate within cells, there are some specific cell types
whose nuclei contain apparent 30-nm chromatin fibers, for
example chicken erythrocytes (Langmore and Schutt 1980;
Woodcock 1994; Scheffer et al. 2011) and starfish sperm
(Woodcock 1994; Scheffer et al. 2012). These cells are
terminally differentiated, and so, transcription is almost
silenced. In mouse rod cells, a large dense heterochromatin
domain is located in the center of the nucleus. The hetero-
chromatin at the periphery of the domain is formed by
closely packed 30-nm fibers, whereas such fibers have not
been detected in the centermost domain (Kizilyaprak et al.
2010). We propose that the stable formation of 30-nm chro-
matin fibers in these cells could play a role in robust gene
silencing. Nevertheless, there must be a unique mechanism
to facilitate intra-fiber nucleosome association in these spe-
cific cells. One possibility is the presence of a larger number
of linker histones. Consistent with this, linker histones could
stabilize 30-nm chromatin fibers in vitro (for a review, see
Hansen 2002). In chicken erythrocytes, linker histone H5 is
deposited in the chromatin fibers at ∼1.4 molecules/
nucleosome (for a review, see Kowalski and Palyga 2011),
whereas starfish sperm chromatin has ∼1.7 H1 molecules per
nucleosome; in contrast, various somatic cells have 0.5
−0.8 H1 per nucleosome (Woodcock et al. 2006). Specific
histone modifications or the binding of specific proteins might
also be involved in the formation of stable 30-nm fibers for
robust gene silencing (Kowalski and Palyga 2011). Interest-
ingly, the 30-nm fibers of peripheral heterochromatin in
mouse rod photoreceptor cells contain acetylated histones,
which are usually associated with active transcription and
de-condensed (Kizilyaprak et al. 2010). Histone acetylation
might induce the isolation of nucleosome fibers (Fig. 4a)
and subsequent intra-fiber nucleosomal association to form
stable 30-nm chromatin fibers because histone acetylation
seems to inhibit inter-fiber nucleosome association by repel-
ling the increasingly negative charge of the nucleosomes
(Szerlong et al. 2010; Liu et al. 2011).

Fig. 4 Polymer melt model. a Under low-salt conditions, nucleosome
fibers could form 30-nm chromatin fibers via intra-fiber nucleosome
associations. An increase in salt (cation) concentration results in inter-
fiber nucleosomal contacts that interfere with intra-fiber nucleosomal
associations, leading to a polymer melt scenario. Note that in these
illustrations, we show a highly simplified two-dimensional nucleosome
model. Arrows and dotted lines show repulsion forces and interactions,
respectively. b During the melting process, the 30-nm chromatin fibers
become irregularly folded nucleosome fibers
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Higher order interphase chromatin structures

As described above, several studies have demonstrated that
irregular folded 10-nm nucleosome fibers form the bulk struc-
ture of interphase chromatin and mitotic chromosomes. Nev-
ertheless, the higher order structure of chromatin must also be
considered. Based on the available data, including studies
from our laboratory, we propose that interphase chromatin
forms numerous condensed chromatin domains consisting of
irregularly folded 10-nm nucleosome fibers that resemble
“chromatin liquid drops” (Fig. 5a) (Maeshima et al. 2010a;
Joti et al. 2012). These domains can be considered to be drops
of viscous chromatin, which could be formed by the macro-
molecular crowding effect (Asakura and Oosawa 1954) and

other specific proteins such as cohesin (Nasmyth and Haering
2005; Hirano 2006) and/or condensin II (Ono et al. 2013;
Thadani et al. 2012). Similar chromatin domains were pro-
posed in the chromosome territory-interchromatin compart-
ment (CT-IC) model (Cremer et al. 2000; Cremer and Cremer
2001), where each CT is built from a series of interconnected
1 Mb-sized chromatin domains. These domains were identi-
fied originally using pulse labeling of DNA replication foci
(Nakamura et al. 1986; Schermelleh et al. 2001; Berezney
et al. 2005; Albiez et al. 2006) that persisted stably in subse-
quent cell generations (Jackson and Pombo 1998; Ma et al.
1998; Zink et al. 1999). Several recent reports have used the
Hi-C and chromosome conformation capture carbon copy
(5C) methods to investigate the three-dimensional architecture
of genomic DNA within cells, and they have proposed the
physical packaging of genomic DNA. The DNA packing units
were termed “topologically associating domains (TADs)”
(Nora et al. 2012), “topological domains” (Dixon et al.
2012), or “physical domains” (Sexton et al. 2012). Recent
studies have reported that TADs, which can be hundreds of
kilobases in size, were identified in fly, mouse, and human
cells, suggesting that TADs could be universal building blocks
of chromosomes. Loci located within TADs tend to interact
frequently with each other, but they interact much less fre-
quently with loci located outside their domain.

What is the advantage of these condensed chromatin do-
mains? A number of biological implications have been pro-
posed for TADs (Nora et al. 2013). For instance, TADs were
found to correspond to lamin-associated chromatin domains
(LADs) in nuclei (Guelen et al. 2008). Most DNA replication
domains, where DNA replication takes place in a nearly
synchronous manner, overlap with multiple TADs (Ryba
et al. 2010). Changes in timing during cell differentiation
typically involve TAD-sized regions. Regarding transcription-
al regulation, enhancer-promoter interactions produced by
looping might be limited to elements located within the same
TAD (Shen et al. 2012). TADs might also be defined by
genetically encoded boundary elements (Nora et al. 2012).

In addition, we reported recently that condensed chromatin
is more resistant to radiation damage than the decondensed
form (Fig. 5b), presumably because condensed chromatin has
a lower level of reactive radical generation after ionizing irra-
diation (Takata et al. 2013). The condensed state also protects
genomic DNA from chemical attack. These findings suggest
that condensed chromatin domains play an important role in
maintaining genomic integrity (see also Falk et al. 2008).

Mitotic chromosome structure

Nucleosome fibers (10-nm) are somehow organized into mi-
totic chromosomes. Condensins and topoisomerase IIα,
which are essential for chromosome condensation, form an

Fig. 5 Higher order structure of interphase chromatin. a Condensed
chromatin domains. Active chromatin regions are transcribed on the
surfaces of chromatin domains with transcriptional complexes (purple
spheres) and RNA polymerase II (green spheres). NPC nuclear pore
complex, NE nuclear envelope. b (Left) Condensed chromatin is more
resistant to radiation damage or chemical attack. (Right) Reactive radicals
arising from the radiolysis of water molecules by irradiation can damage
decondensed chromatin; decondensed chromatin is also more accessible
to chemicals (labeled “Ch”)
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axis in the chromosome in various cell types (Hirano 2012;
Thadani et al. 2012; Ohta et al. 2010; Belmont 2006;
Maeshima and Eltsov 2008). Although it was claimed that
the condensin axis was observed only in fixed and not living
cells (Thadani et al. 2012), we observed clear axial structures
of the condensin structures kleisin β- and γ-EGFP in chro-
mosomes in living mammalian cells (Fig. 6a–c). Therefore,
we hypothesized that condensins hold 10-nm nucleosome
fibers around the chromosome center creating loops, as

proposed in the radial loop/scaffold model (Figs. 2c and 6d)
(Laemmli et al. 1978; Maeshima and Eltsov 2008; Nishino
et al. 2012). Locally, nucleosome fibers are folded in an
irregular manner towards the center of the chromosome
(Fig. 6d) (Nishino et al. 2012). An immuno-EM study of
condensins revealed a traceable condensin array near the
center of chromosome cross-sections (Maeshima et al.
2005), suggesting the oligomerization or self-assembly struc-
ture of condensins, which capture nucleosome fibers.

Fig. 6 Mitotic chromosome structure. Axial localizations of condensins I
and II in mitotic chromosomes in live mammalian cells. For DNA
staining, DM (Indian Muntjac cells) cells stably expressing EGFP-
Kleisin γ (condensin I) and EGFP-Kleisinβ (condensing II) were stained
with Hoechst 33342. Live-cell imaging was performed using a Delta
Vision microscope (applied precision). a Clear axial signals of EGFP-
Kleisin γ in mitotic chromosomes are shown. b End-on-view of mitotic
chromosomes. The upper panel shows DM cells expressing EGFP-
Kleisin γ, whereas the lower panel shows DM cells expressing EGFP-
Kleisin β stably. Restricted dot signals from two types of EGFP-Kleisin

in the cross-section of a chromosome body (DNA staining) are shown. c
Quantitative data using line-profile analysis (blue line, DNA; red line,
Kleisin signals) is shown. There is clear axial localization of condensins I
and II in mitotic chromosomes in live mammalian cells. d Chromosomes
consist of irregularly folded 10-nm nucleosome fibers. Condensins (blue)
hold the nucleosome fibers (red) around the center of the chromosome.
Locally, the nucleosome fibers are folded in an irregular or disordered
manner, forming loop structures that collapse towards the center of the
chromosome center (blue). The collapsed fiber (red) then forms a domain

232 Chromosoma (2014) 123:225–237



Condensins can also aggregate in the presence of DNA
(Yoshimura et al. 2002; see also Hirano 2012). In our model,
the orientation of nucleosome fibers in chromosomes is iso-
tropic (Fig. 6d). This suggests that a specific locus of the
genome is randomly incorporated into a wide ranging, but
not reproducibly specific, region of the chromosome (Nishino
et al. 2012). This is consistent with data reported using fluo-
rescent labeling of specific chromosomal sites (Strukov and
Belmont 2009).

Naumova et al. (2013) recently performed 5C and Hi-C
analyses to understand the three-dimensional folding of geno-
mic DNA in mitotic chromosomes. In human cells from G1 to
S to G2 phase, they identified large chromatin structures
called “chromosome compartments” (multi-megabases) and
TADs (hundreds of kilobases), both of which were found in
previous studies (Lieberman-Aiden et al. 2009; Nora et al.
2012; Dixon et al. 2012; Sexton et al. 2012). However, these
structures were not found during mitosis; instead, they found
homogenous folding of genomic DNA, which seems to be
consistent with our view that chromosomes consist of irregu-
larly folded nucleosome fibers.

Using polymer simulations, they found that the obtained
data for mitotic chromosomes are inconsistent with the classic
hierarchical helical folding model (Fig. 2c) and are, instead,
best described by a linearly organized longitudinally com-
pressed array of consecutive chromatin loops (Naumova
et al. 2013), which is essentially similar to the radial
loop/scaffold model (Fig. 2c) (Laemmli et al. 1978; for a
review, see Kleckner et al. 2013).

Dynamic 10-nm fibers in living mammalian cells

The original liquid chromatin model proposed by Dubochet
(McDowall et al. 1986; Dubochet et al. 1988) and our polymer
melt model (Eltsov et al. 2008; Maeshima et al. 2010a) both
imply a less physically constrained chromatin state and a more
locally dynamic state; the 10-nm nucleosome fibers fluctuate
locally. Therefore, we attempted to visualize local nucleosome
fluctuation. Previous studies of chromatin dynamics
employed very large chromatin regions such as the LacO array
that encompasses 20−50 nucleosomes (Straight et al. 1996;
Belmont et al. 1999; Heun et al. 2001; Vazquez et al. 2001;
Chubb et al. 2002; Levi et al. 2005; Hajjoul et al. 2013). The
motion of these large regions in living mammalian cells was
measured by monitoring the movement of the GFP-LacI
signal bound to the LacO array at specific chromatin regions.

To observe and analyze more local nucleosome dynamics,
we performed single nucleosome imaging in living mamma-
lian cells (Fig. 7) (Hihara et al. 2012; Nozaki et al. 2013). We
fused histone H4 with photoactivatable (PA)-GFP and
expressed the fusion protein in mammalian cells at a very
low level (Fig. 7a). We then used an oblique illumination

microscope to illuminate a limited thin area within the cell
for single nucleosome imaging (Hihara et al. 2012; Nozaki
et al. 2013; for principle, see Tokunaga et al. 2008). Generally,
PA-GFP shows green fluorescence only after activation with a
405-nm laser (Lippincott-Schwartz and Patterson 2009). Sur-
prisingly, we observed that a small fraction of H4-PA-GFP
and PA-GFP-H4 in the cells was activated spontaneously
without laser stimulation (Fig. 7a). Figure 7b shows a typical
single nucleosome image of a living mammalian cell. Each
bright dot in the nucleus represents a single H4-PA-GFP (PA-
GFP-H4) within the single nucleosome. Strikingly, we ob-
served significant nucleosome fluctuation (∼50 nm

Fig. 7 Single nucleosome imaging. a A small portion of PA-GFP-H4
was activated spontaneously without laser activation and was used for
single nucleosome imaging. b Single nucleosome image of a DM cell
(Indian Muntjac cell) nucleus that expresses PA-GFP-H4. PA-GFP-H4 is
observed as a bright dot using oblique illumination microscopy. The dots
were fitted to an assumedGaussian point spread function to determine the
precise center of signals with higher resolution. Bar=5 μm. c Represen-
tative three trajectories of fluorescently tagged single nucleosomes. d
Chromatin fluctuations as a basis for scanning genome information. In
cells, nucleosome fibers (red spheres and lines) are folded irregularly. The
nucleosomes fluctuate, and these nucleosome dynamics facilitate chro-
matin accessibility. The images were reproduced from (Hihara et al. 2012;
Nozaki et al. 2013) with some modification
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movement/30 ms) in both interphase chromatin and mitotic
chromosomes (Fig. 7c), which is likely caused by the
Brownian motion (Hihara et al. 2012; Nozaki et al. 2013).
Mean square displacement (MSD) plots, measuring the spatial
extent of the random motion, and fitting to an anomalous
diffusion curve suggested a restricted nucleosome movement.
The McNally group also published single nucleosome track-
ing data using H2B-EGFP (Mazza et al. 2012), which appears
to be consistent with our single nucleosome tracking results
using PA-GFP-H4.

Local fluctuation of nucleosomes as a basis for scanning
genome information

Some computational modeling studies, including our own,
have suggested that nucleosome fluctuations facilitate the
mobility of diffusing proteins in the chromatin environment
(Fig. 7d) (Hihara et al. 2012; see also Wedemeier et al. 2009;
Fritsch and Langowski 2011). Such nucleosome fluctuations
may also contribute to the frequent exposure of genomic DNA
sequences. Because both facilitating protein mobility and
DNA exposure increase chromatin accessibility, these local
dynamics may be advantageous in template-directed biologi-
cal processes such as transcriptional regulation, DNA replica-
tion, and DNA repair/recombination. Therefore, we propose
that the local fluctuation of nucleosomes forms the basis for
scanning genome information (Fig. 7d).

We consider that nucleosome fluctuations are involved in
various cellular functions. Hinde et al. (2012) examined the
chromatin dynamics in human ES cells based on signal inten-
sity fluctuations of DAPI or H2B-EGFP, and they found that
the intensity of the fluctuations in ES cells was drastically
impaired during differentiation, suggesting that such fluctua-
tions correlate with pluripotency. A dynamic chromatin state
may be required for high transcriptional competency to main-
tain pluripotency. Elucidation of the spatio-temporal regula-
tion of nucleosome fluctuations would be an intriguing next
step.

Conclusions

The traditional view of chromatin is changing from one of
static regular structures including 30-nm chromatin fibers to a
dynamic irregular folding structure of 10-nm nucleosome
fibers. Although the term “irregular” or “disordered” might
give the impression that the organization is functionally irrel-
evant, the irregular folding results in less physical constraint
and increased dynamism, increasing the accessibility of the
DNA (Fig. 7d). This dynamic state may be essential for
various genome functions, including transcription, replication,
and DNA repair/recombination.

A new paper (Eltsov M, Sosnovski S, Olins AL, Olins DE:
Chromosoma. 2014 Feb 26. [Epub ahead of print]) published
after this article went to press. The authors studied nuclear
envelope-limited chromatin sheets (ELCS) by cryo-EM. They
found that the 30-nm chromatin fibers could only be observed
following aldehyde fixation; none were seen in cryo-sections,
suggesting that the 30-nm chromatin fibers in ELCS visualized
by conventional EM could be an artifact structure.
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