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Background: Innate immune response components such as toll-like receptors (TLRs)

and NLRP3-inflammasome act in concert to increase IL-1α/β secretion by synovial

macrophages. Previous results suggest that IL-1α/β could be an important mediator

involved in the pathogenesis of osteoarthritis (OA).

Objectives: The aim of our study was to evaluate the role of NLRP3, IL-1β, and IL-1α

in the menisectomy (MNX) model of murine OA.

Methods: Murine chondrocytes (CHs) and bone marrow-derived machrophages

(BMDM) were stimulated with hydroxyapatite (HA) crystals, a form of calcium-containing

crystal found in human OA, and IL-1β and IL-6 secretion assayed by ELISA.Conversely,

the ability of IL-1β and IL-6 to induce CHs calcification was assessed in vitro by

Alizarin red staining. Knees from 8 to 10 weeks old C57Bl/6J wild-type (WT) (n = 7),

NLRP3−/− (n = 9), IL-1α−/− (n = 5), and IL-1β−/− (n = 5) mice were menisectomized,

using the sham-operated contralateral knee as control. 8 weeks later, knee cartilage

degradation and synovial inflammation were evaluated by histology. In addition, apoptotic

chondrocytes, metalloproteases activity, and collagen-type 2 expression were evaluated

in all mice. Joint calcification and subchondral bone parameters were quantified by

CT-scan in WT and IL-1β−/− menisectomized knees.

Results: In vitro, HA crystals induced significant increased IL-6 secretion by CHs, while

IL-1β remained undetectable.Conversely, both IL-6 and IL-1β were able to increase

chondrocytes mineralization. In vivo, operated knees exhibited OA features compared

to sham-operated knees as evidenced by increased cartilage degradation and synovial

inflammation. In menisectomized KO mice, severity and extent of cartilage lesions were

similar (IL-1α−/− mice) or exacerbated (IL-1β−/− and NLRP3−/− mice) compared to

that of menisectomized WT mice. Metalloproteases activity, collagen-type 2 expression,
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chondrocytes apoptosis, and synovial inflammation were similar between KO and WT

mice menisectomized knees. Moreover, the extent of joint calcification in osteoarthritic

knees was comparable between IL-1β−/− and WT mice.

Conclusions: MNX knees recapitulated features of OA, i.e, cartilage destruction,

synovial inflammation, cell death, and joint calcification. Deficiency of IL-1α did not impact

on the severity of these features, whereas deficiency of IL-1β or of NLRP3 led to increased

cartilage erosion. Our results suggest that IL-1α and IL-1β are not key mediators in this

murine OA model and may explain the inefficiency of IL-1 targeted therapies in OA.

Keywords: NLRP3 inflammasome, interleukin-1β, cartilage, knock-out mice, animal model of OA

INTRODUCTION

Osteoarthritis (OA) is a progressive disease of the joint tissues,
characterized by cartilage degradation (Goldring and Goldring,
2007; Loeser et al., 2012), mild synovial inflammation (Scanzello
and Goldring, 2012), subchondral bone sclerosis, osteophyte
formation, and calcium crystal deposition (calcification) on
cartilage (McCarthy and Cheung, 2009). Several OA risk
factors have been identified including joint trauma, aging, sex,
genetics, obesity (Abramson and Attur, 2009), and basic calcium
phosphate (BCP) crystals in joints (McCarthy and Cheung,
2009). BCP crystals include octacalcium phosphate (OCP),
hydroxyapatite (HA), and carbonated-apatite (CA) crystals (Ea
and Liote, 2009), the latter being the most abundant (Gibilisco
et al., 1985). Although OA is the most common form of joint
disease and a leading cause of disability in the elderly (Goldring,
2006), no drug exists to slow the progression, or reverse the OA
disease process (Iqbal and Fleischmann, 2007).

There is evidence that articular tissues in OA produce
proinflammatory cytokines such as IL-1 and IL-6. IL-6 is
synthesized and secreted in an active form, which binds first to
its receptor (IL-6R) and then to the signaling gp130 molecule
triggering STAT and ERK pathways. In contrast, both IL-1α and
IL-1β exist as an intracellular proform of about 31 kDa, which
can be cleaved to a mature form of 17 kDa. In particular, a
first signal (such as TLR1/2 agonist PAM3Cys or TLR4 agonist
LPS) is needed to trigger an NF-kB–dependent production of
pro–IL-1β. A second signal (ATP, BCP crystals, and others)
then leads to the assembly and oligomerization of the NLRP3
inflammasome composed of the NLRP3 sensor, the adaptor
protein ASC (Apoptosis-associated speck-like protein containing
a CARD) and procaspase-1 which is activated in caspase-1 (Broz
and Dixit, 2016). Caspase-1 and NLRP3 inflammasome facilitate
or are needed for proIL-1β proteolytic processing and release
(Gross et al., 2012), but pro-IL-1α is mainly processed by calpain
and other proteases (Di Paolo and Shayakhmetov, 2016). Cellular
activation due to signaling through the IL1-R1 occurs when
either IL-1α and/or IL-1β (which are equally potent cytokines,
collectively known as IL-1) bind to the widely expressed IL-1R
type 1 (IL-1R1). Binding induces the formation of a high-affinity

Abbreviations:MyD88, Myeloid differentiation primary response gene 88; IL-1α,

Interleukin-1α; IL-1β, Interleukin-1β; NLRP3, NOD-like receptor protein-3; OA,

Osteoarthritis; MNX, Medial partial menisectomy.

complex with the IL-1R accessory protein (IL-1RAcP) and
the recruitment of the intracellular adaptor protein myeloid
differentiation factor 88 (MyD88) and of the IL-1R-associated
kinase 1 (IRAK), which are the proximal mediators of IL-1
signaling. Uncontrolled activation of IL-1R1 is prevented by two
distinct mechanisms. One is mediated by IL-1Ra that competes
with IL-1 for binding to IL-1R1, and blocks intracellular signaling
and cell activation. The other is via the type 2 IL-1 decoy receptor
(IL-1R2) that acts as a trap for IL-1 but, in contrast to IL-1R1,
lacks a cytoplasmic domain and is unable to induce signaling (Re
et al., 1996).

In vitro, in joints cells (such as fibroblasts, macrophages,
chondrocytes, osteoblasts), IL-6 and IL-1 are responsible
for the loss of cell metabolic homeostasis by 1-promoting
autocrine induction of cytokines or production of other
inflammatory compounds or chemokines, 2-inducing matrix-
degrading enzymes such as MMP-1,-3,-9,-13, and -14 and
ADAMTS4,5, and 9 (Murphy and Nagase, 2008; Hashizume
and Mihara, 2010; Wojdasiewicz et al., 2014) and, 3-inhibiting
the expression of a number of genes, such as collagen
type 2 gene (Col2a1) (Goldring et al., 1988; Poree et al.,
2008), and proteoglycan (van Beuningen et al., 1991; Sui
et al., 2009), normally associated to healthy chondrocytes.
Additionally, both IL-1 and IL-6 have pro-mineralizing activity
in chondrocytes (Johnson et al., 2001; Nasi et al., 2016a). Finally
IL-1β and IL-6 exert their catabolic effect also in bone, by
inducing differentiation ofmononuclear precursors in osteoclasts
(Jandinski, 1988; Nakamura and Jimi, 2006; Kim et al., 2009)
and by stimulating bone resorption activity by osteoclasts via
the receptor-activator of NF-kB ligand (RANKL) (Jules et al.,
2012). Altogether, these in vitro effects of IL-1 and IL-6
strongly suggest that these cytokines should have a deleterious
role in OA progression in vivo, inducing synovitis, favoring
cartilage degradation by both catabolic and anabolic effects, and
promoting cartilage calcification.

In synovial fluids of either human or experimental models of
OA, both cytokines were found to be increased and correlated
with radiographic knee OA (Livshits et al., 2009; McNulty et al.,
2013). However, IL-1 was not significantly overexpressed in
moderate OA compared to mild OA (McNulty et al., 2013).
In experimental murine OA, IL-6 neutralization, its genetic
deficiency or inhibition of its signaling molecule Stat3 with a
non-peptidic small molecule prevented cartilage damage (Ryu
et al., 2011; Latourte et al., 2016). In addition, in menisectomized
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mice, increasing deposits of BCP-crystals were observed around
the joint and correlated with cartilage degradation and IL-6
expression (Nasi et al., 2016a). While most of the studies clearly
report a deleterious role of IL-1 in in vitro models of OA,
many discrepancies exist about IL-1 effects and IL-1 blockade in
experimental OA (see summary in Table 2). In particular, using
genetically deficient mice, Glasson et al. reported that IL1β−/−

mice were protected in a surgical induced instability model
of OA (Glasson, 2007), whereas Clements found in a similar
model that cartilage damage was exacerbated in Caspase1−/−

and IL1β−/− mice (Clements et al., 2003). More recently, in
the collagenase-induced model of OA (CiOA), IL-1αβ−/− mice
were not protected against synovial inflammation and cartilage
destruction if compared to WT mice. Moreover, intra-peritoneal
injection of IL-1Ra in WT osteoarthritic mice did not ameliorate
OA features (van Dalen et al., 2016).

Due to the confusing published results concerning the role of
IL-1 in experimental models of OA, we have further reexplored
its role and the role of NLRP3 inflammasome in IL-1 activation
in the context of surgically induced murine OA.

METHODS

Mice and Induction of Experimental
Osteoarthritis
IL-1α−/−, IL-1β−/−, and NLRP3−/− female mice, all in
the C57Bl/6J background (obtained by Prof Fabio Martinon,
Epalinges, Switzerland), were compared with WT littermates.
Body weight, fertility and viability were similar among different
genotypes. Mice between 8 and 10 weeks were anesthetized and
knee joint instability was induced surgically by medial partial
meniscectomy of the right knee, as previously described (Nasi
et al., 2014). The contralateral knee joint was sham-operated and
used as internal control. The animals were allowed unrestricted
activity, food and water ad libitum in a pathogen-free housing
facility. This study was carried out in accordance with the
guidelines set by the “Service de la consommation et des affaires
vètèrinaires du Canton de Vaud.” The protocol was approved by
the Federal Veterinary Office and the work complied with the
Directive 2010/63/EU.

Histology of Total Knee Joints
Total knee joint of mice were fixed, decalcified and embedded
in paraffin, and sagittal sections were cut from the whole medial
compartment of the joint (three sections/mouse) as previously
described (Nasi et al., 2014). Sections were then stained with
Safranin-O-fast green to examine the OA-like cartilage and
bone changes according to the scoring method recommended
by OARSI (Glasson et al., 2010). Finally, synovial inflammation
was scored using the following scale: 0=no inflammation;
1=mild inflammation; 2=moderate inflammation; 3=major
inflammation. Synovial histological changes included synovial
hypertrophy and hyperplasia and an increased number of lining
cells, accompanied sometimes by infiltration of the sublining
tissue. Histological scorings were assessed by two observers who
were blinded with regard to the mice genotypes.

MicroCT-Scan
MicroCT-scans analysis were performed using a SkyScan
1076 R© X-ray µCT scanning system (SkyScan, Belgium) and
the following parameters: 18 µm resolution, 60 kV, 167 µA,
0.4◦ rotation step over 360◦, 0.5mm Aluminum filter, 1180
ms exposure time. Ex vivo samples acquisition was made
using formol fixed knees. Images were reconstructed using
NRecon Version 1.6.6.0 (Skyscan, Belgium) considering the
following parameters: gray-values = 0.0000–0.105867, Ring
Artifact Reduction = 3, Beam Hardening Correction = 40%.
In the menisectomized knees, quantitative analyses of crystal
content (µg), and quantitative analysis of tibial subchondral
bone parameters (bone mineral density (BMD g/cm3), trabecular
thickness (Tb.Th), trabecular number (Tb.N), and trabecular
spacing (Tb.Sp) were performed using CTAnalyzer Version 1.10
(SkyScan, Belgium) for different Volumes Of Interest (VOIs).

Immunohistochemical Detection of
VDIPEN, Type II Collagen and Apoptosis
MMP-induced neoepitope VDIPEN staining was performed with
affinity-purified anti-VDIPEN IgG and type II collagen synthesis
was evaluated using an anti-collagen type II, biotinylated
monoclonal antibody (MD Bioproduct, 1041007B) (Nasi et al.,
2014). Apoptotic chondrocytes were detected in paraffin sections
using the Apoptag kit (ApopTag plus Peroxidase In situ,
Millipore) as previously described (Nasi et al., 2014).

Calcium Phosphate Crystals
Hydroxyapatite (HA) crystals were synthesized as previously
published (Prudhommeaux et al., 1996). HA crystals were
sterilized by gamma-radiation and assessed as pyrogen-free. Prior
to experimentation, crystals were resuspended in sterile PBS and
sonicated for 5 min.

Bone Marrow Derived Macrophage
(BMDM) Preparation
Bone marrow cells were isolated from the tibia and femur
of C57BL/6 mice. For their differentiation into BMDM, the
extracted cells were incubated for 7 days in Petri dishes
with 30% L929 conditioned media (source of M-CSF) and
20% FBS in Dulbecco’s Modified Eagle Media (DMEM). The
resulting BMDM were detached using cold PBS, plated in
complete DMEM medium (Gibco), [10% FBS and 1% Penicillin
Streptomycin (Sigma)] or incomplete DMEM (1% Penicillin
Streptomycin only) and primed or not with 100 ng/ml PAM3Cys
overnight. The following day, crystal stimulation was performed
in incomplete DMEM.

Joint Chondrocyte (CHs) Preparation
Chondrocytes were isolated from new-born C57Bl/6J mice as
described previously, with slight modifications (Gosset et al.,
2008). Briefly, the joint cartilage (articular and epiphyseal) was
harvested from the knee and hip joints of mice aged between 4
and 6 days. The cartilage was degraded by a three step digestion
process by using decreasing concentrations of Liberase (Roche).
The day after, the digested tissue was passed through a 70
µm filter (BD biosciences) to obtain immature chondrocytes.
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The cells were plated into a culture plate at high density
(3.5 × 104 cells/cm2) and amplified for 7 days in complete
DMEM (10% FBS, 1% Penicillin Streptomycin). Prior to crystal
stimulation experiments, cells were detached using Trypsin-
EDTA (Amimed). The resulting chondrocytes were plated in
complete DMEM medium (Gibco), [10% FBS and 1% Penicillin
Streptomycin (Sigma)] or incomplete DMEM (1% Penicillin
Streptomycin only) and primed or not with 100 ng/ml PAM3Cys
overnight. The following day, crystal stimulation was performed
in incomplete DMEM. For chondrocyte mineralization analysis,
cells were cultured for 7 days in complete BJGb medium (Gibco)
(10% FBS, 50 µg/ml ascorbic acid, 20 mM β-glycerol phosphate),
stimulated or not with 10 ng/ml of IL-6 (Gibco PMC0064) or with
1 ng/ml IL-1β (Gibco PMC0814). Medium was changed for the
last 4 days.

Calcium Phosphate Crystal Stimulation
Cells were primed overnight with100 ng/ml Pam3Cys, where
indicated, and stimulated with 500 µg/ml HA crystals.
Supernatants were collected for cytokine ELISAs, and cells
placed in TRIZOL for RT-PCR analysis.

Crystal Detection from Chondrocyte
Cultures
Articular chondrocytes cultured for 7 days were washed in PBS
and crystal deposition analyzed as previously described (Gregory
et al., 2004).

PCR Analysis
RNA was extracted and PCR or qRT-PCR with gene specific
primers (Table 1) was performed as previously described (Ea
et al., 2013).

Cytokine Quantification
Supernatants were assayed using murine IL-1β and IL-6 ELISA
kit (eBioscience) following the manufacturer’s protocol. Results
were read at 450 nm using the Spectrax M5e (Molecular devices).

Statistical Analysis
In vitro experiments were performed using pools of primary
cells from at least 3 different mice (either chondrocytes or bone

TABLE 1 | Gene specific primers for PCR and qRT-PCR analysis.

Gene Forward primer (5′
→3′) Reverse primer (5′

→3′)

Asc CCA GTG TCC CTG CTC

AGA GT

TCA TCT TGT CTT GGC

TGG TG

Casp1 CCG TGG AGA GAA ACA

AGG AG

ATG AAA AGT GAG CCC

CTG AC

Gapdh CTC ATG ACC ACA GTC

CAT GC

CAC ATT GGG GGT AGG

AAC AC

Il-1b CCA CCA ACA AGT GAT

ATT CTC CAT G

GTG CGG TCT TTC ATT

ACA CAG

Nlrp3 TGC TCT TCA CTG CTA

TCA AGC CCT

ACA AGC CTT TGC TCC

AGA CCC TAT

Tbp CTT GAA ATC ATC CCT

GCG AG

CGC TTT CAT TAA ATT CTT

GAT GGT C

marrow derived macrophages). Moreover, all experiments were
performed with triplicates and reproduced independently at least
two times. Statistical analysis was performed using the Student’s
t-test or one- or two-way ANOVA test corrected with post-hoc
tests for multiple comparisons, where appropriate. Data was
analyzed with GraphPad Prism software (GraphPad, San Diego).

RESULTS

IL-1α−/−, IL-1β−/−, and NLRP3−/− Mice Are
Not Protected against Cartilage Damage
and Synovial Inflammation Induced by
Menisectomy
At 8 weeks after surgery, sham-operated knee joints showed
intact cartilage with smooth cartilage surfaces and conserved
proteoglycan (PGs) staining in both tibia and femur (Figure 1A).
Chondrocytes organization was typical of that of healthy
cartilage, with one or two layers of flat cells in the superficial
zone and columns of round cells in the middle and deep zones.
By contrast, operated knees (MNX) from WT mice exhibited
cartilage damage, PGs loss and disorganized chondrocytes
arrangement. In IL-1α−/−, IL-1β−/−, and NLRP3−/−

menisectomized mice, cartilage degradation was evidenced
and similar (for IL-1α−/−) or more pronounced (for IL-1β−/−

and NLRP3−/−) to that of WT mice (Figure 1A). We also
observed in all mice genotypes, chondrocyte morphology
changes, chondrocytes loss in the superficial and intermediate
cartilage layers, and chondrocytes hypertrophy in the deep zone.

We then scored the histological sections and found that the
severity (grade) and the extent (stage) of cartilage degradation
were similar between WT and IL-1α−/−, but significantly
increased in IL-1β−/− knees, both for the tibia and the femur
cartilage (Figure 1B). Femur cartilage in NLRP3−/− mice was
similarly damaged but tibial cartilage was significantly increased
if compared to that of WT mice (Figure 1B). Finally, levels of
Safranin-O loss were similar amongst the genotypes, indicating
similar levels of PG loss in cartilage of these mice. Altogether
these results demonstrate that a single deficiency of IL-1α, IL-1β,
or of NLRP3 does not prevent cartilage damage.

We next examined synovial inflammation in sham operated
and MNX mice. We found mild synovial inflammation in
all WT menisectomized mice compared to sham-operated.
We also found similar synovial inflammation in IL-1α−/−,
IL-1β−/−, and NLRP3−/− MNX mice (Figure 1C). Synovial
histological features induced by OA development included
synovial hypertrophy and hyperplasia. Figure 1D shows the
synovial inflammation score, which confirmed no significant
differences between genotypes.

NLRP3−/−, IL-1α−/−, and IL-1β−/− Mice Are
Not Protected against Catabolic Changes
and Chondrocyte Apoptosis Induced by
Menisectomy
Signs of cartilage catabolism, in particular of MMP-mediated
aggrecan degradation, were evidences by VDIPEN staining.
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FIGURE 1 | IL-1α−/−, IL-1β−/−, and NLRP3−/− mice develop OA features similar to WT mice after menisectomy. (A) Representative histologies, stained with

Safranin-O, and (B) respective histological scoring of sham operated (WT SHAM) and menisectomized (WT MNX, IL-1α−/− MNX, IL-1β−/− MNX and NLRP3−/−

MNX) knee joint sections, at 8 weeks after surgery. Note the similar level of cartilage destruction and loss of proteoglycans in WT and IL-1α−/− menisectomized

knees, and exacerbated cartilage damage in IL-1β−/− and NLRP3−/− MNX mice. (C) Representative histologies, stained with Safranin-O, and (D) respective synovial

inflammation scoring of sham operated and menisectomized knee joint sections. Note the similar level of synovial inflammation in mice of different genotypes. Mice

number: WT MNX n = 10, IL-1α−/− MNX n = 5, IL-1β−/− MNX n = 5, and NLRP3−/− MNX n = 9. *p < 0.05.

MMP-generated neoepitopes were markedly increased in WT
MNX knees if compared to that of sham-operated mice,
especially in the middle and deep zones of cartilage (Figure 2A).
Moreover, both chondrocytes and pericellular matrix were
associated with marked VDIPEN neoepitope immunostaining
in a comparable way in WT, and NLRP3−/−, IL-1α−/−, and
IL-1β−/− operated mice (Figure 2A).

In addition to catabolic signs, also anabolism and in particular
collagen type 2 immunostaining has been investigated. Our
observations identified weak but homogeneous extracellular
distribution of collagen type 2 in sham-operated mice
(Figure 2B). On the contrary, osteoarthritic joints showed
sites of activated collagen type 2 synthesis, in a similar way
in WT and KO mice. Even if subtle differences were seen in
collagen type 2 expression between the different KO mice,
positivity was overall detected at a similar level and especially in
the superficial damaged region as well as in the deeper layer close
to the tidemark with the bone. Another prominent feature of OA
is increased chondrocyte apoptosis, that we tested by TUNEL
staining (Figure 2C). Only few apoptotic chondrocytes were
detected in sham-operated mice whereas an increased number of

randomly distributed apoptotic chondrocytes was noticeable in
menisectomized mice. Chondrocyte aptosis was similar between
WT and KO mice (Figure 2C).

MNX IL-1β−/− Mice Have Similar Knee
Joint Calcification but Increased
Subchondral Bone Osteoporosis
Compared with WT Mice
We previously demonstrated that, 2 months after menisectomy,
mice exhibited new calcific formation at the place of the
removed meniscus (Nasi et al., 2016a). Calcification of the joint
structures is a typical OA feature, also found in human OA,
and IL-1 can be a trigger of joint calcification as discussed
above. We therefore examined if menisectomy-induced calcific
deposits were different between WT and IL-1β−/− mice.
MicroCT-scan examination conducted 8 weeks after surgery
revealed similar joint calcification (Figure 3A, white circles) and
crystal content (Figure 3B) between the two mice genotypes,
suggesting that the lack of IL-1β did not protect against ectopic
mineralization induced by joint instability. Moreover, analysis
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FIGURE 2 | Knock-out mice are not protected against catabolic changes and chondroptosis caused by OA induction. (A) Representative immunohistochemical

sections of knee joints, stained for MMP-mediated proteoglycan degradation (VDIPEN staining). Note markedly increased VDIPEN in MNX knees if compared to

sham-operated mice and no protection in knock-out mice. (B) Representative immunohistochemical sections of knee joints, stained with anti collagen type 2

antibody. Note increased collagen type 2 synthesis in the superficial and deep cartilage layers of MNX mice compared to the sham operated mice and the similar

expression of collagen type 2 in WT and KO menisectomized knees. (C) Representative immunohistochemical sections of knee joints, stained with ApopTag. Note

increased apoptosis in MNX mice compared to sham operated mice and the similar level of chondrocyte aptosis in WT and KO menisectomized knees. Mice number:

WT MNX n = 4, IL-1α−/− MNX n = 4, IL-1β−/− MNX n = 4, and NLRP3−/− MNX n = 4.

of subchondral trabecular bone parameters revealed that IL-
1β−/− mice have similar tibial bone mineral density (BMD) and
trabecular thickness (Tb.Th) to WTmice. However, they showed
significantly decreased trabecular number (Tb.N) and increased
trabecular separation (Tb.Sp), suggesting a high subchondral
bone remodeling with increased bone resorption (Chiba et al.,
2012) (Figure 3C).

IL-1β Induces Chondrocyte Mineralization,
but Mineralization Does Not Induce IL-1β

Secretion
We previously demonstrated that BCP crystals stimulated IL-
6 secretion by murine chondrocytes. Conversely, exogenous
IL-6 promoted chondrocyte mineralization, thus building an
amplification loop leading to OA (Nasi et al., 2016a). We
hypothesized that the absence of IL-1 effect in the MNX model
could be due to the absence of this amplification loop. To test this
hypothesis, we stimulated primary murine chondrocytes (CHs)
with exogenous IL-1β. After 7 days of culture, calcium containing
crystals, detected by Alizarin red staining were significantly
increased compared to unstimulated cells (Figure 4A). As a
positive control, we used IL-6 incubated for 7 days, which
showed an even stronger promineralizing activity (Figure 4A).
We next stimulated primed CHs and BMDM with HA crystals.
In these conditions, chondrocytes did not secrete mature IL-
1β, but an abundant secretion of IL-6 could be detected. By
contrast, increased levels of IL-1β and IL-6 were measurable
in HA-stimulated BMDM (Figure 4B). To explain the ELISA

results, we analyzed the effect of the PAM3Cys priming on IL-
1β and IL-6 genes. qRT-PCR analysis revealed that PAM3Cys
strongly induced IL-1β gene expression in BMDM, but only
marginally in CHs, whereas priming had an opposite effect on
IL-6 gene expression, being strongly up-modulated in CHs, but
almost not in BMDM (Figure 4C). Therefore, the lack of IL-
1β detection in primed CHs, under basal and HA-stimulated
conditions, could be due to lower IL-1β gene expression in CHs
(35<Ct<40) compared to BMDM (28<Ct<30). Additionally,
the absence of IL-1β detection could also be accounted for by
lower expression of NLRP3 inflammasome components in CHs
compared to BMDM (Figure 4D). Our results are in agreement
with already reported lower NLRP3 inflammasome expression
in human OA chondrocytes and synoviocytes compared to the
monocytic THP1 (Jin et al., 2011).

DISCUSSION

As in vitro IL-1 stimulation of joint cells led to inflammation,
catabolism and oxidative stress, and IL-1 blockade by IL-1Ra or
IL-1R2 reverted these IL-1-induced deleterious effects (Roessler
et al., 1995; Attur et al., 2000, 2002; Palmer et al., 2002, 2004), it
has been suggested for more than two decades that in vivo IL-
1 could be of paramount significance in OA (Fernandes et al.,
2002). In the present study, we demonstrated that IL-1β−/− and
NLRP3−/− mice were not protected against cartilage damage
and synovial inflammation induced by menisectomy. Rather,
cartilage damage was exacerbated by these deficiencies, thereby
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FIGURE 3 | Calcific deposits and tibial subchondral trabecular bone parameters in osteoarthritic knee joints of WT and IL-1β−/− mice. (A) Micro-CT scan images of

menisectomized murine knee joints 2 months after surgery. White circles show new periarticular crystal deposits in menisectomized knees. (B) Crystal content in the

menisectomized knees and (C) tibial subchondral trabecular bone parameters were measured in the same animals using CTAnalyzer. Mice number: WT n = 5,

IL-1β−/− n = 5. *p < 0.05; ***p < 0.001.

confirming previous results obtained in a similar MNX model,
in which cartilage was more damaged in IL-1β−/− and caspase-
1−/− mice compared to WT mice (Clements et al., 2003). The
mechanisms explaining the protective role of IL-1β and NLRP3
inflammasome on cartilage in the surgically induced model of
OA remain to be explored. We also reported here that IL-1α
is not involved in cartilage damage and synovial inflammation
as, in the MNX model, the phenotype of IL-1α−/− was similar
to that of WT mice. In agreement with the lack of a protective
role of IL-1 deficiency in experimental OA, in another model
of experimental OA, the collagenase-induced model of OA,
mice deficient for both IL-1α and IL-1β (IL-1αβ−/−) developed
cartilage destruction and synovial inflammation similar to WT
mice (van Dalen et al., 2016). Interestingly, histological scoring
of the cartilage lesion showed a trend toward increased damage
in IL-1 deficient mice, although this increase did not reach
significancy. The lack of a pathogenic role of IL-1 has been
further confirmed in the collagenase-induced model by the lack
of effect of IL-1Ra treatment in WT osteoarthritic mice (van
Dalen et al., 2016). We previously reported that intra-articular
BCP crystals can elicit synovial inflammation and cartilage
degradation suggesting that BCP crystals have a direct pathogenic
role in OA. We also found that these effects are independent
of IL-1 and NLRP3 inflammasome, as knee joint inflammation
and damage was similar in crystal-injected IL-1α−/−, IL-1β−/−,
ASC−/−, or NLRP3−/− mice and as IL-1Ra treatment did not
prevent OA features of WTmice (Ea et al., 2013). Finally, the fact
that deficiency of MyD88, the adaptor molecule for IL-1R1, did

not impact on the severity of experimental OA strongly suggests
that IL-1 is not a key mediator in the development of OA (Nasi
et al., 2014). Altogether our results strongly suggest that IL-1
is not involved in cartilage degeneration in murine models of
OA. By contrast, in a spontaneous model of OA characterized
by joint calcification (Ank−/− model), NLRP3 inflammasome
deficiency partially (∼30%) protected against joint pathology (Jin
et al., 2011). However, no proof of IL-1 involvement was provided
in this study. Of note, one single report claimed that IL-1β−/−

mice had reduced cartilage erosion, but the number of mice
and detailed procedures used to reach this conclusion were not
mentioned and therefore caution should be taken when quoting
this work (Glasson, 2007).

In non-murine experimental models of OA the role of
IL1-mediated pathway seemed to be deleterious (see Table 2

for a summary of the works published). In the transection
of the anterior cruciate ligament (ACL) dog model of OA,
recombinant human interleukin-1-receptor antagonist (rHuIL-
1Ra) either injected intra-articularly or locally expressed by
synovial cells transduced with HuIL-1Ra gene protected against
OA lesions, partially via a reduction of collagenase-1 expression
(Caron et al., 1996; Pelletier et al., 1997). Similarly, in rabbit
and equine surgically-induced models of OA, intra-articular
overexpression of IL-1Ra resulted in a significant improvement
in disease activity, cartilage degradation and synovitis (Fernandes
et al., 1999; Frisbie et al., 2002). In a spontaneous model of
OA (aged Hartley guinea pigs), diminished IL-1 signaling by
RNA interference-based reduction (siIL-1β), or by mILRa led to
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FIGURE 4 | Murine primary chondrocytes express the components of the NLRP3 inflammasome but do not produce IL-1β upon HA crystal stimulation. (A) Alizarin

red staining and quantification in murine chondrocytes culture, stimulated or not with 5 ng/ml IL-1β or with 10 ng/ml IL-6 for 7 days in BGJb medium. Values represent

means ± SD of triplicates from one representative experiment out of three. (B) IL-1β and IL-6 secretion by primed CHs or by BMDM, stimulated (black bars) or not

(white bars) with HA crystals for 6 h. Values represent means ± SD of triplicates from one representative experiment out of three. (C) qRT-PCR analysis of the

indicated genes in CHs and BMDM stimulated (black bars) or not (white bars) with 100 µg/ml PAM3Cys for 2 h. Results are expressed as the fold increase of gene

expression in PAM3Cys treated over not treated (Nt) cells, using the mean ± SD of triplicate independent RNA samples. (D) Gel electrophoresis for the analysis of

Caspase-1, Asc and Nlrp3 expression in primary murine chondrocytes (CHs) and primary bone marrow derived macrophages (BMDM). Minus (-) is the negative

control (water). All experiments were performed using pools of primary cells from at least 3 different mice. **p < 0.01, ***p < 0.001, ****p < 0.0001.

decreases expression of mediators implicated in OA pathogenesis
such as IL-1β, TNF-α, IL-8, INF-γ, MMP-13, and increased TGF-
β1 (Santangelo et al., 2012). Finally, in a murine model of post-
traumatic arthritis induced by articular fracture, intra-articular
inhibition of IL-1 by IL-1Ra exerted protective effects in terms of
cartilage degradation and synovial inflammation (Furman et al.,
2014).

The conflicting results about the role of IL-1, but also other
cytokines such as IL-6 (de Hooge et al., 2005; Ryu et al.,
2011; Latourte et al., 2016; Nasi et al., 2016a) in experimental
models of OA, could reflect species difference, differences in age
and sex of the animals used, variability in the method of OA
induction (different progression of joint degeneration, degrees of
inflammation, degrees of unpaired loading for each experimental
OA model).”

It is important to keep in mind that in the context
of inflammatory arthritis, such as collagen-induced arthritis
(Joosten et al., 1996) and antigen-induced arthritis (Kolly
et al., 2009), IL-1 deficiency or IL-1 neutralization leads to
cartilage protection. This suggests that the mechanisms involved
in cartilage degradation in an inflammatory context may be
dependent on IL-1 whereas in a less inflammatory setting (such
as in OA) this could not be any more true.

Discordant results about the role of IL-1 in OA have been
reported not only in animal studies but also in human studies.
It has been reported that patients subjected to ACL transection

have increased IL-1β and IL-1Ra in synovial fluid, if compared to
healthy individuals, while IL-1α remained undetectable (Marks
and Donaldson, 2005). In accordance, the expression of IL-
1β in synovial membrane positively correlated with OA grade
(Smith et al., 1997) and with joint space width (Ning et al.,
2011), and negatively correlated with joint alignment and
physical disability (Ning et al., 2011). Moreover, IL-1α and IL-
1β expression was detected by immunohistochemical analysis
in human OA cartilage, especially in early stage OA (Towle
et al., 1997). In a study by Denoble and co-workers, IL-1β level
in synovial fluid of OA patients was increased and correlated
with synovial fluid uric acid. The author concluded that uric
acid could be a danger signal that contributes to increasing risk
for OA through inflammasome activation and subsequent IL-1β
production (Denoble et al., 2011). On the contrary, in a study
conducted at different time-points after ACL injury, synovial
fluid level of IL-1β was not increased and IL-1Ra was decreased
compared to healthy controls (Bigoni et al., 2013). In a study
in symptomatic knee OA patients, plasma levels of IL-1Ra were
modestly associated with the severity and progression of the
disease independent of other risk factors (Attur et al., 2015). High
innate ex vivo production of IL-1β and IL-1Ra by whole blood
samples from OA patients was associated with an increased risk
of familial OA at multiple sites (Riyazi et al., 2005). However,
in a separate study, ex vivo production of IL-1β and IL-1Ra
by whole blood samples were not significantly associated with
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TABLE 2 | Summary of studies in animal models of OA where IL-1 role has been tested.

Species Model Conditions Duration of

experiment

Conclusion about

IL-1 role in OA

Citation

Dog ACL transection I.a injection of 4mg rHuIL-1Ra, at the

moment of surgery

4 weeks Deleterious Caron et al., 1996

Dog ACL transection I.a injection of autologous synoviocytes

transduced with HuIL-1Ra, 2d post-surgery

4 weeks Deleterious Pelletier et al., 1997

Rabbit Partial medial

menisectomy

Three i.a injection at 24 h intervals of 1,000

µg DogIL-Ra plasmid, 4w post-surgery

8 weeks Deleterious Fernandes et al., 1999

Horse Osteochondral

fragment

I.a injection of 20 × 1010 VP AdEqIL-1Ra,

2w post-surgery

10 weeks Deleterious Frisbie et al., 2002

Guinea pig Spontaneous I.a injection of 1012 DRPs siIL-1β, at 8w of

age

24 weeks Deleterious Santangelo et al., 2012

I.a injection of 2x1011 IFUs mAd-IL-1Ra, at

8w of age

24 weeks Deleterious

Mouse Destabilization

medial meniscus

IL-1β−/− mice 8 weeks Deleterious Glasson, 2007

Mouse Ank−/− Caspase-1−/− mice 12 weeks Deleterious Jin et al., 2011

NLRP3−/− mice

Mouse Articular fracture of

the knee

IL-1Ra administration intra-articularly or

sistemically

4 weeks Deleterious Furman et al., 2014

Mouse I.a injection of BCP

crystals

IL-1α−/−, IL-1β−/−, ASC−/−, NLRP3−/−

mice

4, 17, 30

days

No role No role Ea et al., 2013

IL-1Ra 4 days

Mouse Partial medial

menisectomy

IL-1β−/− mice 4 weeks Protective Clements et al., 2003

Caspase-1−/− mice 4 weeks Protective

Mouse Partial medial

menisectomy

MyD88−/− mice 8 weeks No role Nasi et al., 2014

Mouse Partial medial

menisectomy

IL-1α−/− mice 8 weeks No role This study

IL-1β−/− mice 8 weeks Protective

NLRP3−/− mice 8 weeks Protective

Mouse Collagenase-

induced

IL-1αβ−/− mice 4 weeks No role van Dalen et al., 2016

rIL-1Ra administration at the moment of the

surgery and for 2w

2 weeks

progression of knee OA over a 2-year period (Botha-Scheepers
et al., 2008).

In addition to the contrasting results about the role of
IL-1 in OA obtained in a number of experimental studies
in vitro, in vivo, and ex vivo, the anti-IL-1 approach in
patients has not yet proven significative improvement in OA
symptoms and as a disease-modifying therapy. Various treatment
strategies have been tested in human such as administration
of monoclonal antibodies against IL-1 or IL-1R1 to block
IL-1 signaling, administration of IL-1Ra to antagonize IL-
1 action, and blockade of the formation of active IL-1β. In
a first double-blind, placebo controlled, multiple-dose study
by Cohen and colleagues (Cohen et al., 2011), a monoclonal
antibody (AMG108) directed against IL-1R1, therefore inhibiting
both IL-1α and IL-1β activity, was administered systemically
(IV or SC) to knee OA patients (KOA). AMG108-treated
group did not show statistically significant improvements in
pain compared with the placebo group, as shown by pain

scores (Cohen et al., 2011). Recombinant human IL-1 receptor
antagonist proteins (IRAPs) are competitive antagonists of IL-1.
In placebo-controlled clinical trials conducted in KOA patients,
intra-articular injection of either Anakinra or Orthokine, two
available IRAPs, didn’t lead to significantly different pain
score compared to placebo-treated patients (Chevalier et al.,
2005, 2009; Auw Yang et al., 2008). In another study in
KOA patients, the clinical effects of intra-articular injection
of Orthokine was compared with those of hyaluronan (HA)
or placedo injection (Baltzer et al., 2009). Preliminary results
showed that the effects of Orthokine were higher than those
of HA or saline in terms of pain, stiffness and joint function
(about 30% improvement) (Baltzer et al., 2009). Further
confirmation and additional studies on the mechanism of action
of Orthokine (i.e., DMOAD, chondroprotective, others) are
required.

From the above mentioned data obtained both in
experimental and clinical OA, we can conclude that IL-1
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FIGURE 5 | Proposed mechanism based on the obtained results. BCP

crystals found in 100% of OA patients at the moment of joint replacement (Ea

et al., 2011), can activate NLRP3 inflammasome in macrophages leading to

IL-1β secretion (Pazar et al., 2011), but this process does not occur in

chondrocytes and synovial fibroblasts (Kolly et al., 2010; Jin et al., 2011). In

addition BCP crystals induce IL-6 in macrophages, fibroblasts and

chondrocytes. In these latter cells, BCP crystals induce IL-6, which in turn

induce mineralization, thus creating a vicious circle and a chronification of the

disease. Strategies interrupting this vicious circle could ameliorate this

degenerative disease.

has not yet proven to be a good target for OA. Based on previous
published papers by us (Nasi et al., 2016a,b) and by others (Ryu
et al., 2011; Latourte et al., 2016), we suggest that IL-6-targeted
strategies could lead to new therapeutic options for OA, by
interrupting the vicious circle between BCP crystal formation
and IL-6 production by chondrocytes (see Figure 5).

This proposed mechanism, built on chondrocytes grown in
monolayers and in vivo observations in the menisectomy model
after 2 months, needs further validations using additional in vitro
models, such 3D-models of chondrocyte cultures, and additional
in vivoOAmodels, considering different experimental points and
looking to different read-outs.
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