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Objective: This study aimed to identify specific dysregulated genes with

potential diagnostic and predictive values for JAK2V617F+ myelofibrosis.

Methods: Two gene expression datasets of CD34+ hematopoietic stem and

progenitor cells (HSPCs) from patients with JAK2V617F+ myeloproliferative

neoplasm (MPN) [n = 66, including polycythemia vera (PV), essential

thrombocythemia (ET), and primary myelofibrosis (PMF)] and healthy

controls (HC) (n = 30) were acquired from the GEO (Gene Expression

Omnibus) database. The differentially expressed genes (DEGs) were

screened between each JAK2V617F+ MPN entity and HC. Subsequently,

functional enrichment analyses, including Kyoto Encyclopedia of Genes and

Genomes (KEGG), Reactome, and Gene Set Enrichment Analysis (GSEA), were

conducted to decipher the important biological effects of DEGs.

Protein–protein interaction (PPI) networks of the DEGs were constructed to

identify hub genes and significant modules. Another two gene expression

profiles of patients with JAK2V617F+ MPN [n = 23, including PV, ET,

secondary myelofibrosis (SMF), and PMF] and HC (n = 6) from GEO were

used as external validation datasets to prove the reliability of the identified

signatures.

Results: KEGG analysis revealed the upregulated genes in three JAK2V617F+

MPN entities compared with HC were essentially enriched in inflammatory

pathways and immune response signaling pathways, and the number of these

pathways enriched in PMFwas obviously more than that in PV and ET. Following

the PPI analysis, 10 genes primarily related to inflammation and immune

response were found upregulated in different JAK2V617F+ MPN entities. In

addition, Reactome enrichment analysis indicated that interferon signaling

pathways were enriched specifically in PMF but not in PV or ET.

Furthermore, several interferon (IFN)-stimulated genes were identified to be

uniquely upregulated in JAK2V617F+ PMF. The external datasets validated the
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upregulation of four interferon-related genes (OAS1, IFITM3, GBP1, and GBP2)

in JAK2V617F+ myelofibrosis. The receiver operating characteristic (ROC)

curves indicate that the four genes have high area under the ROC curve

(AUC) values when distinguishing JAK2V617F+ myelofibrosis from PV or ET.

Conclusion: Four interferon-stimulated genes (OAS1, IFITM3, GBP1, and GBP2)

exclusively upregulated in JAK2V617F+ myelofibrosis might have the potential

to be the auxiliary molecular diagnostic and predictive indicators of

myelofibrosis.
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Introduction

Polycythemia vera (PV), essential thrombocythemia (ET), and

primary myelofibrosis (PMF) are a range of heterogeneous

hematopoietic diseases classified as Philadelphia chromosome-

negative myeloproliferative neoplasms (Ph- MPNs), which also

include chronic neutrophilic leukemia (CNL), chronic eosinophilic

leukemia not otherwise specified (CEL-NOS), and unclassifiable

MPN according to 2016 WHO classification (Arber et al., 2016).

PV, ET, and PMF are more frequent than other subtypes of Ph-

MPNs (Anderson and McMullin, 2014). Among PV, ET, and

PMF, the most frequent driver mutation is JAK2V617F, which

could be observed in the great majority of patients with PV and

most patients with ET or PMF (O’Sullivan and Mead, 2019).

Although sharing the same JAK mutation, the three JAK2V617F+

MPN entities have distinct clinical manifestations: PV with an

elevated hemoglobin/hematocrit potentially accompanied by

leukocytosis or thrombocytosis, ET with thrombocytosis, and

PMF with bone marrow fibrosis, extramedullary hematopoiesis,

and even progressive cytopenia (Arber et al., 2016). Among these

three subtypes, PMF is the more malignant and more aggressive

myeloproliferative neoplasm, while PV and ET are relatively

benign and indolent diseases (Grinfeld et al., 2018). However,

with the progression, both PV and ET have a chance to develop

into secondary myelofibrosis (SMF), sharing similar clinical

features to PMF; therefore, these patients could be named post-

PV-MF or post-ET-MF (Mesa et al., 2007).

The pathogenesis and progression mechanism of MPN is

multifactorial. The constitutive activation of the JAK/STAT

pathway due to the JAK2V617F acquired by the hematopoietic

stem cell (HSC) plays an essential role in MPN pathogenesis

(Baxter et al., 2005; Kralovics et al., 2005; Levine et al., 2005).

Somatic mutations of non-driver genes related to epigenetic

regulation, splicing factors, and other signaling pathways have

been discovered in a large number of MPN patients, particularly

in individuals with PMF (Ayalew et al., 2016; Li et al., 2016). In

addition, an altered bone marrow environment and chronic

inflammation could also participate in the pathogenesis and

progression mechanism of MPN (Hasselbalch, 2013; Schepers

et al., 2013; Bjorn and Hasselbalch, 2015; Di Buduo et al., 2015;

Schmitt-Graeff et al., 2015; Zhan et al., 2018). Despite many

possible causes being discovered, the underlying mechanisms of

MPN onset and progression are still not entirely understood,

especially in myelofibrosis.

Patients with myelofibrosis generally have an overall poor

prognosis, and the median survival period is about 6 years (Rumi

and Cazzola, 2017). A series of thrombohemorrhagic complications

and severe constitutional symptoms are presented during disease

progression. Additionally, approximately 10–20% of patients with

myelofibrosis may progress to leukemic transformation (Hong et al.,

2019; Vallapureddy et al., 2019).Most patients withmyelofibrosis died

from thrombohemorrhagic complications, cardiovascular events, and

leukemic transformation (Campanelli et al., 2021).

Current treatment formyelofibrosis is still limited. Hydroxyurea

(HU) has been used as first-line treatment of PMF; however, the

disease course was not improved (Reilly et al., 2012). JAK2 inhibitors

such as ruxolitinib could improve the clinical symptoms of

myelofibrosis (Harrison et al., 2012; Harrison et al., 2016).

Unfortunately, limited molecular responses were achieved (Wang

et al., 2014). Also, there are problems of drug resistance or

intolerance due to long-term treatment and side effects.

Allogeneic HSC transplantation is the solely possibly curative

remedy for patients with myelofibrosis; however, the potential

complications are more severe and complex. Therefore, it is

urgently necessary to explore novel targets of myelofibrosis with

the potential value of early diagnosis, prediction of progression, and

accurate treatment.

Nowadays, gene expression analysis is increasingly becoming

a valuable method to identify the potential targets for early

diagnosis, prediction of disease progression, and treatment.

Here, in this study, two gene expression datasets [GSE103237

(Zini et al., 2017) and GSE53482 (Norfo et al., 2014)] of CD34+

HSPCs from patients with JAK2V617F+ MPN (PV, ET, PMF)

and healthy controls (HC) were analyzed to identify important

genes specifically dysregulated in JAK2V617F+ PMF. Another

two external datasets [GSE174060 (Baumeister et al., 2021) and

GSE120362 (Schubert et al., 2019)] were applied to validate the

results. The important genes specifically dysregulated in

JAK2V617F+ myelofibrosis might contribute to differential

diagnosis and prediction of disease progression in myelofibrosis.
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Materials and methods

Data collection

Two microarray datasets [GSE103237 (Zini et al., 2017) and

GSE53482 (Norfo et al., 2014)] of patients with MPN and HC

from the GEO database were retrieved. JAK2V617F+ PV (n = 26),

JAK2V617F+ ET (n = 17), JAK2V617F+ PMF (n = 23), and HC

(n = 30) were selected for analysis. The gene expression profile

from the peripheral blood/bone marrow CD34+ cells was

annotated by the data of the GPL13667 platform.

JAK2V617F+ PV (n = 8), JAK2V617F+ ET (n = 2),

JAK2V617F+ SMF (n = 3, including 2 post-PV-MF, 1 post-

ET-MF), JAK2V617F+ PMF (n = 10), and HC (n = 6), which

came from GSE174060 (Baumeister et al., 2021) and GSE120362

(Schubert et al., 2019), were used for external validation. The

gene expression profile from the peripheral blood/bone marrow

CD34+ cells was annotated by the data of the GPL17586 platform.

Data processing and differentially
expressed gene screening

The gene expression data from two datasets [GSE103237 (Zini

et al., 2017) andGSE53482 (Norfo et al., 2014)] were normalized by the

limmapackage (version3.50.0) (Ritchie et al., 2015) inR software. Then,

“ComBat” from the sva package (version 3.42.0) was used to remove

batch effects after these two datasets were merged. The merged

expression matrix included samples from four groups: HC,

JAK2V617F+ PV, JAK2V617F+ ET, and JAK2V617F+ PMF. PCA

plots were performed with the Factoextra package and FactoMineR

package (Lê et al., 2008; Kassambara and Mund, 2020). Then, the

limma package was used to process the expression matrix and identify

the DEGs between different JAK2V617F+ MPN subtypes (PV, ET, and

PMF) and HC. The adjusted p-value less than 0.05 and |log2 fold

change (logFC)| more than 1 were regarded as significant DEGs for

downstream analysis. Heatmaps were performed with the pheatmap

package (Kolde, 2019). Volcano plots were generated with the

ggplot2 package (Wickham, 2016). Venn plots were made with the

VennDiagram package (Chen, 2021).

Kyoto encyclopedia of genes and
genomes and Reactome enrichment
analysis

The clusterProfiler package (version 4.2.0) (Yu et al., 2012)

was utilized to perform the Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway analysis to decipher the detailed

functions of DEGs in biology and disease. The clusterProfiler

package (Yu et al., 2012) and ReactomePA package (version

1.38.0) (Yu and He, 2016) were used to perform Reactome

pathway analysis. The significantly enriched pathways were

selected with the cut-off threshold of BH adjusted p-value less

than 0.05. The bubble diagrams of KEGG results were drawn

with the enrichplot package (version 1.14.1) (Yu, 2022).

Gene set enrichment analysis

GSEA software was utilized to run GSEA, using reference

gene sets from the Molecular Signatures Database (Subramanian

et al., 2005). The expression matrix of all genes from patients with

MPN and HC was uploaded for analysis. The parameters of

permutation number and permutation type were set as “1000”

and “phenotype,” respectively. NOM p-value less than 0.05 was

regarded as statistically significant.

Analysis of protein–protein interaction
networks and identification of hub genes

Protein–protein interaction (PPI) analysis of DEGs was

constructed based on the STRING database (Szklarczyk et al.,

2015). Cytoscape (Shannon et al., 2003) was utilized to further

process the results from PPI networks. The cytoHubba app (Chin

et al., 2014) was utilized for obtaining the hub DEGs (top ten DEGs)

by the MCC algorithm, and the MCODE app (Bader and Hogue,

2003) was applied to identify the sub-networks (top two modules).

External validation of differentially
expressed genes

Another two datasets [GSE174060 (Baumeister et al., 2021)

and GSE120362 (Schubert et al., 2019)] from the GEO database

were retrieved. Samples, including HC (n = 6), JAK2V617F+ PV

(n = 8), JAK2V617F+ ET (n = 2), JAK2V617F+ SMF (n = 3), and

JAK2V617F+ PMF (n = 10), were selected for external validation.

The gene expression matrix of CD34+ HSPCs from bone

marrow/peripheral blood was annotated by the

GPL17586 platform data. The pipeline of data processing is

similar to the methods described above. The expression levels

of DEGs between patients with MPN and HC were compared

with Wilcoxon rank-sum test from the ggpubr package (version

0.4.0) (Kassambara, 2020). The p value less than 0.05 was

regarded as having statistical significance. The GraphPad

Prism (version 9.3.1) was used to calculate the value of AUC

and draw the ROC curve.

Statistical analysis

R software and GraphPad Prism were utilized for data

processing and statistical analysis. The ggpubr package in R

software was applied to draw boxplots and perform statistical
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analysis. The Wilcoxon rank-sum test was applied to compare

the difference in expression levels between distinct groups. The p

value less than 0.05 at two-sided was regarded as statistically

significant. “*” denotes “p < 0.05”, “**” denotes “p < 0.01”, “***”

denotes “p < 0.001”, “****” denotes “p < 0.0001”, and “ns”

denotes “not significant”.

Results

CD34+ hematopoietic stem and
progenitor cells from JAK2V617F+ primary
myelofibrosis exhibited a greater number
of dysregulated genes than those from
JAK2V617F+ polycythemia vera and
JAK2V617F+ essential thrombocythemia

A total of 96 samples, including HC (n = 30), JAK2V617F+

PV (n = 26), JAK2V617F+ ET (n = 17), and JAK2V617F+ PMF

(n = 23), were collected from two datasets [GSE103237 (Zini

et al., 2017) and GSE53482 (Norfo et al., 2014)] based on the

same GPL platform. After removing the batch effect, the PCA

result showed that the features of three JAK2V617F+ MPN

subtypes could be distinguishable from those of HC

(Figure 1A), suggesting the signatures of HSPCs under disease

state changed significantly compared to those in normal state. In

addition, the features of JAK2V617F+ PV and ET were similar to

each other but distinct from JAK2V617+ PMF (Figure 1A), which

might be explained by that they were indeed in the different

stages (“indolent” and “aggressive” stages, respectively) of MPN.

Furthermore, we also noticed that the features from patients with

three JAK2V617F+ MPN entities were less uniform than those of

HC (Figure 1A), indicating the heterogeneity of CD34+ HSPCs

existed not only between different MPN subtypes but also in the

same MPN subtype.

Next, the gene expression matrix of JAK2V617F+ PV (n = 26)

and HC (n = 30) was processed to discover the differentially

expressed genes (DEGs). A total of 265 DEGs were identified

FIGURE 1
(A) PCA diagram after removing batch effect. (B) Volcano plots of DEGs between each MPN subtype and healthy controls (HC). The numbers of
upregulated genes and downregulated genes were shown. The red dots represent upregulated genes. The blue dots indicate downregulated genes.
The gray dots denote genes with non-differential expression. (C) Venn diagram of DEGs between each MPN subtype and HC.
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from the matrix, including 171 upregulated genes and

94 downregulated genes in patients with JAK2V617F+ PV

compared to HC (Figure 1B). A similar DEG screening

procedure was also performed in JAK2V617F+ ET (n = 17)

and JAK2V617F+ PMF (n = 23). A total of 213 upregulated

DEGs and 112 downregulated DEGs were found in patients with

JAK2V617F+ ET relative to HC (Figure 1B), and 299 upregulated

DEGs and 280 downregulated DEGs were obtained in patients

with JAK2V617F+ PMF relative to HC (Figure 1B). The number

of dysregulated genes identified from PMF was much more

abundant than that from PV and ET, indicating the more

complex and severe disease course of PMF.

Integration of all DEGs between each MPN subtype and HC

showed that among the different MPN subtypes, the DEG

expression patterns from JAK2V617F+ PV and ET patients were

distinct from those from PMF patients (Supplementary Figures

S1A–D). However, Partial patterns shared by the three entities were

also observed (Supplementary Figures S1A–D). These shared and

different signatures might provide important clues for the

pathogenesis and heterogeneity of MPN. Therefore, the

overlapping or unique DEGs derived from the integrated matrix

were identified (Figure 1C and Supplementary Table S1). A total of

119 overlapping DEGs in patients with three different MPN

subtypes were obtained, and 31 DEGs were merely acquired in

JAK2V617F+ PV, while 83 DEGs were uniquely obtained in

JAK2V617F+ ET (Figure 1C). Among three MPN entities,

JAK2V617F+ PMF had the greatest number of specific DEGs,

with 388 DEGs (58.6%) exclusively dysregulated in PMF

(Figure 1C). These specific dysregulated genes might play an

essential part in the onset and progression of myelofibrosis.

In summary, the results corroborated different patterns of “mild

and indolent subtype” and “aggressive and fibrotic subtype” in

JAK2V617F+ MPN, suggesting that the heterogeneity of HSPCs is

obvious between different MPN subtypes and JAK2V617F+ PMF

might have more complicated pathogenesis than PV or ET.

CD34+ hematopoietic stem and
progenitor cells from JAK2V617F+ primary
myelofibrosis enriched a larger number of
inflammatory pathways and immune
response signaling pathways than those
from JAK2V617F+ polycythemia vera and
JAK2V617F+ essential thrombocythemia

The KEGG database was utilized to investigate the detailed

function of DEGs and identify the shared and distinct enriched

pathways between three MPN subtypes. Considering the

upregulated genes were more potentially prominent in

biological function than the downregulated genes, we focused

on the upregulated genes in each MPN subtype compared to HC

to perform the downstream pathway enrichment analysis. The

results suggested that most upregulated genes were enriched

mainly in pathways correlated with immune response and

inflammation. Some of the inflammatory pathways and

immune response signaling pathways were enriched in three

MPN subtypes, such as chemokine signaling pathway, NF-kappa

B signaling pathway, NOD-like receptor signaling pathway,

neutrophil extracellular trap formation, phagosome, as well as

IL-17 signaling pathway (Figure 2), demonstrating that the

inflammation and related immune response may participate in

the pathogenesis of three MPN entities. However, the number of

these enriched pathways in PMF was obviously more than that in

PV and ET. For example, the TNF signaling pathway, toll-like

receptor signaling pathway, and cytokine–cytokine receptor

interaction were also enriched in PMF, but not in PV or ET

(Figure 2). The results suggested that the more broad and severe

state of inflammation and immune response might contribute to

the aggressive progression of myelofibrosis.

To further discover the potential biological function of

upregulated genes, we performed the venn diagram and

identified the overlapping and unique upregulated genes among

three MPN subtypes (Figure 3A and Supplementary Table S1). The

results showed the number of upregulated genes uniquely in PMF

was much more than that exclusively in PV or ET and even more

than the number of overlapping genes (Figure 3A), suggesting that

beyond some common factors underlying the pathogenesis, such as

inflammation previously mentioned, there were additional elements

leading to myelofibrosis. Considering the fundamental and essential

roles of the common factors involved in the pathogenesis of three

MPN subtypes, we studied these common characteristics before

identifying the heterogeneous features. The overlapping

upregulated genes (n = 78) were shown (Figure 3B), and KEGG

analysis indicated that most of them were enriched in inflammatory

pathways and immune response pathways, such as the NF-kappa B

signaling pathway (Figure 3C). The expression levels of the relative

gene set and the GSEA results between each MPN subtype and HC

also corroborated the upregulation of the NF-kappa B signaling

pathway in distinct MPN subtypes (Figure 3D, Supplementary

Figure S2).

In summary, these results indicated that inflammation and

immune response constitute the fundamental and essential parts

of the pathogenesis in MPN, and the difference in degree and scope

of them might be one of the explanations for more severe

manifestation in myelofibrosis.

The overlapping upregulated genes were
identified in distinct JAK2V617F+

myeloproliferative neoplasm subtypes and
primarily related to the inflammatory
pathways and immune response signaling
pathways

To resolve the interaction between proteins encoded by

overlapping upregulated genes (n = 78) in three JAK2V617F+
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MPN subtypes, the STRING database was utilized to conduct

the analysis. The results indicated that, in total, 405 edges (protein

interaction pairs) and 78 nodes (encoded proteins) were included.

Ten hub genes of overlapping upregulated genes in three

JAK2V617F+ MPN subtypes were obtained by the cytoHubba

plugin from the PPI network (Figure 4A). Also, the hub genes,

such as ITGAM, FPR1, Fc Gamma Receptor genes (FCGR3A and

FCGR3B), and S100 family genes (S100A8/9/12), were related to

inflammatory pathways and immune response signaling pathways

(Figure 4A). In addition, two significant modules were acquired by

the MCODE plugin, module 1 containing 12 nodes and 64 edges

and module 2 containing 11 nodes and 30 edges, including genes

related to immune response signaling pathways, such as FPR1,

NCF2, ARG1, CCL5, and HP (Figure 4B). Furthermore, we

found that the expression levels of some identified genes

(ITGAM, FPR1, Fc Gamma Receptor genes, TYROBP, NCF2,

ARG1, CCL5, and HP) in three JAK2V617F+ MPN subtypes were

significantly higher than those inHC (Figure 4C). And,most of their

expression levels were also positively correlated with each other

(Figure 4D).

Two external datasets [GSE174060 (Baumeister et al., 2021)

and GSE120362 (Schubert et al., 2019)] derived from the same

GPL platform were utilized and analyzed to verify the

inflammation- and immune-related genes overlapping

upregulated in different JAK2V617F+ MPN subtypes, with

CD34+ HSPC samples of JAK2V617F+ PV (n = 8),

JAK2V617F+ ET (n = 2), JAK2V617F+ SMF (n = 3),

JAK2V617F+ PMF (n = 10), and HC (n = 6) included. Due to

the paucity of CD34+ samples in patients with JAK2V617F+ ET,

we integrated the samples of JAK2V617F+ PV and JAK2V617F+

ET into one group named JAK2V617F+ PV/ET, reflecting the

chronic and indolent stage of MPN. The expression levels of

these inflammation- and immune-related genes (ITGAM, FPR1,

Fc Gamma Receptor genes, TYROBP, NCF2, ARG1, CCL5, and

HP) were significantly higher in both chronic and aggressive

fibrotic phases of JAK2V617F+ MPN than those in HC (Figure 5),

which confirmed the results described above. Taken together,

these results suggested that the upregulation of these genes

associated with inflammation and immune response might

play fundamental roles in the pathogenesis of MPN.

FIGURE 2
Inflammation- and immune-related pathways from KEGG analysis of upregulated genes in each MPN subtype compared to HC. The size of the
dots represents −log10 (adjusted p value).
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Interferon signaling pathways were
upregulated significantly and specifically
in CD34+ hematopoietic stem and
progenitor cells of JAK2V617F+ primary
myelofibrosis

To further explore the potential detailed function of

upregulated genes uniquely in PMF and identify the signaling

pathways solely enriched in myelofibrosis, the Reactome

database including more various signaling pathway

information was used to resolve the roles of upregulated genes

in each MPN subtype compared to HC. The Reactome

enrichment analysis identified the overlapping enriched

pathways (n = 19) (Figure 6A, Supplementary Table S2), most

of which were related to inflammation and immune response,

indicating the identical conclusion to the analysis described

above. More importantly, we identified the uniquely enriched

signaling pathways (n = 21) in PMF (Figure 6A, Supplementary

Table S2). Interestingly, we surprisedly found that interferon

signaling pathways were enriched exclusively in CD34+ HSPCs of

FIGURE 3
(A) Venn diagram of upregulated genes in each MPN subtype. (B) Heatmap of overlapping upregulated genes in three MPN subtypes
(JAK2V617F+ PV, JAK2V617F+ ET, and JAK2V617F+ PMF). (C) Inflammation- and immune-related pathways from KEGG analysis of the overlapping
upregulated genes in three MPN subtypes. The size of the dots represents the number of genes. The color of the dots denotes the adjusted p value.
(D) Expression levels of the gene set named “Positive regulation of NF-kappa B transcription factor activity” in three MPN subtypes and HC.
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FIGURE 4
(A) Top 10 hub genes from the PPI network analysis for the overlapping upregulated genes in three MPN subtypes. Nodes denote encoded
proteins, and edges denote the interaction between encoded proteins. The color represents the scores ranked by the MCC method. The deeper
color denotes the more important genes having higher scores. (B) Top two significant modules from the PPI network analysis for the overlapping
upregulated genes in three MPN subtypes. The color and size represent the degrees of the nodes. The bigger size and deeper color denote the
more important genes having higher degrees. (C) Expression levels of the inflammation- and immune-related genes upregulated in three MPN
subtypes. (D) Correlation of the expression levels of the upregulated genes in (C).
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PMF, but not in those of PV or ET (Figure 6A). In addition, when

we selected the upregulated genes (n = 182) uniquely in PMF to

perform the Reactome enrichment analysis, interferon signaling

pathways were also enriched significantly, such as interferon

signaling, interferon-alpha/beta signaling, and interferon-

gamma signaling (Figure 6B). Furthermore, the GSEA analysis

was conducted, and the result also showed that multiple gene sets

of interferon signaling pathways were enriched significantly and

exclusively in CD34+ HSPCs of JAK2V617F+ PMF, but not in

those of PV or ET (Figures 6C,D), corroborating the previous

results. The expression levels of gene set “interferon alpha

response” also verified that the upregulation of the interferon

signaling pathway was significantly and specifically in

JAK2V617F+ PMF (Figure 6E).

Therefore, the upregulation of interferon signaling pathways

might participate in the pathogenesis of myelofibrosis.

Four interferon-stimulated genes (OAS1,
IFITM3, GBP1, and GBP2) were
upregulated specifically in CD34+

hematopoietic stem and progenitor cells
of myelofibrosis

The PPI network of these upregulated DEGs (n = 182)

exclusively in JAK2V617F+ PMF was constructed with

179 nodes (encoded proteins) and 322 edges (protein

interaction pairs). Through the PPI network, the top 10 hub

genes were discovered, namely, MX1, IFIT1, IFIT3, OAS1,

RSAD2, XAF1, MX2, ISG15, IFI6, and IRF9, most of which

were strongly associated with interferon-gamma signaling

(Figure 7A). Two significant modules were also discovered

(Figure 7B). Module 1 had 18 nodes and 153 edges, and

module 2 contained 6 nodes and 15 edges, and the

involved genes were almost related to the interferon

signaling pathway (Figure 7B). Additionally, we found that

the interferon-related genes (OAS1, MX1, MX2, RSAD2, IFI6,

IRF9, IFITM2, IFITM3, GBP1, GBP2, and IFI44L) were

upregulated in JAK2V617F+ PMF compared to not only HC

but also JAK2V617F+ PV and ET (Figure 7C). Furthermore,

there was a positive correlation in the expression levels

between most genes (Figure 7D).

Two external datasets [GSE174060 (Baumeister et al.,

2021) and GSE120362 (Schubert et al., 2019)] described

above were used as validation datasets. Considering the

additional three samples from patients with JAK2V617F+

SMF, we finally identified four genes (OAS1, IFITM3,

GBP1, and GBP2) with increased expression levels not only

in JAK2V617F+ PMF but also in JAK2V617F+ SMF in

comparison with HC and PV/ET (Figure 8A). In addition,

their expression levels are also positively correlated well with

each other (Figure 8B).

FIGURE 5
Expression levels of the inflammation- and immune-related genes in distinct MPN subtypes and HC from the external datasets.
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To investigate the differential diagnostic ability of the four

genes (OAS1, IFITM3, GBP1, and GBP2) for patients with

myelofibrosis, the ROC curves and AUC were performed. In

the ROC curves here, the true positive rate means the percentage

of that a JAK2V617F+ myelofibrosis patient is correctly predicted

as JAK2V617F+ myelofibrosis, while the false positive rate is the

proportion of that a JAK2V617F+ PV or ET individual is

classified falsely as JAK2V617F+ myelofibrosis. The AUC

represents the area under the ROC curve, indicating the

accuracy and reliability of diagnostic prediction. The results

showed high AUC values of the four genes (OAS1, IFITM3,

GBP1, and GBP2) when distinguishing JAK2V617F+

myelofibrosis from JAK2V617F+ PV or ET (Figure 8C).

Among the four genes, OAS1 had the highest AUC value.

Therefore, these four genes (OAS1, IFITM3, GBP1, and

GBP2), especially OAS1, might possess the potential to be

novel auxiliary diagnostic and predictive indicators of

myelofibrosis, but further research is still necessary in the future.

FIGURE 6
(A) Venn diagram of enriched Reactome pathways of upregulated genes in each MPN subtype compared to HC. Some of the 21 enriched
Reactome pathways uniquely in JAK2V617F+ PMF were shown in the dot plot. The size of the dots represents the number of genes.
The color of the dots denotes the adjusted p value. (B) Top 10 enriched Reactome pathways of 182 upregulated genes uniquely in
JAK2V617F+ PMF were shown in the dot plot. The size of the dots represents the number of genes. The color of the dots denotes the
adjusted p value. (C) Gene set enrichment analysis (GSEA) of the Interferon-related signaling pathways between each MPN subtype
and HC. The size of the dots represents −log10 (NOM p value). The color of the dots denotes the NES. (D) GSEA of the gene set “Interferon
alpha response” between JAK2V617F+ PMF and HC. (E) Expression levels of the gene set “Interferon alpha response” in three MPN subtypes
and HC.
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FIGURE 7
(A) Top 10 hub genes from the PPI network analysis for the upregulated genes uniquely in JAK2V617F+ PMF. Nodes denote encoded proteins,
and edges denote the interaction between two encoded proteins. The color represents the scores ranked by the MCC method. The deeper color
denotes the more important genes having higher scores. (B) Top two significant modules from the PPI network analysis for the upregulated genes
uniquely in JAK2V617F+ PMF. The color and size represent the degrees of the nodes. The bigger size and deeper color denote the more
important genes having higher degrees. (C) Expression levels of the key genes uniquely upregulated in JAK2V617F+ PMF. (D) Correlation of the
expression levels of genes in (C).
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Discussion

Although abundant research about Ph- MPNs has been

performed, the mechanisms of disease onset and progression

in myelofibrosis are still not fully understood. Considering there

are significantly diverse manifestations and prognoses between

the chronic stage and aggressive stage of MPN, it is urgently

needed to identify some reliable biomarkers to predict

myelofibrosis as early as possible, which could also contribute

to early intervention and treatment. Here, we precisely analyzed

the gene expression profiles in different subtypes of JAK2V617F+

MPN (including PV, ET, SMF, and PMF) to provide new

information on pathogenesis and identify novel indicators for

diagnosis and prediction of myelofibrosis.

Inflammation could be an important determinant that promotes

the development and progression of MPN. Recent studies found that

the acquisition of JAK2V617F in HSPCs, leading to the cytokine-

independent activation of JAK-STAT signaling,may occur even during

early childhood and in utero, and there is a very long asymptomatic

period (Van Egeren et al., 2021; Williams et al., 2022). Chronic

inflammation might be one required factor for transformation from

asymptomatic clonal hematopoiesis to overt MPN or even for the

progression fromPV/ET tomyelofibrosis. Studies about inflammatory

cytokines indicated that the levels of IL6, IL2, and sIL2a were elevated

during the progression from PV/ET to myelofibrosis (Panteli et al.,

2005). Here, we also observed the upregulated pathways and genes

strongly associated with inflammation and immune response. For

instance, the chemokine signaling pathway, NF-kappa B signaling

pathway, as well as pro-inflammatory genes (such as S100 family

genes) were upregulated in three JAK2V617F+ MPN subtypes,

consistent with some published findings (Fisher et al., 2017; Fisher

et al., 2019; Baumeister et al., 2021). Some inflammation- and immune-

related upregulated genes (ITGAM, FPR1, Fc Gamma Receptor genes,

TYROBP, NCF2, ARG1, CCL5, and HP), which were undetected in

previously published studies, were also identified in distinct

JAK2V617F+ MPN subtypes in comparison with HC. Additionally,

among three subtypes, JAK2V617F+ PMF has more numbers of

inflammation-related upregulated pathways and genes, suggesting

that the more prominent inflammatory condition is a pronounced

feature of myelofibrosis.

Furthermore, we identified four potentially important genes

(OAS1, IFITM3, GBP1, and GBP2) that were upregulated

uniquely in myelofibrosis. These genes belong to interferon-

stimulated genes, related closely to interferon signaling

(Schneider et al., 2014). Previous studies suggested that

interferon (IFN) and IFN-stimulated genes might be involved

in pulmonary fibrosis (Neville et al., 1997; Berkmana et al., 2001;

Christmann et al., 2014). The low dose of IFN-α could promote

bleomycin-induced lung fibrosis in mice and hamsters, though

this effect was complicated and might also be influenced by IFN

FIGURE 8
(A) Expression levels of four key genes in distinct MPN subtypes andHC from the external datasets. (B)Correlation of the expression levels of the
four key genes in (A). (C) ROC curves of the four key genes for the diagnosis of JAK2V617F+ myelofibrosis in the external datasets.
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preparations (Neville et al., 1997; Berkmana et al., 2001). The

expression levels of interferon-regulated genes (OAS1 and

IFI44) were found to be positively correlated with

progressive lung fibrosis in patients with systemic sclerosis

(SSc)–related interstitial lung disease (ILD) (Christmann

et al., 2014). Additionally, a recent study demonstrated that

a high expression level of IFITM3 could reflect the adverse

prognosis in AML (Liu et al., 2020). However, the roles of IFN

and interferon-stimulated genes in the pathogenesis of

myelofibrosis are still largely unclear. Our previously

published research showed that JAK2 mutant HSCs

displayed increased IFN signaling, which might promote

Mk (megakaryocyte)-biased hematopoiesis (Tong et al.,

2021). There was another study showing that GBP2

overexpression suppressed the erythroid differentiation and

increased the level of matrix metalloproteinase-9 in TF-1 cells

(Lin et al., 2013), which was also found to be increased in

patients with idiopathic myelofibrosis (Xu et al., 2005). These

results suggested the characteristics including

thrombocythemia, anemia, and even bone marrow failure

in myelofibrosis might be related to the increased IFN

signaling, but more evidence should be required in the

future. Overall, the four interferon-stimulated genes (OAS1,

IFITM3, GBP1, and GBP2) exclusively upregulated in

myelofibrosis might not only provide important novel clues

to the MPN field but also offer special insights into the effects

of IFN signaling on the pathogenesis of myelofibrosis.

Inevitably, this study has limitations. Though quite large

numbers of samples and repeated validations from multiple

datasets were applied to minimalize the individual variation,

this study was limited by the lack of detailed clinical information

in these GEO datasets such as variant allele frequency (VAF) of

JAK2V617F, other somatic mutations, disease duration, and

treatment, which remains to be further investigated.

In summary, our study precisely analyzed the gene expression

profiles of CD34+ HSPCs across the different JAK2V617F+ MPN

subtypes. The gene expression signatures in JAK2V617F+ PMFwere to

a large extent distinct from those in JAK2V617F+ PV or ET, although

there were also similar features among them. The upregulation of

inflammation- and immune-related signature genes and especially

IFN signaling might be involved in the pathogenesis and progression

of myelofibrosis. Additionally, the four genes (OAS1, IFITM3, GBP1,

and GBP2) we identified in this study might have the potential to be

auxiliary diagnostic and predictive indicators of myelofibrosis, but

further investigations are still necessary in the future.
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