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Abstract. Increasing the efficiency of parallel software development is
one of the key obstacles in taking advantage of heterogeneous multi-core
architectures. Efficient and reliable compiler technology is required to
identify the trade-off between multiple design goals at once. The most
crucial objectives are application performance and processor power con-
sumption. Including memory power into this multi-objective optimisa-
tion problem is of utmost importance. Therefore, this paper proposes the
heuristic MORAM solving this three-dimensional Pareto front calcula-
tion. Furthermore, it is integrated into a commercially available frame-
work to conduct a detailed evaluation and applicability study. MORAM
is assessed with representative benchmarks on two different platforms
and contrasted with a state-of-the-art evolutionary multi-objective algo-
rithm. On average, MORAM produces 6% better Pareto fronts, while it
is at least 18× faster.

Keywords: Power-performance trade-off · Mapping · Heterogeneous ·
MPSoCs · Multi-objective optimisation · Pareto

1 Introduction

For today’s computational requirements of the embedded domain, heterogeneous
Multi- and Many-Processor Systems-on-Chip (MPSoCs) provide the best trade-
off for power, performance and cost requirements. However, developers writing
applications for MPSoCs are forced to consider the increased hardware complexi-
ties all at once. Moreover, power management techniques, such as Dynamic Volt-
age and Frequency Scaling (DVFS), have to be set carefully to handle power bud-
gets efficiently. Especially for high-performance embedded applications, memory
power consumption has a share of up to 46% of the entire system power [11,16].
Hence, fast and accurate compiler technology has to ease software development
and determine the trade-off between all requirements.

Consequently, it is not a coincidence that the simultaneous optimisation of
different goals is the next evolution towards optimised software [6,12,13,15,18].
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This simultaneous optimisation is essentially a Multi-Objective Optimisation
Problem (MOOP), which is known to be NP-hard [25]. The main research focus
is still towards application performance and Processing Element (PE) power
consumption, neglecting the impact of the memory to the entire power share.
Therefore, this paper presents a solution for this three-dimensional MOOP. Com-
pared to single-objective optimisation, an entire set of non-dominated optimal
solutions is determined. This set is also known as Pareto front. These precom-
puted solutions can be used during execution of the application to select the
most appropriate configuration dynamically [22,23].

In the literature, there are numerous multi-objective optimisation algorithms,
e.g. particle swarm optimisation [31,32]. However, a widely utilised family of
algorithms suitable for MOOPs in the context of MPSoC optimisation are Evo-
lutionary Multi-Objective Algorithms (EMOAs) (Sect. 2). EMOAs are preferred
as they find close-to-optimal solutions. They are general-purpose search strate-
gies, population-based and inspired by biological evolution. However, EMOAs
are performance sensitive to their hyperparameter setup. Also, the deterioration
in solution quality is significant when the computational resources are restricted.

Much attention has also been paid to ensuring comprehensive tool flows.
Examples are HOPES [14], DAEDALUS [29] or MAPS [19], and SLX [2].

As a consequence, this work proposes the novel heuristic MORAM designed
to calculate three-dimensional Pareto fronts. The MOOP considers the objec-
tives application performance, PE and memory power consumption for software
application mapping on MPSoCs. The solution quality is comparable with a
state-of-the-art EMOA implementation, while the computation is much faster.
Further, MORAM is integrated into SLX to enable the evaluation of the appli-
cability and quality. The case studies are based on representative benchmarks
and two different hardware platforms: ODROID-XU3 [1], and an in-house Het-
erogeneous Many-core Virtual Platform (HeMVP).

2 Related Work

For single-objective problems, heuristics find satisfactory solutions in a short
time frame by extracting and integrating the MPSoC platform and applica-
tion features [27]. As the MOOP solution space is significantly larger, heuris-
tic approaches are commonly not considered. To mention one example that
addresses an MOOP, the authors of [10] present a heuristic which computes
the Pareto front for two objectives: application performance and PE power.
It achieves comparable solutions but with considerably faster speed than an
EMOA.

More popular approaches for MOOPs are machine learning models, getting
the best power-performance trade-off. The authors of [6] propose run-time opti-
misation of task mapping, voltage and frequency selection. A library is generated
storing the Pareto optimal system configuration for minimum power and maxi-
mum performance. At run time, the most appropriate configuration is selected.
In [13], a multinomial logistic regression classification is used to map a set of
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classifiers offline to Pareto optimal platform configurations. During run-time,
these classifiers are invoked to select the most suitable configuration for the
current system load. A later approach applies Deep Q-Learning to dynamically
control the processor type, their number and frequency [12]. Similar to all these
run-time methods, design-time training is necessary. With the heuristic app-
roach of the paper at hand, there is no need to apply a machine learning model.
Pareto optimal configurations are available immediately after the execution of
the heuristic.

Software mapping optimisation based on EMOAs is presented, e.g. in [18].
Following the divide-and-conquer principle, a decomposition approach avoids
handling the entire MOOP at once. The workload balancing for each proces-
sor, cluster and communication network is computed independently. A post-
optimisation step captures the final Pareto front of this mapping problem. In [15],
the two objectives application performance and memory energy consumption are
optimised based on EMOAs. The latter comes closest to the approach proposed
in this work. The heuristic of this paper optimises for performance, processor
power and memory power consumption as a three-dimensional MOOP.

3 System Model

For the exploration and modelling of the mapping problem, SLX requires an
application written in C for Process Networks and an MPSoC platform model
as input. The tool offers heuristics to optimise for performance, PE power con-
sumption, or solving the MOOP of both objectives [5]. A target-specific code
generator translates the parallel code including the output of these heuristics
into plain C code that is fed into the MPSoC compiler.

3.1 Application Model

The Kahn Process Network (KPN) model of computation is a well-known app-
roach for modelling parallel behaviour [17]. Processes execute deterministically
and sequentially, and communicate via unbounded point-to-point First-In First-
Out (FIFO) channels. As a consequence, the mapping problem is reduced to the
optimal distribution and mapping of the processes and selection of the appro-
priate power modes.

KPN applications are described as directed graphs, i.e. A = {Z, C}, where
Z is the set of the application processes and C is the set of directed FIFO
channels. Via the FIFO channel cij ∈ C, a process zi ∈ Z can communicate
with process zj ∈ Z. For the implementation of KPN applications in ANSI-C, a
small set of keywords form C for Process Networks (CPN). With this, processes
and channels, and the required operations for accessing them are described. As
unbounded FIFO channels cannot be realised, the minimum size is chosen that
allows deadlock-free execution of the application.

In order to assess the application and generate timing and power informa-
tion, an event-driven approach simulates a CPN application. The combination
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of static and dynamic profiling enables the computation of process and total
execution time, as well as individual and collective power values. The dynamic
profiling collects traces that contain the execution dependent behaviour of the
application, such as write accesses to output channels. This timing simulation
engine estimates the execution time, including communication within a 20%
error margin [4].

3.2 MPSoC Model

The MPSoC platform model specifies, e.g., memory and communication archi-
tecture, and type and number of PEs. An MPSoC platform L is modelled as
a directed graph: L = {R,E}, where R is a set of hardware resources present
in the platform and E defines a set of connections. In this paper, R contains
a set of all PEs Q, all memories M, and all caches K, with R = Q ∪ M ∪ K
and (Q ∩ M) ∪ (Q ∩ K) ∪ (M ∩ K) = ∅. The set Mq = {m1,m2, ...} denotes all
memories reachable by q ∈ Q.

A write Hardware Channel (HWC) is the path from q to a reachable m ∈ Mq

using connections {e1, e2, ...} ∈ E, crossing caches {k1, k2, ...} ∈ K. For read
HWCs, the direction is the opposite. FIFO channels are assigned to HWC after
the processes Z are mapped to Q. An HWC consists of a write HWC starting
at the source PE qi and a read HWC ending at sink PE qj . Both write and read
HWC use the same m ∈ {Mqi ∩ Mqj}. Existing heuristics take care to choose a
reachable m that is closest to both PE.

Power information is defined for each PE and memory. Hardware resources
connected to the same power supply are part of a common voltage domain.
Similarly, all resources connected to the same clock are part of the same
frequency domain. The underlying power model consists of the basic CMOS
power consumption parts, i.e. leakage power P s

f,i = I · Vf and dynamic power
P d
f,i = C · f · V 2

f , where i indicates the hardware resource, I denotes the leak-
age current, Vf is the permitted minimum voltage for frequency f , and C is
the switching capacitance and f the operating frequency. In [21], it is shown
that with this model, power estimates for PEs including L1 caches are possible
with about 9% error on average. The memory power model achieves average
estimation errors of 15% (DRAM) and 11% (SRAM).

4 Multi-objective Optimisation

The objective functions are evaluated by simulating the task mapping and plat-
form power configuration. The objective space has 3 values: the execution time of
the application te, the average power consumed by the PEs PQ and the average
power consumed by the memories PM. The following reasoning explains why
it is sufficient to not include memory allocation in the decision space. It only
consists of the process mapping and the platform power configuration, i.e. the
selection of voltage and frequency.
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Due to the principles of KPN, source processes send their data to destination
processes via the FIFO channels. This procedure requires writes and reads to the
memory because the FIFO buffer is allocated there and contributes to increment
the memory power consumption. By changing the process-to-PE mapping, the
access behaviour to the underlying memory hierarchy is implicitly influenced.

For single shared main memory systems, the effectiveness of the caches can
be exploited with an optimal mapping and thus the memory power reduced. In
the case of distributed memories of different size or purposes, i.e. scratchpad
or shared, it makes sense to allocate the FIFO buffer always to the most local
memory (Sect. 3.2). If the source and destination process are assigned to PEs
that do not share a scratchpad, the HWC is, e.g., routed via the main memory.
The consequence is higher memory power consumption and slower application
execution time.

4.1 Problem Definition

For the formal problem definition, the processes Z and available PEs Q are
part of the inputs. The platform power configuration set C is also required and
taken from the platform model. C contains the set of possible frequencies F ,
the permitted minimum voltage Vf for a selected frequency f , the switching
capacitance C and the leakage current I for every hardware resource. The CPN
simulation engine computes te, PQ and PM according to Eq. 1, 2 and 3.

te =
∑

q∈Q

∑

z∈Z

Mz,q

fk,q
(tcz,q + tsz,q) (1)

PQ =
∑

q∈Q

∑

z∈Z
P d
f,qMz,q + P s

f,q (2)

PM =
∑

m∈M
P s
m + P d

m · um (3)

The number of cycles used by z scheduled on q are given with tcz,q. The simulated
inter-process dependencies and concurrencies are considered with tsz,q, namely
the latencies incurred by context switches and FIFO data communication, i.e.
delays caused by the HWCs. The utilisation of the memory um is calculated
using the HWC access activity trace, which is generated by the CPN simulation
engine. Mz,q = 1 indicates that process z is mapped to PE q.

The resulting minimisation problem is given in Eq. 4, where (4b) and (4c)
define that each process is mapped on exactly one PE.

min f =
(
te, PQ, PM)

(4a)

s.t.
∑

q∈Q
Mz,q = 1, ∀z ∈ Z (4b)

Mz,q ∈ {0, 1}, ∀z ∈ Z, ∀q ∈ Q (4c)
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4.2 Heuristic: MORAM

MORAM finds a Pareto front approximation for the objectives application exe-
cution time te, PE and memory power consumption, PQ and PM. As invoking
the CPN simulation engine is a major bottleneck, and due to the large search
space, a pruning step is necessary. This procedure is taken from [10]. The authors
prove that this reduces the search space effectively and application-independent.
The final Pareto front is generated on the basis of this reduced exploration
space. The heuristic contains further techniques reducing the amount of CPN
simulation engine calls.

Algorithm 1 shows the entire pseudo code of MORAM with the input sets:
PEs Q, the processes Z, and all platform power configurations C. The heuristic
outputs the final Pareto front in form of the objective value vectors te ∈ R

|PP |,
PQ ∈ R

|PP |, PM ∈ R
|PP |, with |PP | being the number of the final Pareto points.

Further, the corresponding platform power configurations C ∈ R
|PP |×|Q|×2 con-

tain the selected frequency and voltage per PE and Pareto point. Also, the pro-
cess mappings M ∈ {0, 1}|PP |×|Z|×|Q| are part of the output. In the following,
the individual steps of MORAM are discussed.

PruneSearchSpace. First, a pre-pruning phase is necessary if |C| is very large
to keep the run time of the entire pruning phase acceptable. To formalise this, a
user-defined number N enables a uniform distributed random process, selecting
N platform configurations, as shown in line 6–8. The uniform distribution ensures
a representative selection of all possible C. According to [10], a reasonable choice
of N would be N = 105.

Second, a classification and selection procedure is performed based on two
qualifiers: Total Nominal Power (TNP) and the Execution Time Indicator (ETI)
(lines 9–11). The TNP value for a c ∈ C is computed as given in Eq. 5. The ETI
reflects an execution time approximation, where the processes are assumed to
have all input data available and are ready to execute. Also, the process-to-PE
assignment is not done to remain mapping independent. The execution time is
calculated for every PE type Qtype ⊆ Q. Hence, inter-process dependencies and
concurrencies are not considered in Eq. 6.

PTNP =
∑

q∈Q
P d
f,q + P s

f,q (5)

tETI =
∑

q∈Qtype

∑

z∈Z
tcz,q/fq (6)

A configuration is considered non-dominated, if no other configurations with
lower PTNP and tETI are available (line 12). As there are too many remaining con-
figurations C′, only a fraction is selected (lines 13–15), namely every �log2(|C′|)	.
This log2 based selection size causes an efficient reduction of the solution space,
trading subsequent algorithm run time with potential Pareto front candidates.

Originally designed for two objectives, this pruning procedure provides a
notion of whether c ∈ C is a potential candidate for the final Pareto front.
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Algortihm 1: Heuristic MORAM

Input: Q, Z, C
Output: M ∈ {0, 1}|PP |×|Z|×|Q|, C ∈ R

|PP |×|Q|×2, te ∈ R
|PP |, PQ ∈ R

|PP |,
PM ∈ R

|PP |, with |PP | being the number of the final Pareto points
1 Function MORAM()
2 Cpareto = PruneSearchSpace(Q, Z, C);
3 {M, C, te, PQ, PM} = GetParetoFront(Q, Z, Cpareto);

4 return Mz,q∀z∀q, C∀q, te, PQ, PM;

5 Function PruneSearchSpace(Q, Z, C)
6 if |C| > N then
7 Cnew = N randomly selected entries of C;
8 C = Cnew;

9 foreach c ∈ C do
10 c.TNP = calculate total nominal power;
11 c.ETI = calculate execution time indicator;

12 C′ = non-dominated c ∈ C according to TNP and ETI; sort ascending by ETI;

13 for i = 0; i < |C′|; i +=
⌊
log2(|C′|)⌋ do

14 Cpareto.append(C′.at(i));

15 return Cpareto

16 Function GetParetoFront(Q, Z, Cpareto)
17 foreach c ∈ Cpareto do
18 set c; fsize = |c.frequencyDomains|;
19 process mapping to q ∈ Q with lowest TNP; calculate PM, PQ and te;
20 for x = 2, i = 0; i < fsize; x++ do
21 i = Fibonacci(x);
22 if i > fsize then
23 i = fsize;

24 Qi = take all q ∈ Q within i frequency domains with lowest TNP;

25 process mapping with minCut(|Qi|); calculate PM, PQ and te;

26 process mapping with merge(|Qi|); calculate PM, PQ and te;

27 return all non-dominated c ∈ Cpareto AND process mappings according to PM, PQ

and te;

Figure 1 exemplifies that Cpareto forms already a good approximation, when
computing a minCut(|Q|) mapping for demonstration purposes. This minCut
mapping strategy is explained in the next section.

Fig. 1. Process mapping with minCut(|Q|) for each c ∈ Cpareto, audio filter and HeMVP
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GetParetoFront. MORAM computes three different types of mappings during
the Pareto front generation: (i) A graph splitting approach is applied on the basis
of minimum cuts, dubbed minCut. It focuses on outputting minimum memory
power mappings. The KPN graph A of the application is first treated as a single
set. After one cut, two sets are produced, which can be mapped to the available
PEs. The minimum cut algorithm of [30] is used to keep the FIFO channel
communication costs between the new subsets minimised. These cuts are done
|Q| times to have as many subsets as PEs available.

(ii) A graph merging approach is chosen to start from the opposite side
than minCut, dubbed merge. It is chosen to generate mappings with maximum
performance. Each node of the KPN graph A is considered as an individual set.
Subsets are grouped if they have high FIFO channel communication cost but
do not have a high processing load after being merged. These considerations are
necessary to achieve optimal performance with low communication cost. Due to
the brevity of this paper, the merge procedure cannot be discussed in detail. In
brief, the notion of attraction and repulsion forces acting on the subsets is used.
The former occurs for high FIFO channel communication and is calculated on
the basis of FIFO channel sizes. Repulsion forces between subsets are high if the
processing load of the individual subsets is high. It is based on the ETI value.

(iii) Assigning all processes to the PE which has the lowest TNP is done to
get a mapping solution with the slowest execution time and lowest power values.
In other words, a corner case of the Pareto front is ensured to be included in the
final approximation of the non-dominated set.

The entries of Cpareto are input to the final Pareto front calculation and
considered further (line 17). For each c ∈ Cpareto, mapping type (iii) is computed
(line 19). Type (i) and (ii) are evaluated on the granularity of the frequency
domains to save run time and iterate more coarse through the added parallel
computation options (lines 20–26). Starting with one domain that hosts PEs
with minimum TNP, mapping is done utilising only a few PEs to save power.
With every added domain, more PEs are considered. With this procedure, the
number of idling PEs, which switch to a low power mode, can be maximised in
the beginning. Further, distributing the processes among more PEs offers better
performance but causes higher PE and memory power consumption.

In case of a high number of frequency domains, it is not necessary to increase
the current frequency domain count linearly, due to Amdahl’s law. It describes
the theoretical speed-up when increasing the PE count for parallel applications.
Approximating resulting speed-up curve requires the most samples in the begin-
ning, as the curve levels out. The best approximation is the Fibonacci series
because adding a frequency domain results in several added PEs.

In the end, MORAM computes the final Pareto front based on all c ∈ Cpareto

and process mappings that are non-dominated for the three objectives (line 27).

5 Experimental Results

The experimental results consist of two case studies to evaluate the quality and
performance. The comparison Pareto front is calculated with the R2-EMOA.
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The speed-up of MORAM is computed in relation to the R2-EMOA. The solu-
tion quality is indicated with the Hypervolume Indicator (HI) to identify which
Pareto front is superior. A non-dominated front is considered better if its solu-
tions are well distributed across the objective space and cover a larger area for
each objective value. The HI compresses these conditions, i.e. diversity and dom-
inance into one single value. It is the only method mentioned in the literature
that achieves these Pareto-compliant conditions as unary indicator [8].

The comparison Pareto front is calculated with the indicator EMOA pre-
sented in [10], dubbed R2-EMOA. It has been chosen because R2 indicator based
EMOA are proven to be efficient and less computational expensive in objective
domains ≥3 [9]. Two variants are used. The unconstrained R2-EMOA has a pop-
ulation size of 100 and does 6000 evaluations. The constraint variant is limited
to a population with 50 individuals and an iteration count of 600.

Execution times and power estimates are solely computed using the CPN
simulation engine, due to sufficient accuracies (3.1 and 3.2). A set of representa-
tive parallel applications is used [7]. The number of processes is given in brackets:
audio filter (11), JPEG encoder (24), multiple input multiple output orthogo-
nal frequency division multiplexing MIMO OFDM transceiver (36), space-time
adaptive processing STAP (16), and sobel filter (5). In-house implementations
complement the benchmark set: an LTE uplink receiver physical layer bench-
mark LTE (19) [28], and a Mandelbrot set computation with 16 Man16 and 150
Man150 worker processes round off the benchmark set, Discrete Cosine Trans-
formations DCT (8) typically used in video compression.

Table 1. MORAM HI performance relative to constrained R2-EMOA

ODROID-XU3 HeMVP

Audio filter −1.1% ++

DCT −1.6% ++

JPEG −2.7% ++

LTE −3.6% ++

Man150 ++ ++

Man16 + ++

MIMO OFDM ++ ++

Sobel filter −7.9% −0.1%

STAP + ++

+: Better than constrained R2-EMOA
++: Better than unconstrained R2-EMOA

5.1 Case Study: ODROID-XU3

The ODROID-XU3 board [1] is built around the Samsung Exynos-5422 proces-
sor with ARM big.LITTLE architecture. The frequency ranges from 200 MHz
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to 1400 MHz (little) and 2000 MHz (big) in steps of 100 MHz per cluster. The
ODROID-XU3 supports two levels of coherent caches. Each core has its own
set of private L1 instruction and data caches. Per cluster, a shared L2 cache is
deployed, which is connected to a 2 GB LPDDR3 DRAM running at 933 MHz.
The operating system takes care of automatically setting the most efficient volt-
age.

The run time of MORAM ranges between 1.5 s and 138 s. Compared to the
constrained R2-EMOA, the minimal speed-up is 27× and 200× on average. The
run time numbers are shown in Fig. 2. Table 1 gives an overview of the HI mean
performance relative to constrained and unconstrained R2-EMOA. MORAM cal-
culates Pareto fronts that are less than 8% worse compared to the constrained
R2-EMOA for half of the benchmarks. In four cases, the R2-EMOA is outper-
formed. Averaging over all cases, the constrained R2-EMOA is 1% better.
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Fig. 2. R2-EMOA and MORAM run times for ODROID-XU3
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Fig. 3. R2-EMOA and MORAM run times for HeMVP

5.2 Case Study: HeMVP

A SystemC [3] in-house virtual prototype, dubbed HeMVP, models a heteroge-
neous platform with a hierarchical structure. The platform subsystems consist
of either one ARM Cortex-A9 or ADSP Blackfin 609 DSP (BFIN), with private
incoherent L1 instruction and data caches. A local memory (1 MB, the same
frequency as the PE) is available per subsystem. Four ARM and four BFIN
subsystems are combined into a cluster, which also contains a bus and memory
(4 MB, 250 MHz). Four clusters are connected globally with a bus, which grants
access to shared memory (128 MB, 100 MHz).



66 G. Führ et al.

The HeMVP has a total of 32 PEs. Two subsystems of same PE type are
grouped into a frequency domain, while four share the same voltage domain. The
frequency ranges from 200 MHz to 1200 MHz for the ARMs, and from 100 MHz
to 500 MHz for the Blackfins. For both, the step size is 100 MHz. This leads to
|C| = 8.4 · 1013.

The bare metal runtime environment sets the lowest applicable voltage per
voltage domain automatically. Further, it takes care of powering down unused
PEs to a clock gated state. Memories that have no data assigned to are powered
off entirely. All three memory levels can be used to store the data of FIFO chan-
nels. Also, cluster memories host the data structures for synchronisation. The
shared memory provides stack, heap and shared code. The memory modelling
engine of [24] is used to generate viable power traces. For ARM and BFIN, the
power models presented in [20,26] are deployed.

The aforementioned N is set to 105 to enable the pre-pruning step, as rec-
ommended in [10]. The run times for MORAM and the constrained R2-EMOA
are shown in Fig. 3. Due to the larger |C| and mapping options, MORAM com-
putes between 1.8 min and 18 min. This is at least 88× and on average 278×
faster than the constrained R2-EMOA. Further, Table 1 reveals that the heuristic
computes Pareto fronts with an HI almost always better than the unconstrained
R2-EMOA. On average, MORAM is 4% better.

The reason results from domain knowledge which is explained as follows. The
memory assignment of FIFO channel buffers is done implicitly, as explained in
Sect. 4. The design of MORAM accounts for the process-to-PE dependent HWC
placement. However, the R2-EMOA falls into the category of meta-heuristics.
They incorporate none to just a few assumptions about the addressed optimi-
sation problem. This has the advantage that it can be used for a much wider
variety of problems. The drawback becomes visible for this MOOP in the form
of the missing domain knowledge.

6 Conclusion

This paper proposed a software mapping heuristic approach which solves the
three-dimensional optimisation problem of application performance, memory
and PE power. Pareto fronts could enable trade-off evaluation and serve as an
alternative to established methods for the training of online optimisation algo-
rithms. The applicability and the quality of MORAM were evaluated using two
different case studies and a state-of-the-art indicator based EMOA. The heuristic
computed Pareto fronts for the ODROID-XU3 and the targeted representative
benchmarks at least 80× faster, while having an HI 1% worse compared to the
constrained R2-EMOA. Furthermore, testing the heuristic in a highly complex
search space scenario, the HeMVP showed a minimum speed-up of 88×. On
average, a 4% better HI compared to the unconstrained version was achieved.
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