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The worldwide rapid spread of the severe acute respiratory syndrome coronavirus 2 has
affected millions of individuals and caused unprecedented medical challenges by putting
healthcare services under high pressure. Given the global increase in number of cases and
mortalities due to the current COVID-19 pandemic, it is critical to identify predictive features
that assist identification of individuals most at-risk of COVID-19 mortality and thus, enable
planning for effective usage of medical resources. The impact of individual variables in an
XGBoost artificial intelligence model, applied to a dataset containing 57,390 individual
COVID-19 cases and 2,822 patient deaths in Ontario, is explored with the use of SHapley
Additive exPlanations values. The most important variables were found to be: age, date of
the positive test, sex, income, dementia plus many more that were considered. The utility of
SHapley Additive exPlanations dependency graphs is used to provide greater
interpretation of the black-box XGBoost mortality prediction model, allowing focus on
the non-linear relationships to improve insights. A “Test-date Dependency” plot indicates
mortality risk dropped substantially over time, as likely a result of the improved treatment
being developed within the medical system. As well, the findings indicate that people of
lower income and people from more ethnically diverse communities, face an increased
mortality risk due to COVID-19 within Ontario. These findings will help guide clinical
decision-making for patients with COVID-19.

Keywords: artificial intelligence, COVID-19, SHAP (shapley additive explanation), XGBoost (extreme gradient
boosting), mortality, co-morbidity

INTRODUCTION

With issues of the second wave of the COVID-19 pandemic ongoing in 2021 and the world in a
continuing crisis, interest continues to escalate to improve the understanding of features
resulting in virus caseload increases. In response, of particular interest are opportunities to
improve modeling prediction capabilities which can provide more accurate information as it
becomes available from the first and second waves of COVID-19. In this regard, until recently,
data security and privacy issues have limited accessibility to alternate and detailed data sources,
but opportunities are opening up and showing real potential. As an example, improved access to
Ministry of Health for Ontario, enabled Snider et al. (2021) to develop powerful artificial
intelligence (AI) models that are now able to predict mortality and recovery of COVID-19
patients with a high degree of accuracy; the models developed were based on data from Ontario
Health Data Platform (February 22, 2020-October 20, 2020), utilizing extensive and detailed
data for 57,390 individual COVID-19 cases.
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Al models in general, and Snider et al. (2021) in particular,
provide dimensions including the ability to uncover and
understand the value of an array of “base” information,
including co-morbidity data, that influence mortality rates
including at the case-by-case level. Findings on the risks of
mortality for individual patients have the potential to influence
many important actions such as helping identify “most at-risk
populations” thus providing insights on hospitalizations/medical
strategies and opportunities to aid delivery of COVID-19
vaccination priority strategies in the future.

The findings and predictions made available from use of
logistic regression and other AI models, have excellent
potential, when caseload data are available. Specifically, the
models of Snider et al. (2021) demonstrated excellent
discrimination with all model’s area under the curve (AUC)
exceeding 0.948, with the greatest being 0.956 for an XGBoost
(Extreme Gradient Boosting) model. Hence, this paper advances
the knowledge in mortality risk of COVID-19 patients in Ontario,
Canada, by calculating and exploring SHapley Additive
exPlanations (SHAP) values of parameters used for the
XGBoost Al model developed by Snider et al. (2021). Most
importantly, these models provide specifics on the causative/
impactful inter-relationships, which allow extraction of
additional information from datasets and exceed the
information provided by logistics models since logistic models
assume a specific type of relationship between input and output,
whereas the machine learning models allow capture of a more
flexible relationship. In order to see the exact form of the
relationship, SHAP dependance plots were made and analyzed
for 4 principal features driving the XGBoost mortality prediction
model. Hence, these provide indications detailing the importance
of the individual variables that can be used to characterize co-
morbidities that can be important indicators as to whom may be
most susceptible to mortality and more likely to be in need of
intensive medical needs, arising from the COVID-19 virus. Also,
the relationships identified using this approach between
parameters such as co-morbidities and other risk factors
associated with COVID-19, and the corresponding impact on
the mortality prediction XGBoost model, provide information
which can be of great value in designing effective non-
pharmaceutical interventions (NPIs) and vaccination schedules.

REVIEW OF TECHNICAL LITERATURE

The impressive predictive capabilities of Al have resulted in Al
models being adopted across a wide range of disciplines. Their
excellent performance in some areas of investigation arises largely
due to the ability of AI models to identify and to model complex
patterns between input variables and the predicted output.
However, the AI model’s complexity often makes it difficult to
identify the relationships between the input variables and the
output, resulting in most advanced AI models being classified as
“black-boxes”.

These so-called black-box models can be very accurate in their
predictions but leave the users wondering how individual factors
contribute to the model’s final prediction. A number of dynamic

SHAP Values of COVID-19 Risk-Factors

and statistical models of COVID-19 outbreaks including SEIR
models (which assign individuals to the susceptible (S),
exposed (E), infected (I), and recovered (R) classes) have
previously been used to study and analyze transmission
(Hellewell et al., 2020; Tuite and Fisman, 2020; Kucharski
at al., 2020). However, these epidemiological models require
values for unknown parameters and rely on many assumptions
(Hu at al., 2020). Interest in understanding how the individual
factors contribute has resulted in a variety of interpretable
machine learning techniques being developed in recent years
to assist in the interpretation of the impact of specific input
variables on the final prediction (Molnar, 2019). This
information is critical in promoting the gaining of trust in
the AI model, as well as providing insights into which variables
are important, and identifying key relationships that influence
the AI models’ final prediction.

Al models have played a major role during the COVID-19
pandemic, through COVID-19 case identification, predicting
transmission scenarios, and identifying the mortality risks of
specific COVID-19 patients (see e.g., Li et al., 2020a; Boulle
et al., 2020; Li et al., 2020b; Dhamodharavadhani et al., 2020).
A significant focus has been placed on ensuring these models are
interpretable, to allow a better understanding of the factors
contributing to the predictions of patients’ outcomes, and to
help inform responses.

Some researchers have selected AI models that are
interpretable by design, such as logistic regression and
decision trees. Yan et al. (2020) used decision trees and
blood samples to interpret and identify mortality
prediction for COVID-19 patients using blood samples.
Fisman et al. (2020) used logistic regression models to
predict mortality risk of COVID-19 patients; their logistic
regression model quantifies the weight of each input variable
to the final prediction, making it straightforward to
determine how the model is calculating the overall
COVID-19 mortality risk. A similar study by Quiroz et al.
(2021) developed a logistic regression model using clinical
and imaging data from two hospitals in Hubei, China, for
automated severity assessment of COVID-19 for individual
patients, obtaining an AUC of 0.950 using a combination of
clinical and imaging features. They interpreted the
importance of features using SHAP values and found
patients in severe conditions had co-morbidities which
included cardiovascular disease, diabetes, hypertension and
cancer which is similar to findings obtained from previous
studies (see e.g., Petrilli et al., 2020; Richardson et al., 2020;
Shi et al., 20205 Siordia, 2020). Thus, interpretable machine
learning techniques help address the most significant
limitation of machine learning ie., the lack of
transparency due to its’ black box nature, however, there
are trade-offs between the accuracy of predictions and
interpretability with such models (Du et al, 2020).
Overall, interpretable AI algorithms such as logistic
regression and decision trees allow for the user to identify
the weights associated with the model’s input variables, but
these approaches are often less accurate compared to black-
box models (see e.g., Murdoch et al., 2019; Snider et al., 2021).
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TABLE 1 | Characteristics of 57,390 Ontario residents with COVID-19.

SHAP Values of COVID-19 Risk-Factors

Variable Description Range of values
Age Age in years, as of Jan 1, 2020 0-105
Test date Test date Feb—Oct 2020
Sex Indicator variable for sex 26,861 M=1,F=0)
Hypertension Chronic hypertension, as of Jan 1, 2020 15,778 (0,1)
LTC resident LTC resident, as of Jan 1, 2020 5,179 (0,1)
Chronic_dementia Chronic dementia diagnosed, as of Jan 1, 2020 4,746 (0,1)
Chronic_odd Chronic diabetes diagnosed as of Jan 1, 2020 9,002 (0,1)
Ethnic concentration quint. Calculated from Ontario marginalization index, based on census designation. Refers to visible minorities and/or (0-5)2
recent immigrants
Commuter concentration % Of people that commute within census designated area - converted to quintiles (0-5)2
quint
Median income quint. Median income within census-designated area - converted to quintiles (0-5)2
Charl Charlson co-morbidity index. Only 2,059 patients with charl above 0. (0-10)
Household size quint. Avg. Household size within census-designated area - converted to quintiles (5 being the highest, O = missing DA (0-5)
info).
CKD Chronic kidney disease. 2,523 (0,1)
Cancer Cancer index 2,995 (0-1)
Chronic_copd Chronic obstructive pulmonary disease 4,030 (0-1)
Chronic_asthma Asthma 9,100 (0-1)
Chronic_chf Congestive heart failure 2,257 (0-1)
Stroke If patient suffered a stroke previous to Jan 1, 2020 1,016 (0-1)
Cardiac ISCH Cardiac ischemia 1,916 (0-1)
Rural Indicator if a patient lives in a rural residence 1,746 (0-1)
Chronic_ra Rheumatoid arthritis 567 (0-1)
Tia Transient Ischemic Attack 722 (0-1)
immuno_comp Immuno-compromised 237 (0-1)
Thala History of Thalassemia 36 (0-1)
Cases recovered 54,568
Cases died 2,822

(0 referring to missing information).

For a critical discussion in a clinical context, see the work by
Christodoulou et al. (2019).

Another technique is to apply model agnostic
interpretation methods to black-box models to investigate
the relationship between inputs and the model’s prediction. A
leading agnostic method to interpret black box AI models is
through the use of SHAP values (Molnar, 2019). Barda et al.
(2020) explored their black-box mortality prediction model
for Israel’s COVID-19 patients using SHAP values to
estimate the contribution of individual features to the
overall model predictions. The calculated SHAP values
identified the importance of several demographic attributes
that the model determined important in predicting COVID-
19 mortality (for example, age and cardiovascular disease)
but the model used by Barda et al. (2020) has limited
individual-level data, making it difficult to explore key
relationships between COVID-19 patients and mortality,
such as income level and ethnicity.

MATERIALS AND METHODS

The following sections describe the datasets and models
developed by Snider et al. (2021) to predict mortality risk of
COVID-19 patients in Ontario, Canada. The SHAP value
methodology and application used to explore the black-box
prediction models are then outlined.

Dataset Description
The Ontario Health Data Platform (OHDP) was used in this

research to assemble extensive data regarding COVID-19 patients
within Ontario. The OHDP dataset contains epidemiological and
demographic  information,  recovery/mortality  outcome
information and co-morbidities of individuals residing in
Ontario. The attributes which proved most useful by the Al
models are listed in Table 1. Co-morbidities and age were
collected from patient health records as of January 1, 2020;
hence, diagnosis of additional medical conditions after this
date were excluded. Of the 57,390 cases included in the
dataset, 2,822 patients died of COVID-19 and the remaining
54,568 either recovered from COVID-19 or remained
hospitalized as of January 1, 2021. Several input variables were
derived using 2016 Canadian census data for the designated area
of the individual patients. Canadian census location information
is based on a size of approximately three blocks and hence is able
to capture representation of ethnicity, income level and other
social differences, and can therefore be considered robust. The
census data includes: ethnic concentration (of residential area),
commuter concentration, median income and household size
(these values are unlikely to change significantly between date of
census and start of pandemic). These values were converted into
quintiles (division of the population into five equal-sized groups
according to the distribution of input variables) with 1 being the
lowest quintile, and 5 being the highest. Individuals with
missing data were not included in these analyses. It is noted
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SHAP Values of COVID-19 Risk-Factors

age | 2.162

testdate | 0.743

sex_M | 0.263
chronic_dementia | 0.180
chronic_hyper | 0.138
Itc_resident_index | 0.129
charl | 0.089

chronic_odd | 0.079
ckdS5year | 0.076
ethniccon_q_da | 0.059
pct_commute_q | 0.058
cancer | 0.057
chronic_copd | 0.053
median_income_q | 0.049
chronic_chf | 0.037
household_size_q | 0.037
cardiac_isch_disease | 0.011
chronic_asthma | 0.008
stroke | 0.008

rural_Y | 0.006

tia | 0.004

chronic_ra | 0.004
immuno_comp | 0.003
thala | 0.000
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FIGURE 1 | SHAP summary plot for XGBoost model.
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that long-term care (LTC) residents in Ontario did not
include census-designated area information and therefore,
data for the LTC residents were represented with a zero value.

Model Development

Snider et al. (2021) compared three black-box machine learning
models which were 1) Artificial Neural Network (Venables and
Ripley, 2002), 2) Random Forest (Wiens and Shenoy, 2018), 3)
Extreme gradient boosting decision tree—XGBoost (Chen et al.,
2021) and one interpretable machine learning model which was
logistic regression (Venables and Ripley, 2002). These models
were adopted because of their high accuracy in binary
classification problems as well as their prevalence/adoption in
previous literature. Prior to model calibration, the dataset was
randomly split into two segments, namely an 80% training dataset
and a 20% testing dataset where each model was calibrated using
the training dataset and assessed for accuracy using the testing
dataset. A grid search approach was used to adjust the hyper-
parameters of the models using a 10-fold cross-validation
technique repeated three times per model and optimized to
produce the maximum area under the receiver operating
characteristic curve (Area Under Curve, or AUC). The
XGBoost model was determined to be the most accurate
model, having an AUC of 0.956. Therefore, this paper explores
the XGBoost model’s relationships between the input variables

and the predicted mortality risk by calculating SHAP values for
each attribute and patient included in the training dataset.
Features such as the public health unit of individual cases
from the same locality/region were excluded when training the
model as such parameters could cause problems if a particular
region has a higher number of patients compared to others.

Shapley Additive Explanation Values

To explore the impact of each variable on the XGBoost’s
mortality model prediction, SHAP values have been used.
SHAP values determine the importance of a feature by
comparing what a model predicts with and without the feature
for each observation within the training data. Specifically, the
SHAP values represent the final AT model’s prediction using the
following equation:

Yi= Yoase T f(X,‘l) + f(X,'z) + ...+ f(x,-N)

The i sample (or patient) is defined as x;, the N represents the
final feature (or input parameter) for the i sample (as defined by
x;n). The predicted value of the AI model is y; and the reference
value, or mean value of the target sample variable, is defined as
Ybase- The function f (x;) is the calculated SHAP value of x;;. The
SHAP values are calculated using SHAP for XGBoost R package
(Liu and Just, 2020) and present the variable contribution on a
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Impact of Age on Mortality
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FIGURE 2 | SHAP plot for Age.

log-odds scale (logarithm of the ratio of high mortality risk to low
mortality risk).

RESULTS AND DISCUSSION

Figure 1 plots the SHAP value for each individual patient within
the training dataset for each input variable. The input variables, as
listed on the y-axis, are ranked from most important (top) to least
important (bottom) with their mean absolute SHAP value
indicated next to the name in Figure 1. The X axis represents
the SHAP value associated with each variable and patient within
the training dataset (i.e., there is a plotted point for each case
based on the influence that the variable has on the prediction of
that case). The color indicates whether the individual patients’
input variable value was high (purple) or low (yellow). For
example, in Figure 1 a “high” age has a high and “positive”
impact on predicting mortality. The “high” comes from the
purple color and the “positive” impact is shown along the X
axis. Note, a range of SHAP values exists for each input variable
value based on the SHAP values calculated for each observation,
and how they independently contribute to the machine learning
model’s predictions.

Overall, age is unquestionably the most important variable for
the XGBoost model. As a patient’s age increases (approaches
purple), the SHAP value impact increases, with a very high age
being associated with an additional 2.5 increase in log-odds. The
test-date when someone tested positive for COVID-19 also has a
strong impact on overall mortality risk; as the positive test date
increases (i.e., later on during the pandemic), the risk of mortality
decreases.

The impact of the SHAP values are easily identified for binary
variables, such as sex, hypertension, whether or not a patient was

SHAP Values of COVID-19 Risk-Factors

an LTC resident, and dementia. Being a Male (i.e., Sex = 1) has an
additional 0.25 increase in log-odds, which indicates males have
an increased risk of mortality. Similar increases are also identified
with people having hypertension. An “LTC residence”
designation is also associated with a significant increase in
mortality, which is consistent with reported large numbers of
outbreaks and deaths of individuals living in LTC homes. Chronic
dementia is the co-morbidity associated with the largest increase
in mortality.

Age

The impact of a patient’s age on the Al model’s mortality risk
prediction can be further explored using a SHAP dependency
graph. Figure 2 depicts the SHAP values associated with patient
ages within the training dataset. As further explanation of the
results, a patient of <20 years of age is associated with a
significant decrease in mortality risk; alternatively, as age
increases, the risk of mortality increases. The non-linear shape
of this figure, as well as the range of values for similar age
highlight some of the advantages of the more complex AI
models compared to less complex models such as logistic
regression. Specifically, the XGBoost model examined here is
able to identify complex patterns, as well as interaction effects that
are often difficult for regression models (for example, logistic
regression) to identify.

Test Date

Figure 3 depicts the SHAP values associated with the “day the
patient tested positive” for COVID-19. Figure 3 indicates that
residents of Ontario who tested positive for COVID-19 early on
in the pandemic (e.g., April 2020) had an increased risk of
mortality. From the data, mortality risk decreased for those
individuals with later positive-test dates with a substantial
decrease in mortality being associated with more recent

Impact of Test Date on Mortality

SHAP Value

Apr Jul Oct
Test Date

FIGURE 3 | SHAP plot for Test Date.
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Impact of Income on Mortality
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FIGURE 4 | SHAP box-plot for median income.

Impact of Ethnic Concentration on Mortality
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FIGURE 5 | SHAP box-plot for ethnic concentration.

months (e.g., September and October of 2020). Comparing
positive test rates (% of tests performed that were positive)
over the same time period identifies that “positivity rates
increased during the period of substantial decrease in
mortality” risk (October-December) (Public Health Ontario,
2021). This indicates that the decrease in mortality is unlikely
a result of less severe cases being identified since positivity rates
increased in October, while the associated risk decreased.
Therefore, the decrease in mortality associated with later test
date is considered more likely associated with improved
treatment within the medical system (Robinson, 2021).

Income

The SHAP values for each median income quintile, based on
census designated area, are depicted as box plots in Figure 4 (note
income data were not available for LTC residents and therefore,
LTC resident data were not included in Figure 4). COVID-19
patients who come from a census area with the lowest median
income quintile have a higher risk of mortality. As the median
income increases, Figure 4 shows the risk of COVID-19 mortality
decreases.

Ethnicity

Ethnic concentrations were calculated based on 2016 census
data for each designated area using the methodology outlined
in the Ontario Marginalization index (Public Health Ontario,
2018). Specifically, ethnic concentration refers to the
proportion of the population within a designated area who
are recent immigrants or belong to a visible minority. The
ethnic concentration was then segmented into quintiles and
the SHAP values for each quintile are depicted using box plots
in Figure 5. COVID-19 patients from census areas with high

ethnic concentrations experience higher levels of mortality
risk, while patients from neighborhoods with low ethnic
concentrations experience lower levels of mortality risk. The
ethnic and income factor results further highlight that
COVID-19 has a greater impact among marginalized
communities within Ontario, Canada.

CONCLUSION

This paper explored an advanced AI mortality prediction
model for COVID-19 patients within Ontario, Canada.
Specifically, SHAP values were calculated and examined in
order to uncover the relationships identified by the XGBoost
model used by Snider et al. (2021). Several key findings are
identified through this research. First, by examining the
average SHAP value for each variable, key attributes related
to mortality risk are identified (Figure 1). Age and test date are
determined to be the leading factors that influence the
mortality risk of COVID-19 patients in Ontario but also
identified as important were sex, dementia, ethnicity, etc. at
lesser degrees of importance.

SHAP dependency graphs are shown to provide very useful
interpretation of the black-box XGBoost mortality prediction
model. This paper explores four key attributes using SHAP
dependency graphs: patients’ age, test-date, income and ethnic
concentration. The Age SHAP dependency plot highlights the
non-linear relationship between the patients age and risk of
COVID-19 mortality, highlighting the significant increase in
mortality risk associated with older patients with COVID-19
in Ontario. The Test-date dependency plot indicates mortality
risk has dropped substantially within Ontario since the start of
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the pandemic. The SHAP values for income and ethnic quintiles
suggests people of lower income and higher ethnic concentrations
face an increased mortality risk due to COVID-19 within Ontario.
Further exploration into these trends will be important as
vaccinations become more widespread around the world, and
with variants of concern becoming more common.

Opverall, Al models have and will continue to play a major role
in understanding and combating the COVID-19 pandemic.
However, to build trust in these models and to gain further
insight, a strong emphasis must be placed on ensuring the results
from these models are interpretable. SHAP values are shown to be
a useful tool to “open up” some of the more complex black box AI
models and uncover the key patterns being modeled. The findings
gathered from the model exploration performed in this paper
further adds to the literature regarding mortality risks associated
with COVID-19 patients and will help guide strategic
interventions and vaccination schedules.

DATA AVAILABILITY STATEMENT

These datasets were linked using unique encoded identifiers and
analyzed at ICES. The use of the data in this project is authorized
under section 45 of Ontario's Personal Health Information
Protection Act (PHIPA) and does not require review by a
Research Ethics Board. Access to datasets: The dataset from
this study is held securely in coded form at ICES. While legal
data sharing agreements between ICES and data providers (e.g.,
healthcare organizations and government) prohibit ICES from
making the dataset publicly available, access may be granted to
those who meet pre-specified criteria for confidential access,
available at www.ices.on.ca/DAS (email: das@ices.on.ca). The
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