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ABSTRACT

Transcription initiation is regulated in a highly or-
ganized fashion to ensure proper cellular functions.
Accurate identification of transcription start sites
(TSSs) and quantitative characterization of tran-
scription initiation activities are fundamental steps
for studies of regulated transcriptions and core
promoter structures. Several high-throughput tech-
niques have been developed to sequence the very
5′end of RNA transcripts (TSS sequencing) on the
genome scale. Bioinformatics tools are essential for
processing, analysis, and visualization of TSS se-
quencing data. Here, we present TSSr, an R pack-
age that provides rich functions for mapping TSS
and characterizations of structures and activities of
core promoters based on all types of TSS sequenc-
ing data. Specifically, TSSr implements several newly
developed algorithms for accurately identifying TSSs
from mapped sequencing reads and inference of core
promoters, which are a prerequisite for subsequent
functional analyses of TSS data. Furthermore, TSSr
also enables users to export various types of TSS
data that can be visualized by genome browser for
inspection of promoter activities in association with
other genomic features, and to generate publication-
ready TSS graphs. These user-friendly features could
greatly facilitate studies of transcription initiation
based on TSS sequencing data. The source code
and detailed documentations of TSSr can be freely
accessed at https://github.com/Linlab-slu/TSSr.

INTRODUCTION

Gene transcription is finely regulated to ensure proper cel-
lular functions. Most transcriptional regulatory signals are

integrated as inputs to control the process of transcrip-
tion initiation (1,2). In eukaryotes, transcription of protein-
coding RNA (mRNA) and several classes of non-coding
RNAs are carried out by the preinitiation complex (PIC)
that consists of RNA polymerase II (pol II) and many gen-
eral transcription factors. PIC assembly occurs at core pro-
moter regions and positions pol II to initiate transcriptions
from transcription start sites (TSSs) (3). Recent studies re-
vealed that transcription of most eukaryotic genes can be
initiated from multiple core promoters, and each core pro-
moter may contain an array of neighboring TSSs (1,4,5).
Furthermore, alternative usage of different core promot-
ers by a gene was found prevalent, which was believed to
play an important role in gene function and regulation (4,5).
Transcription initiation from undesired TSSs was found as-
sociated with many human diseases, such as breast can-
cer, Alzheimer’s disease, etc. (6,7). Therefore, identification
of TSSs and characterization of core promoter activities
are fundamental steps that toward better understandings
of regulatory mechanisms of gene expression and how cells
perform their functions.

Several high-throughput sequencing techniques have
been developed to sequence the very 5′ends of RNA tran-
scripts for TSS identification on the genome scale. Exam-
ples of these techniques include cap analysis of gene ex-
pression (CAGE) (8), nano–cap analysis of gene expression
(NanoCAGE) (9), transcript leader sequencing (TL-seq)
(10), transcript isoform sequencing (TIF-seq) (11), TSS-seq
(12), RAMPAGE (13,14), single-cell tagged reverse tran-
scription (STRT) (15), global nuclear run-on cap (GRO-
cap) (16), MAPCap (17) and STRIPE-seq (18). The 5′end
reads of transcripts generated by these high-throughput
techniques can be used to determine the origins of tran-
scription at single-nucleotide resolution, providing accu-
rate 5′boundary information of genes for genome annota-
tions. In addition, the high-resolution TSS map allows us
to identify core promoters by grouping neighboring TSSs
that form distinct TSS clusters (TCs) (19). Examination of
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sequence context near core promoters facilitates the discov-
ery of core promoter elements and other regulatory motifs,
contributing to a better understanding of the genetic archi-
tecture of gene promoters and regulatory networks. TSS se-
quencing data also quantify the abundance of transcripts
initiated from each TSS and core promoter. The quantita-
tive information is valuable for characterizations of regu-
lated transcription initiation activities in different cell types
or in response to environmental stimuli at the level of indi-
vidual TSS or core promoter.

Another important application of TSS data is to study
core promoter shape, which is the distribution of TSS sig-
nals within a core promoter. Transcription initiation from
some core promoters mainly occurs from one predominant
TSS, recognized as a ‘sharp’ shape of core promoters. In
contrast, transcription initiation activities in some core pro-
moters are highly dispersed, forming a ‘broad’ shape of core
promoters (4,20). Recent evidence demonstrated that core
promoter shape is a genetic trait that reflects distinct regu-
latory mechanisms of transcription initiation (4,20,21). For
example, ‘broad’ core promoters in Drosophila are over-
represented in ubiquitously expressed genes, while ‘sharp’
core promoters are mostly found in tissue-specific expressed
genes (20). Thus, characterization of core promoter shape
could provide valuable insights into studies of regulated
transcription. Several quantification algorithms of core pro-
moter shape have been reported, such as inter-quantile
width of core promoters (22), shape index (20) and pro-
moter shape score (5).

In summary, interrogations of TSS sequencing data are
essential for accurate genome annotation and studies of
regulated gene transcription. Multiple bioinformatics tools
have been developed for analyzing TSS sequencing data,
such as CAGEr (22), TSRchitect (23), CAGEfightR (24),
icetea (17) and TSRexploreR (25). Most of these tools pro-
vide functions for identifying TSSs from aligned sequenc-
ing reads, identifying core promoters, quantification of core
promoter shape, and differential expression analyses. These
bioinformatics tools have greatly facilitated the studies of
transcription initiation. Our previous studies based on a
large collection of TSS sequencing data from various or-
ganisms identified several areas of improvement for bioin-
formatic processing of TSS data (5,26–28). Here, we present
a novel R package ‘TSSr’ by implementing several new algo-
rithms we developed to provide rich functions for process-
ing and comprehensive analyses of different types of TSS
sequencing data. These new algorithms address existing is-
sues related to TSS calling, TSS clustering, filtering of reads
that are generated by technical artifacts, and identification
of bona fide core promoters. TSSr also provides a variety of
utilities for downstream analyses of TSS data, such as an-
notation of core promoters and generation of publication-
quality TSS graphs. These features make TSSr an all-in-one
tool for comprehensive interrogations of TSS sequencing
data.

MATERIALS AND METHODS

Development of TSSr as an R package

We developed TSSr, an R package for comprehensive anal-
yses of TSS sequencing data generated by different library

preparation protocols. TSSr provides a variety of functions
for processing and analysis of TSS data, such as identifica-
tion of TSSs from mapped sequencing reads, core promoter
identification by TSS clustering, core promoter annotation,
quantification of core promoter shape and alternative us-
age of core promoter, inference of enhancers, differential
expression analysis, as well as generation of various vec-
tor graphics for publication (Figure 1). The package also
includes detailed descriptions of each function of TSSr, ex-
ample commands and default parameters. The source code
of TSSr package is available at GitHub https://github.com/
Linlab-slu/TSSr.

Workflow of TSSr

The workflow and functions of TSSr are illustrated in Fig-
ure 1. TSSr accepts two types of input data: read align-
ment files or TSS tables. The read alignment files in com-
pressed binary alignment map (BAM) format are required
if users intend to call TSSs from raw sequencing data. BAM
files can be derived from mapping of either paired-end
or single-end TSS sequencing reads. Users should set ‘in-
putFilesType’ as ‘bam’ for single-end reads and as ‘bam-
PairedEnd’ for paired-end BAM files. To provide more ac-
curate quantification of transcription initiation events at
each TSS, we recommend excluding reads mapped to rRNA
from BAM files before TSS calling and subsequent analy-
ses. Removal of rRNA reads from BAM files can be car-
ried out by rRNAdust (https://fantom.gsc.riken.jp/5/sstar/
Protocols:rRNAdust) based on rRNA sequences provided
by users. rRNAdust adds a value of 512 to the FLAG score
for each rRNA reads, which will be excluded by TSSr during
TSS calling. The reference genome stored as a BSgenome
data package must be provided for TSS calling. TSSr also
accepts TSS tables generated by TSSr or other bioinformat-
ics tools as input data. A TSS table can be a tab-delimited
text file, a BigWig (bw) binary type file, or browser extensi-
ble data (bed) type file. A tab-delimited TSS table contains
chromosome ID, genomic coordinates, strand information,
and raw or normalized read counts of each sample. An ex-
ample tab-delimited TSS table is included in the package.
Users should set ‘inputFilesType = TSStable’ in this sce-
nario.

Before TSS calling, TSSr removes reads that are below
certain sequencing quality and mapping quality. The de-
fault threshold for Phred quality score is 10, and mapping
quality (MAPQ score) is 20. Users may change these pa-
rameters by setting different values for ‘sequencingQual-
ityThreshold’ and ‘mappingQualityThreshold’ when run-
ning the ‘getTSS’ function.

The TSS data are stored as an S4 class R object. Based
on the provided sample list, TSS data from different bio-
logical replicates can be merged and normalized as TPM
(Tags per million mapped tags). Users may use the ‘fil-
terTSS’ option to remove TSSs with low support from
mapped reads based on TPM value or P-value inferred by
‘Poisson distribution’. The matrix of raw counts or normal-
ized TPM of each TSS can be exported to either as tab-
delimited files or bedGraph/BigWig files which can be vi-
sualized by the UCSC Genome Browser (29) or Integrative
Genomics Viewer (IGV) (30). The consistency between bi-
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Figure 1. Workflow of TSSr. The flow chart illustrates main steps and functions of TSSr. The function names for each step are shown inside the quotation
marks.

ological replicates and relationships among RNA samples
can be inspected by plotting correlations of TSS tags (Sup-
plementary Figure S1A) using ‘plotCorrelation’ or princi-
pal component analysis (PCA) using ‘plotTssPCA’ in TSSr
(Supplementary Figure S1B).

After normalizing and filtering TSS data, the ‘clus-
terTSS’ function is then used to group neighboring TSSs
into distinct TSS clusters (TCs), representing putative core
promoters. For each TC in every sample, its dominant TSS
(TSS with the highest TPM value) and boundaries will be
inferred. Due to its dynamic nature, transcription initiation
activities within the same core promoters may vary sub-
stantially in different cell types or growth environments;
thus, the position of dominant TSS and boundaries of the
same TC may be different among samples. TSSr infers a set

of consensus core promoters using the ‘consensusCluster’
function to assign the same ID for TCs belonging to the
same core promoter, which allows subsequent comparative
studies across samples. TCs from different samples are con-
sidered to belong to the same consensus core promoter if
the distance of their dominant TSSs is smaller than a user-
defined distance (default ‘dis = 50’ bp).

TSSr assigns a TC to its downstream genes using the
‘annotateCluster’ function based on the distance between
its dominant TSS and the 5′boundary of its immediately
downstream gene. Differential gene expression analysis can
be performed in TSSr using the ‘deGene’ function, which
is carried out by the DESeq2 package. TSSr also imple-
ments various algorithms to quantify core promoter shape
(‘shapeCluster’). The degree of core promoter shift can be
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inferred using the ‘shiftPromoter’ function in TSSr. Ma-
jor functions and implemented algorithms in TSSr are de-
scribed in the Results section.

Comparisons of the functionalities and features between
TSSr and other R packages for TSS analysis, includ-
ing CAGEr, TSRexploeR, TSRchitect, CAGEfightR and
icetea, are summarized in Supplementary Table S1.

Example data

We used a subset of CAGE sequencing data obtained from
our previous study to demonstrate the functionality of the
TSSr package (5). The example data include four BAM files
(SL01, SL02, SL03 and SL04). SL01 and SL02 are two bi-
ological replicates of CAGE reads obtained from Saccha-
romyces cerevisiae grown in rich medium (YPD), while SL03
and SL04 were obtained by treating S. cerevisiae with � fac-
tor (Arrest). The CAGE reads were mapped to the refer-
ence genome of S. cerevisiae (R64-2-1) using HISAT2 (31).
To reduce file size, each BAM file only includes sequencing
reads mapped to two chromosomes (Chr I and Chr II). The
example BAM files can be downloaded from http://www.
zlinlab.org/TSSr.html. The BSgenome object of S. cerevisiae
‘BSgenome.Scerevisiae.UCSC.sacCer3’ was obtained from
BSgenome Bioconductor package (https://bioconductor.
org/packages/BSgenome). Genome annotation of S. cere-
visiae (R64-2-1) was downloaded from the Saccharomyces
Genome Database (32).

RESULTS

TSS calling based on an improved algorithm

Mapping the exact position of TSSs from read alignment
files is a crucial step of TSS sequencing data processing. Due
to technical artifacts and stochastic transcriptional activi-
ties, a portion of TSSs inferred from TSS sequencing reads
may not represent bona fide TSSs, which should be removed
from the TSS list. The most significant structural feature
of the 5′end of mRNA transcripts is the presence of a cap
structure (e.g. N7-methylated guanosine, or m7G) which
was added during transcription. The m7G cap protects the
transcript from exonuclease cleavage and is required for
cap-dependent initiation of protein synthesis (33,34). For
techniques based on cap capturing, such as CAGE, m7G
was reverse transcribed and sequenced, referred to as sys-
tematic G nucleotide addition (4). CAGE reads with one
or more uncoded 5′ end Gs provide direct evidence of their
origination from complete mRNA molecules.

TSSr implements a novel algorithm for determining TSSs
from qualified mapped TSS sequencing reads (27). In brief,
if a mapped TSS sequencing read starts with one or more G
that mismatch to the reference genome, the uncoded 5′ end
Gs are likely the m7G cap, and thus they will be removed
from TSS calling. However, when the first nucleotide at the
5′ end of sequencing reads is G, and it matches with the ref-
erence genome, it is unclear whether the G is the m7G cap
or not. In this scenario, CAGEr proportionally splits the
reads into capped and uncapped based on the percentage
of reads with unmatched G in the sample (22). This strat-
egy yields two neighboring TSSs for reads mapping to the
same position. TSSr uses a different strategy of TSS calling

Figure 2. Algorithm of TSS identification from mapped read data. (A)
Schematic representation of TSS calling by TSSr based on mapped reads.
An uncoded G at the 5′end of transcripts is considered as a G cap, and
TSS is called as the next position of the read alignment. A matched G at
the first mapping site is not removed from TSS calling as it is unlikely an
added G cap. The height of bars represents the number of reads mapped to
a TSS. (B) Sequence logos of pyrimidine-purine dinucleotide at positions
−1 and +1 of TSSs defined by CAGEr and TSSr using the same dataset.

based on the known sequence context of TSS. Specifically,
transcription initiation in all living organisms is mostly ini-
tiated at a purine (A or G) preceding by a pyrimidine (C
or T), demonstrating a strong preference of pyrimidine-
purine (PyPu) dinucleotide at the [−1, +1] positions of TSS
(4,27,35). Therefore, if a matched G at the 5′end of a tag is
considered as an added cap (4), removing the matched G
usually results in a TSS with non-PyPu dinucleotide at [−1,
+1], which is extremely unlikely. Therefore, the proportional
split of reads with a matched G could lead to many TSSs
that lack the PyPu dinucleotide at the [−1, +1] sites (Figure
2A). To address this issue, TSSr treats the 5′end of reads
with matched G as genome-coded G, and the first G is not
removed when calling TSS positions (Figure 2A). This strat-
egy makes TSSr also suitable for calling TSSs from 5′end
sequencing reads that are not based on cap capture tech-
niques. The differences in TSS calling between TSSr and
CAGEr for reads with genome-coded G at 5′end are illus-
trated by an empirical example in Supplementary Figure
S2. Comparison of the sequence preference of TSSs called
by TSSr and CAGEr shows that TSSr-called TSSs demon-
strate a much stronger preference of PyPu dinucleotide at
the [−1, +1] sites (Figure 2B, Supplementary Table S2), sup-
porting a more accurate TSS calling.

During read mapping, users may use ‘soft-clipping’ op-
tion to ignore bases from either side of reads that do
not match well to the reference genome. By excluding
unmatched bases of read ends from read mapping, soft-
clipping could increase the overall mapping rate. However,
soft-clipping ignores not only non-genome-matching Gs,
but also other non-matching 5′end bases, which introduces
false-positive TSSs. Among those reads with soft-clipping
of multiple bases at the 5′end, only a small portion are un-
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coded Gs. Therefore, we recommend not to use soft-clipping
for TSS sequencing data. If the bam files are generated
with ‘soft-clipping’, the ‘softclippingAllowed’ argument of
‘getTSS’ function in TSSr should be set as ‘TRUE’. TSSr
defines the 5′-most non-soft-clipped base as TSS for soft-
clipped bam files.

TSSr reduced false-positive TSSs by filtering non-bona fide
TSSs

Stochastic and cryptic transcription was found prevalent in
eukaryotic cells (5,36). In addition, technical artifacts of li-
brary preparation also include some non-5′end RNA frag-
ments in TSS sequencing libraries (27). Thus, it is necessary
to remove as many non-bona fide TSSs as possible to pro-
vide more accurate mappings of the 5′boundaries of tran-
scripts and inference of core promoters. As these TSSs tend
to be supported by a lower number of sequencing reads,
previous studies remove TSSs based on the number of sup-
ported tags or normalized value, e.g., TPM. Considering
that the effectiveness of these filtering methods depends on
sequencing depths and genome size, TSSr implements a new
filtering method that estimates the statistical significance of
read support for each called TSS given a sequencing depth
and genome size (27). In brief, TSSr calculates the proba-
bility of observing k numbers of reads supporting each TSS
based on the sequencing depth of the sample per the Poisson
distribution (27). Only TSSs with a significantly larger num-
ber of supporting reads than expected (default threshold P
< 0.01) are considered as qualified TSSs. Non-significant
TSSs are thus filtered by TSSr. Alternatively, users may
choose the ‘tpm’ method to filter TSSs that below a user-
defined threshold (default TPM threshold = 0.1).

Identification of core promoters using the peak-based cluster-
ing (peakclu) method

Reconstruction of core promoters by clustering nearby
TSSs is a challenging task due to the presence of tran-
scriptional noises and technical artifacts. Several algorithms
have been developed to cluster TSSs to infer core promoters.
Frith et al. (37) developed a parametric clustering (paraclu)
algorithm that attempts to find genomic intervals that con-
tain stronger TSS signals than their surrounding regions,
which can be contained within each other and generate a hi-
erarchy of peaks. Collapsing the overlapped regions into a
single level of the peak hierarchy by excluding all peaks con-
tained within others might give rise to broad clusters, which
is not explanatory from a biological perspective. RECLU
improved paraclu to identify reproducible clusters across
replicas based on the irreproducible discovery rate (IDR)
(38). A distance-based clustering (‘distclu’), which was im-
plemented in the CAGEr package (22) reconstruct promot-
ers based on the distances between neighboring TSSs, which
might result in super-broad clusters if there are continu-
ous weak signals adjacent to strong ones or many trivial
clusters when neighboring TSSs are in a greater distance
than the maximal allowed distance. ADAPT-CAGE dis-
tinguishes between CAGE signal derived from TSSs and
transcriptional noise using a Machine Learning framework,
which relies on histone modification data and genomic lo-
cation (39).

In the TSSr package, we implemented a newly developed
TSS clustering algorithm based on peaking identification,
namely ‘peakclu’ (peak clustering) (27). Briefly, peakclu ap-
plies a sliding window approach (default window size = 100
bp with step size = 1) to scan TSS signals from the 5′ end
of both strands of each chromosome (Figure 3A). In each
window, the TSS with the highest TPM value was identified
as the peak. The surrounding TSSs are grouped with the
peak into a TC. The clustering process of a TC terminates
if a TSS is ≥n bp (default n = 30) away from the nearest
upstream TSS. In addition to setting a minimal allowed dis-
tance between peaks, TSSr offers another option to set max-
imal allowed extension distance between neighboring TSSs
around peaks, which enables users to define the boundaries
between neighboring core promoters. Based on empirical
data, it shows that the peakclu algorithm provides a better
way of identifying core promoters, which reduces the risk
of joining small TSS clusters together (Figure 3B-C). TSSr
calculates inter-quantile width of a TC based on the cumu-
lative distribution of TSS signals within the TC. The po-
sitions of the 10th to 90th quantiles of TSS signals, which
include at least 80% transcription initiation signals within a
cluster, were defined as the 5′ and 3′ boundaries of the core
promoter (Figure 3A).

We also noticed that many low TPM TCs are commonly
found downstream of a highly expressed TC, and most of
these weak TCs are located within coding regions. These
weak downstream TCs could be produced by stochastic
transcription initiation, transcript recapping events, or in-
clusions of partial RNA fragments generated during library
preparation. Therefore, it is unlikely that these TCs repre-
sent genuine core promoters, and it is better to remove them
from subsequent analyses. TSSr implements a local filtering
strategy to remove these TCs if their signals are lower than
a user-defined percentage of the strongest upstream TC of
a gene (known as a representative core promoter) (Figure
3B, C). The default threshold of local filtering is 0.02. We
evaluated the impacts of different thresholds of local filter-
ing on the total number of inferred TCs and assigned TCs
(those located in canonical promoter regions) by using four
‘localThreshold’ values (localThreshold = 0, 0.02, 0.06 and
0.1,). As shown in Supplementary Table S3, an increase in
local filtering threshold increases the total number of in-
ferred TCs, while it reduces the maximum inter-quantile
width of TCs, suggesting that stronger local filtering could
split broad TCs into multiple TCs. However, the numbers
of TCs assigned to genes are largely unaffected, supporting
the local filtering mainly influences TSS clustering in coding
regions (Supplementary Table S3). With two layers of local
filtering on TSSs and TCs, TSSr reduces potentially false-
positive core promoters of genes (Figure 3B, C). From a
genome-scale perspective, TSSr significantly reduces broad
core promoters of which inter-quantile widths are >100 bp
(Figure 3D).

Quantification of core promoter shape

TSSr provides three different options, inter-quantile width,
shape index (SI), and promoter shape score (PSS), to quan-
tify core promoter shape. Inter-quantile width refers to the
distance between the locations of the 10th percentile to the
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Figure 3. Peak-based clustering algorithm (peakclu). (A) A schematic representation of ‘peakclu’ method implemented in TSSr. The thinner box represents
the starting and ending points of a TSS cluster. The thicker box indicates its inter-quantile boundaries (from 10th percentile to 90th percentile). The vertical
line represents the peak or dominant TSS of a TSS cluster. (B) An example of TSS clustering around gene YBR106W. (C) An example of TSS clustering
around gene YDL170W. (D) Histogram showing the distribution of inter-quantile widths of TSS clusters defined by the ‘peakclu’ algorithm in TSSr and
‘disclu’ algorithm in CAGEr.

90th percentile TSS signals within a TSS cluster. Thus, it
measures the width of a core promoter, but lacks the in-
formation of distribution patterns of TSS signals within a
core promoter. Inter-quantile width could be significantly
affected by different clustering methods. SI takes into con-
sideration the distribution patterns of TSS signals within
core promoters, while it ignores the spacing between differ-
ent TSSs and core promoter width. PSS takes both core pro-
moter inter-quantile width and distributions of TSS signals
into consideration (5), providing a more accurate charac-
terization of core promoter shape (Figure 4A). TSSr also

offers a function to generate histograms of inter-quantile
width, SI, and PSS values to illustrate the distributions of
core promoter shape (Figure 4B).

Associate TCs to annotated genes as putative core promoters
and inference of putative enhancers

Associate TCs to annotated genes as their core promoters
is required for annotation of the 5′ boundaries of genomic
features. This process is also a prerequisite for further inter-
rogations of regulated transcription initiation at the gene
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Figure 4. Core promoter shape. (A) Examples of sharp and broad core promoter shape and their corresponding PSS values. PSS starts from 0, which is
the sharpest shape of core promoter that contains a single TSS. The PSS value increases with an increase of TSS number in a core promoter and more even
distribution of TSS signals. (B) A density histogram demonstrates the different distribution of PSS values of the two example data (YPD versus Arrest)
used in this study.

level. TSSr offers the ‘annotateCluster’ function to assign
TCs to their downstream genes. By default, only TCs with
≥0.02 TPM are used for the annotation process. The as-
signment of a TC to a gene is based on the distance be-
tween the position of the dominant TSS of a TC and the
annotated 5′ends of coding sequences (start codon of CDS)
or transcripts (with annotated TSS). If the genome anno-
tation does not include annotated TSSs, the user will need
to use CDS for TC association (annotationType = ‘genes’),
and the default maximum distance between the dominant
TSS and CDS is 1000 bp (‘upstream = 1000’). For compact
genomes, such as S. cerevisiae, a TC might overlap with the
CDS of an upstream gene, so the user will need to set the
maximum overlapping region between the dominant TSS
of the TC and the 3′end of the overlapping CDS. By de-
fault, the distance must be less than 500 bp (‘upstreamOver-
lap = 500’). These default parameters work best for com-
pact genomes with limited introns, such as budding yeasts.
A longer ‘upstream’ distance should be used for genomes
with a much larger size or higher intron density. If the ‘tran-
script’ feature of genome annotation includes 5′UTRs or
annotated TSSs, the user is recommended to use the ‘tran-
script’ feature for TC annotation because introns could be
prevalent in 5′UTRs in many organisms. In this scenario,
‘annotationType’ should be set as ‘transcript’ (the default
distance parameter is 500 bp). Because the genomes size and
the number of introns vary substantially among organisms,
it is necessary to apply customized criteria for TC assign-
ment for different organisms. Users are advised to adjust the
assignment criteria for core promoter assignment in TSSr
based on the information included in genome annotation
and gene structure of an organism (Figure 5A).

In higher eukaryotes, enhancers are usually found in re-
mote locations of the corresponding transcription units and
are independent of their orientation (40). Analysis of hu-
man CAGE data demonstrated that enhancer activity could

be inferred based on the presence of balanced bidirectional
capped transcripts (41). TSSr provides a function ‘callEn-
haner’ to infer putative enhancers from unassigned TCs fol-
lowing the criteria defined in (41). In summary, two TCs are
inferred as putative enhancer TCs if they are: (i) bidirec-
tional; (ii) located within 400 bp; (iii) have a directionality
score |D| < 0.8; and (iv) at least 2 kb away from the dom-
inant TSS of core promoter in any annotated genes (user
may change the default distance through the ‘dis2gene’ ar-
gument).

Differential expression analysis and core promoter shift

CAGE and other TSS sequencing data can be used to
quantify transcription abundance and differential expres-
sion analysis, as each read represents a transcript. TSSr im-
plements DESeq2 (42) for differential expression analysis
between any pair of RNA samples. TSSr quantifies the read
count of each gene as the total number of TSS reads in all
TCs assigned to the gene, and the obtained raw read counts
are then used as the input matrix for DESeq2. The results of
differential expression analysis by DESeq2 can be exported
as a tab-delimited text file by using the function ‘export-
DETable’. TSSr also provides ‘plotDE’ function to gener-
ate a volcano plot for visualization of the DESeq2 results
(Figure 5B).

Differential expression analysis quantifies changes of
transcription abundance for each gene between different
samples, but it does not reflect alternative usage of core pro-
moters within a gene. TSSr implements an algorithm (‘shift-
Promoter’) to calculate the core promoter shift score Ds,
which quantifies the degree of alternative usage of core pro-
moters by a gene between different RNA samples (5). Ds is
calculated based on the proportional changes of TSS reads
in the two most highly expressed core promoters of a gene
between two samples (Figure 6A). We only considered the
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Figure 5. Assigning TCs to genes and differential gene expression. (A) Schematic illustration of different strategies of assigning TCs to a downstream
gene depending on types of genome annotations (CDS or transcript). (B) Volcano plot shows differentially expressed genes (in red, P < 0.01 and log2
fold-change >1 or <−1 between two RNA samples (YPD versus Arrest) based on CAGE reads. Each dot represents a gene.

A

B

Figure 6. Core promoter shift. (A) Schematic illustration of genes with two core promoters and the equation of degree of core promoter shift (Ds). (B) An
example of core promoter shift between different growth conditions (YPD versus Arrest).
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Figure 7. An unaltered output of TSS graph generated by TSSr. In this example, the TSS graph illustrates the distribution of TSS signals and TSS clusters
near the YBR168W gene. Only TSS signals from the same strand are shown in this example. Users may set ‘Bidirection = TRUE’ to include TSS signals
from both directions.

top 2 clusters for Ds calculation because the top 2 TCs usu-
ally account for >99% TSS signals in genes with ≥2 TCs.
The statistical significance of the Ds score is inferred by the
chi-square test, and an FDR value is calculated by adjust-
ing P-value for multiple tests (by the Benjamini-Hochberg
procedure). For example, two core promoters are present
upstream of the CIK1 gene (YMR198W) in S. cerevisiae,
designated as distal core promoter (D) and proximal core
promoter (P) here. Almost all transcription initiation sig-
nals are detected within distal core promoter (Dc) in yeast
cells grown in rich medium (YPD). After treatment of �
factor that arrests the yeast cells in G1 phase (Figure 6B),
most transcription initiation signals have switched to the
proximal core promoter (Pt), demonstrating a significant
core promoter shift (Ds = 15.1, FDR = 1.51 × 10–8). If a
gene contains more than two core promoters, only the two
with the highest TPM values are selected to calculate the Ds
score.

Transcription initiation from different core promoters of
a gene yields different transcript isoforms. Thus, alterna-
tive usage of core promoters leads to differential transcript
usage (DTU). Several RNA-seq bioinformatics tools, such

as DRIMSeq (43), DEXSeq (44) or edgeR (45) provide a
function to detect DTU using more sophisticated statisti-
cal tests. To compare the Ds statistics to these established
methods for DTU, we obtained the raw read counts from
the example data and used them as the input for DRIM-
Seq, which infer DTU based on reads of each transcript
isoform. Among 75 genes with significant alternative us-
age of core promoters detected by TSSr based on the ex-
ample data, 66 of them were also identified with significant
DTU by DRIMSeq (Supplementary Table S4, adj. P-value
< 0.01). In addition, all of the top 30 genes detected by TSSr
are in the list of genes with significant DTU by DRIMSeq,
suggesting good agreement between the two methods.

Generation of publication-quality TSS graphs

Visualization of TSS signals of genes provides visual in-
sights into the complex transcription initiation landscape,
such as the presence of multiple core promoters, different
transcriptional activities among these promoters, promoter
shape, and dynamic change of promoter activities across
samples. TSSr includes the ‘plotTSS’ function to generate
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publication-quality TSS graphs in pdf format. A TSS graph
is a multitrack vector image that illustrates the locations,
transcriptional direction, and signal strengths of each TSS
near a gene in one or multiple samples (Figure 7). The top
track indicates the genomic coordinates of the shown re-
gion, and the second track shows the location of the cod-
ing region of a gene of interest as a yellow arrow. Two data
tracks are provided for each sample: a core promoter track
and a TSS signal track. In the core promoter track, a core
promoter is presented as a horizontal arrow, which indicates
its transcriptional direction. The start and end points of the
arrow represent the positions of the 10th to 90th percentile
of TSS signals within a core promoter, and the arrow length
indicates its inter-quantile width of the core promoter. The
TSS track depicts the locations, direction, and TPM val-
ues of all TSSs in this region in a sample. TSS signals in
this region are shown as bar graphs with a scale provided
on the left side. Positive TPM values represent transcrip-
tion initiation from the forward strand, while negative val-
ues mean the reverse strand. The TSS graphs are vector im-
ages that can be resized without any loss of quality, which
can be used as publication-quality figures to illustrate the
dynamic changes of transcription initiation across different
samples. TSSr allows batch production of TSS graphs for a
large number of genes simultaneously if users provide a list
of gene names when running ‘plotTSS’.

TSSr can handle a large number of human samples

We conducted benchmark tests using different numbers of
TSS sequencing files obtained in human samples to test how
TSSr performs for large genomes. Bertin et al. generated
62 CAGEscan libraries from 56 human RNA sources, with
6 of them were prepared in duplicate (46). The bam files
of the 62 libraries were downloaded from the FANTOM5
database (47). We ran five benchmark tests for TSSr using
different numbers of bam input files to obtain its running
times and memory usage. In the first four tests, we randomly
selected 4, 8, 16 and 32 libraries from the 62 bams as input
for TSSr. For Test 5, all the 62 bams files were used. Because
50 of the 62 bam files lack biological replicates, we randomly
group 4 bam files as biological replicates of a sample for
benchmark tests. The running times were recorded using
the Sys.time() function in R for four key functions of TSSr,
which are time-consuming, including calling TSS from bam
files (getTSS), TSS clustering (clusterTSS), calculating PSS
(shapeCluster), and associating TCs to genomic features
(annotateCluster). The R object size and memory usage
were measured by pryr::object size() and pryr::mem used().
All the tests were carried out using a Dell PowerEdge T630
server (2 × Intel Xeon CPU E5-2640 @ 2.60 GHz, 128GB
RAM, CentOS 7.0). In general, the processing times and
object R size increases linearly with the increase of input
file numbers. TSSr was able to complete the analyses of 62
human bam files for less than 8 hours, supporting that TSSr
is capable of handling a large number of samples from large
genomes with a single-node server.

DISCUSSION

TSSr is a user-friendly R package that provides a wide range
of functions for comprehensive analyses of various types

of TSS sequencing data, such as CAGE, TF-seq, and TIL-
seq. One of the key features implemented in TSSr is a new
strategy for identifying TSS based on the strong prefer-
ence of pyrimidine-purine dinucleotides at position [−1, +1]
of TSSs (5,20,48). In addition, a new TSS clustering algo-
rithm, peakclu, was employed in TSSr for accurate identifi-
cations of core promoters. Furthermore, TSSr accepts mul-
tiple formats of input data and exports a variety of result
tables, publication-ready graphs and data tracks, which can
be easily visualized in UCSC Genome Browser or IGV, pre-
senting a powerful tool for comprehensive TSS data analy-
ses. This application would facilitate studies related to tran-
scription initiation and its underlying genetic basis.
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FUNDING

U.S. National Science Foundation [NSF 1951332 to Z.L.,
NSF 1564894 to T.A.].
Conflict of interest statement. None declared.

REFERENCES
1. Haberle,V. and Stark,A. (2018) Eukaryotic core promoters and the

functional basis of transcription initiation. Nat. Rev. Mol. Cell Biol.,
19, 621–637.

2. Juven-Gershon,T. and Kadonaga,J.T. (2010) Regulation of gene
expression via the core promoter and the basal transcriptional
machinery. Dev. Biol., 339, 225–229.

3. Smale,S.T. and Kadonaga,J.T. (2003) The RNA polymerase II core
promoter. Annu. Rev. Biochem., 72, 449–479.

4. Carninci,P., Sandelin,A., Lenhard,B., Katayama,S., Shimokawa,K.,
Ponjavic,J., Semple,C.A., Taylor,M.S., Engstrom,P.G., Frith,M.C.
et al. (2006) Genome-wide analysis of mammalian promoter
architecture and evolution. Nat. Genet., 38, 626–635.

5. Lu,Z. and Lin,Z. (2019) Pervasive and dynamic transcription
initiation in saccharomyces cerevisiae. Genome Res., 29, 1198–1210.

6. Arrick,B.A., Lee,A.L., Grendell,R.L. and Derynck,R. (1991)
Inhibition of translation of transforming growth factor-beta 3
mRNA by its 5′ untranslated region. Mol. Cell. Biol., 11, 4306–4313.

7. Mihailovich,M., Thermann,R., Grohovaz,F., Hentze,M.W. and
Zacchetti,D. (2007) Complex translational regulation of BACE1
involves upstream AUGs and stimulatory elements within the 5′
untranslated region. Nucleic Acids Res., 35, 2975–2985.

8. Murata,M., Nishiyori-Sueki,H., Kojima-Ishiyama,M., Carninci,P.,
Hayashizaki,Y. and Itoh,M. (2014) Detecting expressed genes using
CAGE. Methods Mol. Biol., 1164, 67–85.

9. Salimullah,M., Sakai,M., Plessy,C. and Carninci,P. (2011)
NanoCAGE: a high-resolution technique to discover and interrogate
cell transcriptomes. Cold Spring Harb. Protoc., 2011, pdb prot5559.

10. Arribere,J.A. and Gilbert,W.V. (2013) Roles for transcript leaders in
translation and mRNA decay revealed by transcript leader
sequencing. Genome Res., 23, 977–987.

11. Pelechano,V., Wei,W. and Steinmetz,L.M. (2013) Extensive
transcriptional heterogeneity revealed by isoform profiling. Nature,
497, 127–131.

12. Malabat,C., Feuerbach,F., Ma,L., Saveanu,C. and Jacquier,A. (2015)
Quality control of transcription start site selection by
nonsense-mediated-mRNA decay. eLife, 4, e06722.

13. Batut,P., Dobin,A., Plessy,C., Carninci,P. and Gingeras,T.R. (2013)
High-fidelity promoter profiling reveals widespread alternative
promoter usage and transposon-driven developmental gene
expression. Genome Res., 23, 169–180.

14. Batut,P. and Gingeras,T.R. (2013) RAMPAGE: promoter activity
profiling by paired-end sequencing of 5′-complete cDNAs. Curr
Protoc Mol Biol, 104, Unit 25B 11.

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqab108#supplementary-data


NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 4 11

15. Islam,S., Kjallquist,U., Moliner,A., Zajac,P., Fan,J.B., Lonnerberg,P.
and Linnarsson,S. (2012) Highly multiplexed and strand-specific
single-cell RNA 5′ end sequencing. Nat. Protoc., 7, 813–828.

16. Core,L.J., Martins,A.L., Danko,C.G., Waters,C.T., Siepel,A. and
Lis,J.T. (2014) Analysis of nascent RNA identifies a unified
architecture of initiation regions at mammalian promoters and
enhancers. Nat. Genet., 46, 1311–1320.

17. Bhardwaj,V., Semplicio,G., Erdogdu,N.U., Manke,T. and Akhtar,A.
(2019) MAPCap allows high-resolution detection and differential
expression analysis of transcription start sites. Nat. Commun., 10,
3219.

18. Policastro,R.A., Raborn,R.T., Brendel,V.P. and Zentner,G.E. (2020)
Simple and efficient profiling of transcription initiation and transcript
levels with STRIPE-seq. Genome Res., 30, 910–923.

19. Carninci,P., Kasukawa,T., Katayama,S., Gough,J., Frith,M.C.,
Maeda,N., Oyama,R., Ravasi,T., Lenhard,B., Wells,C. et al. (2005)
The transcriptional landscape of the mammalian genome. Science,
309, 1559–1563.

20. Hoskins,R.A., Landolin,J.M., Brown,J.B., Sandler,J.E.,
Takahashi,H., Lassmann,T., Yu,C., Booth,B.W., Zhang,D.,
Wan,K.H. et al. (2011) Genome-wide analysis of promoter
architecture in drosophila melanogaster. Genome Res., 21, 182–192.

21. Schor,I.E., Degner,J.F., Harnett,D., Cannavo,E., Casale,F.P.,
Shim,H., Garfield,D.A., Birney,E., Stephens,M., Stegle,O. et al.
(2017) Promoter shape varies across populations and affects
promoter evolution and expression noise. Nat. Genet., 49, 550–558.

22. Haberle,V., Forrest,A.R., Hayashizaki,Y., Carninci,P. and Lenhard,B.
(2015) CAGEr: precise TSS data retrieval and high-resolution
promoterome mining for integrative analyses. Nucleic Acids Res., 43,
e51.

23. Raborn,R.T., Spitze,K., Brendel,V.P. and Lynch,M. (2016) Promoter
architecture and sex-specific gene expression in daphnia pulex.
Genetics, 204, 593–612.

24. Thodberg,M., Thieffry,A., Vitting-Seerup,K., Andersson,R. and
Sandelin,A. (2019) CAGEfightR: analysis of 5′-end data using
R/Bioconductor. BMC Bioinformatics, 20, 487.

25. Policastro,R.A., McDonald,D.J., Brendel,V.P. and Zentner,G.E.
(2021) Flexible analysis of TSS mapping data and detection of TSS
shifts with TSRexploreR. NAR Genomics and Bioinformatics, 3,
lqab051.

26. McMillan,J., Lu,Z., Rodriguez,J.S., Ahn,T.H. and Lin,Z. (2019)
YeasTSS: an integrative web database of yeast transcription start
sites. Database (Oxford), 2019, baz048.

27. Lu,Z. and Lin,Z. (2021) The origin and evolution of a distinct
mechanism of transcription initiation in yeasts. Genome Res., 31,
1–13.

28. Zhang,H., Lu,Z., Zhan,Y., Rodriguez,J., Lu,C., Xue,Y. and Lin,Z.
(2021) Distinct roles of nucleosome sliding and histone modifications
in controlling the fidelity of transcription initiation. RNA Biol., 18,
1642–1652.

29. Kent,W.J., Sugnet,C.W., Furey,T.S., Roskin,K.M., Pringle,T.H.,
Zahler,A.M. and Haussler,D. (2002) The human genome browser at
UCSC. Genome Res., 12, 996–1006.

30. Robinson,J.T., Thorvaldsdottir,H., Winckler,W., Guttman,M.,
Lander,E.S., Getz,G. and Mesirov,J.P. (2011) Integrative genomics
viewer. Nat. Biotechnol., 29, 24–26.

31. Kim,D., Langmead,B. and Salzberg,S.L. (2015) HISAT: a fast spliced
aligner with low memory requirements. Nat. Methods, 12, 357–360.

32. Cherry,J.M., Adler,C., Ball,C., Chervitz,S.A., Dwight,S.S.,
Hester,E.T., Jia,Y., Juvik,G., Roe,T., Schroeder,M. et al. (1998) SGD:
Saccharomyces genome database. Nucleic Acids Res., 26, 73–79.

33. Both,G.W., Furuichi,Y., Muthukrishnan,S. and Shatkin,A.J. (1975)
Ribosome binding to reovirus mRNA in protein synthesis requires 5′
terminal 7-methylguanosine. Cell, 6, 185–195.

34. Muthukrishnan,S., Both,G.W., Furuichi,Y. and Shatkin,A.J. (1975)
5′-Terminal 7-methylguanosine in eukaryotic mRNA is required for
translation. Nature, 255, 33–37.

35. Zhang,Y., Degen,D., Ho,M.X., Sineva,E., Ebright,K.Y.,
Ebright,Y.W., Mekler,V., Vahedian-Movahed,H., Feng,Y., Yin,R.
et al. (2014) GE23077 binds to the RNA polymerase ‘i’ and ‘i+1’ sites
and prevents the binding of initiating nucleotides. eLife, 3, e02450.

36. Raj,A. and van Oudenaarden,A. (2008) Nature, nurture, or chance:
stochastic gene expression and its consequences. Cell, 135, 216–226.

37. Frith,M.C., Valen,E., Krogh,A., Hayashizaki,Y., Carninci,P. and
Sandelin,A. (2008) A code for transcription initiation in mammalian
genomes. Genome Res., 18, 1–12.

38. Ohmiya,H., Vitezic,M., Frith,M.C., Itoh,M., Carninci,P.,
Forrest,A.R., Hayashizaki,Y., Lassmann,T. and FANTOM
Consortium (2014) RECLU: a pipeline to discover reproducible
transcriptional start sites and their alternative regulation using
capped analysis of gene expression (CAGE). BMC Genomics, 15, 269.

39. Georgakilas,G.K., Perdikopanis,N. and Hatzigeorgiou,A. (2020)
Solving the transcription start site identification problem with
ADAPT-CAGE: a machine learning algorithm for the analysis of
CAGE data. Sci. Rep., 10, 877.

40. Pennacchio,L.A., Bickmore,W., Dean,A., Nobrega,M.A. and
Bejerano,G. (2013) Enhancers: five essential questions. Nature
reviews, 14, 288–295.

41. Andersson,R., Gebhard,C., Miguel-Escalada,I., Hoof,I.,
Bornholdt,J., Boyd,M., Chen,Y., Zhao,X., Schmidl,C., Suzuki,T.
et al. (2014) An atlas of active enhancers across human cell types and
tissues. Nature, 507, 455–461.

42. Love,M.I., Huber,W. and Anders,S. (2014) Moderated estimation of
fold change and dispersion for RNA-seq data with DESeq2. Genome
Biol., 15, 550.

43. Nowicka,M. and Robinson,M. (2016) DRIMSeq: a
Dirichlet-multinomial framework for multivariate count outcomes in
genomics. F1000Res, 5, 1356.

44. Anders,S., Reyes,A. and Huber,W. (2012) Detecting differential usage
of exons from RNA-seq data. Genome Res., 22, 2008–2017.

45. Robinson,M.D., McCarthy,D.J. and Smyth,G.K. (2010) edgeR: a
bioconductor package for differential expression analysis of digital
gene expression data. Bioinformatics, 26, 139–140.

46. Bertin,N., Mendez,M., Hasegawa,A., Lizio,M., Abugessaisa,I.,
Severin,J., Sakai-Ohno,M., Lassmann,T., Kasukawa,T., Kawaji,H.
et al. (2017) Linking FANTOM5 CAGE peaks to annotations with
CAGEscan. Sci Data, 4, 170147.

47. Lizio,M., Abugessaisa,I., Noguchi,S., Kondo,A., Hasegawa,A.,
Hon,C.C., de Hoon,M., Severin,J., Oki,S., Hayashizaki,Y. et al.
(2019) Update of the FANTOM web resource: expansion to provide
additional transcriptome atlases. Nucleic Acids Res., 47, D752–D758.

48. Carninci,P., Kasukawa,T., Katayama,S., Gough,J., Frith,M.C.,
Maeda,N., Oyama,R., Ravasi,T., Lenhard,B., Wells,C. et al. (2005)
The transcriptional landscape of the mammalian genome. Science,
309, 1559–1563.


