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Abstract
Background: Colorectal cancer (CRC) is one of the most common malignant tumors. 
In the present study, the expression profile of human multistage colorectal mucosa 
tissues, including healthy, adenoma, and adenocarcinoma samples was downloaded 
to identify critical genes and potential drugs in CRC.
Methods: Expression profiles, GSE33113 and GSE44076, were integrated using 
bioinformatics methods. Differentially expressed genes (DEGs) were analyzed by 
R language. Functional enrichment analyses of the DEGs were performed using the 
Database for Annotation, visualization, and integrated discovery (DAVID) database. 
Then, the search tool for the retrieval of interacting genes (STRING) database and 
Cytoscape were used to construct a protein–protein interaction (PPI) network and 
identify hub genes. Subsequently, survival analysis was performed among the key 
genes using Gene Expression Profiling Interactive Analysis (GEPIA). Connectivity 
Map (CMap) was used to query potential drugs for CRC.
Results: A total of 428 upregulated genes and 751 downregulated genes in CRC 
were identified. The functional changes of these DEGs were mainly associated with 
cell cycle, oocyte meiosis, DNA replication, p53 signaling pathway, and progester-
one‐mediated oocyte maturation. A PPI network was identified by STRING with 
482 nodes and 2,368 edges. Survival analysis revealed that high mRNA expression 
of AURKA, CCNB1, CCNF, and EXO1 was significantly associated with longer 
overall survival. Moreover, CMap predicted a panel of small molecules as possible 
adjuvant drugs to treat CRC.
Conclusion: Our study found key dysregulated genes involved in CRC and potential 
drugs to combat it, which may provide novel insights and potential biomarkers for 
prognosis, as well as providing new CRC treatments.
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1  |   INTRODUCTION

Colorectal cancer (CRC) is one of the most common cancers 
with high morbidity worldwide. Despite advances in screen-
ing detection and new treatment strategies, CRC remains a 
leading cause of cancer‐associated mortality, due to the lack 
of effective diagnostic methods at the early stage and reduce 
sensitivity to chemotherapy (Weiser, 2018). Therefore, it 
is crucial to understand the precise molecular mechanisms 
involved in the carcinogenesis and thus develop promising 
prognostic biomarkers and potential therapeutic targets.

Colorectal cancer is a complex bioprocess following the 
adenomacarcinoma multistage sequence (Testa, Pelosi, & 
Castelli, 2018). Thus, molecular dysregulations during the 
process of carcinogenesis, particularly during the precancer-
ous stage, should be considered as the most important risk 
factors contributing to the progression of CRC. Several stud-
ies have used gene expression profiling to identify key genes 
between CRC samples and normal samples. Huang, Yang, 
and Huang (2018) identified hundreds of CRC associated 
differentially expressed genes (DEGs) based on the Gene 
Expression Omnibus (GEO) and The Cancer Genome Atlas 
(TCGA) database. An, Zhao, Yu, and Yang (2019) found 35 
genes significantly associated with patient survival based 
on the transcription profile of multi‐stage carcinogenesis 
and bioinformatics analysis. Hou et al. (2018) found a col-
lection of DEGs and DNA methylation aberrations in CRC. 
Hundreds of DEGs were detected. However, DEGs are differ-
ent in different studies with only some of them consistently 
detected. Therefore, the discovery of novel effective thera-
peutic targets against CRC is urgently required.

In this study, we selected the following microarray data-
sets GSE33113 (de Sousa et al., 2011; Kemper et al.., 2012) 
and GSE44076 (Closa et al., 2014; Cordero et al., 2014; 
Sanz‐Pamplona et al., 2014; Solé et al., 2014) from the GEO 
database to identify DEGs. Kyoto encyclopedia of genes and 
genomes (KEGG) and gene ontology (GO) pathway analysis 
were used to investigate DEGs. Then we identified hub genes 
from the common DEGs by constructing protein–protein in-
teraction (PPI) network. Furthermore, the survival analysis 
was used on the gene expression profiling interactive analysis 
(GEPIA) website. Candidate small molecules were identified 
for their potential use in the treatment of CRC.

2  |   MATERIALS AND METHODS

2.1  |  Data resources
To investigate the differential gene expression between CRC 
and normal samples, GSE33113 and GSE44076 microarray 
datasets were downloaded from the GEO website (http://www.
ncbi.nlm.nih.gov/geo/). These RNA profiles were provided 
on platform GPL570 (Affymetrix Human Genome U113 

Plus 2.0 Array) (GSE33113) and GPL13667([HG‐U219] 
Affymetrix Human Genome U219 Array) (GSE44076). A 
total of 188 CRC samples and 154 normal samples were ob-
tained in our study, including 40 tumor samples and 6 normal 
samples in GSE33113 profile, 98 tumor samples, and 148 
normal samples in GSE44076 profile.

2.2  |  Identification of DEGs
The original CIMFast Event Language files were downloaded 
and classified as CRC and normal groups. The raw data were 
standardized and transformed into expression values using 
the affy package of Bioconductor (Bioconductor,  http://
www.bioco​nduct​or.org/). The significance analysis of the 
empirical bayes methods within limma package was ap-
plied to identify DEGs between CRC samples and normal 
tissue sample (Ritchie et al., 2015). Adj.p value <0.01 and 
|logFC| > 1 were set as the cutoff criteria to select the sig-
nificant DEGs.

2.3  |  KEGG and GO enrichment 
analyses of DEGS
To explore potential biological process (BP), molecular 
functions (MF), and cellular components (CC) related to the 
overlap DEGs, the Database for Annotation, Visualization, 
and Integrated Discovery (DAVID; http://david.ncifc​rf.gov) 
(version 6.7) was introduced to perform functional annota-
tion and pathway enrichment analysis, including GO and 
KEGG pathway analysis (Ashburner et al., 2000; Dennis et 
al., 2003; "The Gene Ontology (GO) project," 2006; Huang, 
Sherman, & Lempicki, 2009; Kanehisa & Goto, 2000). GO 
is a major bioinformatics tool to annotate genes and analyze 
BP of these genes. KEGG is a database resource for under-
standing high‐level functions and biological systems from 
large‐scale molecular datasets generated by high‐throughput 
experimental technologies. p value <0.05 was considered 
statistically significant.

2.4  |  Protein–protein interaction (PPI) 
network construction and module analysis
The Search Tool for the Retrieval of Interacting Genes da-
tabase (STRING, https​://string-db.org/) is an online tool de-
signed to analyze the PPI information (Damian et al., 2015). 
Analyzing the functional interactions between proteins may 
provide insights into the mechanisms of generation or de-
velopment of diseases. In the present study, all the previ-
ously identified DEGs were submitted to STRING database 
for exploring their potential interactions. The interactions 
with a combined score >0.4 were considered significant 
and extracted for constructing the PPI networks through the 
Cytoscape software that is an open source bioinformatics 
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software platform for visualizing molecular interaction net-
works (Bandettini et al., 2012). Subsequently, Molecular 
Complex Detection (MCODE) was used to screen significant 
modules from the PPI network with degree cutoff = 2, node 
score cutoff = 0.2, k‐core = 2, and max depth = 100 (Smoot, 
Ono, Ruscheinski, Wang, Ono, Ruscheinski, Wang, & 
Ideker, 2011). The functional and pathway enrichment anal-
ysis of for the significant modules was also performed. The 
networks gene oncology tool (BiNGO) plugin of Cytoscape 
was used to perform and visualize the BP analysis of the hub 
genes (Maere, Heymans, & Kuiper, 2005).

2.5  |  Analysis and validation of hub genes
A network of module genes and their co‐expression genes 
was established by cBioPortal online platform (http://www.
cbiop​ortal.org). To confirm the reliability of hub genes from 
our detection, we analyzed their prognostic and expres-
sion in CRC using Gene Expression Profiling Interactive 
Analysis (GEPIA), an interactive web application tool for 

gene expression analysis, containing 8,587 normal sam-
ples and 9,736 tumors samples from the Genotype‐Tissue 
Expression databases and TCGA databases (Cerami et al., 
2012; Gao et al., 2013; Tang et al., 2017). Then the sur-
vival curve and box plot were performed to visualize the 
relationships. In addition, the protein expression of the hub 
genes between CRC and normal tissues was determined 
by the human protein atlas (HPA, www.prote​inatl​as.org) 
database, an online tool for analyzing protein level from 
clinical samples.

2.6  |  Identification of small molecules
The Connectivity Map (CMap, http://www.broad​insti​tute.
org/cmap/) was used to predict potential small active molec-
ular that may induce or reverse the current biological status 
encoded by a particular gene expression signature (Lamb et 
al., 2006). We contrasted the DEGs with those participating 
in small active molecular interference in the CMap database 
to find potential small molecular related to these DEGs. 

F I G U R E  1   (a) Volcano plot of gene 
expression profile data between CRC and 
normal tissues in each dataset. Red dots: 
significantly upregulated genes in CRC; 
Green dots: significantly downregulated 
genes in CRC; Black dots: nondifferentially 
expressed genes. Adj. p < 0.01 and |log2 
FC| > 1 were considered as significant. 
(b) A. Venn diagram of 1,186 overlapping 
DEGs from GSE33113 and GSE44076 
datasets including 428 upregulated DEGs 
and 751 downregulated DEGs. CRC, 
Colorectal cancer; DEGs, Differentially 
expressed genes
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First, the overlaps DEGs were divided into upregulated and 
downregulated groups. Then, these probe sets were used to 
query the CMap database. Finally, the enrichment score rep-
resenting similarity was calculated, ranging from −1 to 1. A 
positive connectivity value (closer to +1) indicated the small 
molecules could induce the state of CRC cells, whereas a 
negative connectivity value (closer to −1) indicated greater 
similarity among the genes and the small molecules could 
reverse the above cancer cell status.

3  |   RESULTS

3.1  |  Identification of DEGs in CRC
Analyzed with the Limma package, a total of 1,186 over-
lap DEGs expressed in CRC samples were extracted from 

the GSE33113 and GSE44076 datasets. The volcano plot of 
DEGs of CRC in each dataset was presented in Figure 1a. 
The Venn diagrams showed the 1,186 overlap DEGs among 
the three datasets (Figure 1bA) including 428 significantly 
upregulated genes (Figure 1bB) and 751 downregulated 
genes (Figure 1bC).

3.2  |  Enrichment analyses
To explore the biological functions of identified DEGs, we 
performed functional and pathway enrichment analyses 
using DAVID. For biological processes, GO analysis results 
indicated that upregulated and downregulated DEGs were 
significantly enriched in xenobiotic glucuronidation, cellular 
glucuronidation, flavonoid glucuronidation, negative regula-
tion of cellular glucuronidation, and negative regulation of 

F I G U R E  2   Functional and signaling pathway analysis of the overlapped DEGs in CRC. (a) Biological processes (b) Cellular components (c) 
Molecular function (d) KEGG pathway. CRC, Colorectal cancer; DEGs, Differentially expressed genes; KEGG, Kyoto Encyclopedia of Genes and 
Genomes
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T A B L E  1   Functional and pathway enrichment analysis of the overlap DEGs

Category Term p Value Genes

GOTERM_BP_
DIRECT

GO:0052697~xenobiotic 
glucuronidation

2.85E‐09 UGT1A7, UGT1A10, UGT1A6, UGT1A9, UGT1A8, UGT1A3, 
UGT1A5, UGT1A4, UGT1A1

GOTERM_BP_
DIRECT

GO:0052695~cellular 
glucuronidation

7.93E‐09 UGT1A7, UGT1A10, UGT1A6, UGT1A9, UGT2B17, UGT1A8, 
UGT1A3, UGT1A4, UGT2A3, UGT2B15, UGT1A1

GOTERM_BP_
DIRECT

GO:0052696~flavonoid 
glucuronidation

3.33E‐08 UGT1A7, UGT1A10, UGT1A6, UGT1A9, UGT2B17, UGT1A8, 
UGT1A3, UGT1A5, UGT1A4, UGT2A3, UGT2B15, UGT1A1

GOTERM_BP_
DIRECT

GO:2001030~negative regulation of 
cellular glucuronidation

3.88E‐08 UGT1A7, UGT1A10, UGT1A6, UGT1A9, UGT1A8, UGT1A3, 
UGT1A4, UGT1A1

GOTERM_BP_
DIRECT

GO:1904224~negative regulation of 
glucuronosyltransferase activity

3.88E‐08 UGT1A7, UGT1A10, UGT1A6, UGT1A9, UGT1A8, UGT1A3, 
UGT1A4, UGT1A1

GOTERM_CC_
DIRECT

GO:0070062~extracellular exosome 2.01E‐14 LTBP4, PTGS1, CCT2, SELENBP1, EDIL3, OGN, ACTG2, 
CD44, CD46, SERPINE1, CFH, COL12A1, GNG2, CFI, 
GUCA2A, CFD, GUCA2B, RAB27A, GNG7, ACAA2, BSG, 
CLCA4, CRYAB, RAN, CDHR2, KRT12, LIFR, CDHR5, 
COLEC12, GLTP, THY1, PRELP, NAPEPLD, TACSTD2, 
PGM1, RAB15, GCNT3, AHCY, GNAI1, MME, SERPINH1, 
EPHB4, ACAT1, DAAM2, KRT24, GPD1L, SERINC2, 
SIAE, FGL2, FAM162A, SPP1, BMP3, MGAT4A, CFB, 
MAOB, IL1RN, GARS, S100A11, C16ORF89, HBA2, HBA1, 
LGALS9, GART, PPA1, GGT6, CD55, CKMT1A, SFRP1, 
FCGBP, PLAU, CKMT1B, NAAA, ANPEP, SLC26A2, 
SPINK5, CKB, HSPH1, SLC23A1, SMPDL3B, SMPDL3A, 
GPX3, SLC22A5, FAM129A, CEACAM1, KCNMA1, 
CCT6A, FLNB, TRAP1, MTMR11, PFDN2, CHMP1B, BGN, 
SERPINB5, CLIC5, CLIC6, RUVBL1, CHL1, C7, SORD, 
UGDH, CLDN11, ITM2C, CCL28, ITM2A, GLIPR2, GPM6A, 
CD177, AGT, SULT1C2, C2, THBS1, CD27, TMPRSS2, 
CES3, BCAS1, CES2, SHMT2, TRHDE, CAPN5, SI, APPL2, 
PCK1, FBLN1, PROM2, GLA, PLSCR4, TOM1L2, PTP4A1, 
EEF1E1, GFRA1, CP, PSAT1, PAICS, HPGD, CDH11, 
GNPDA1, TSPAN1, NIT1, THRB, TSPAN3, MMP9, GNA11, 
IQGAP2, SLC7A5, CXCL12, CMBL, PRKAR2B, ASPA, 
SLC16A1, TGFBI, IL1B, PRKACB, SLC4A4, NEGR1, MB, 
COCH, SPARCL1, RBKS, METTL7A, NEBL, PCOLCE2, 
TRIM36, AKR1B10, COL1A2, SNRPB, MFAP4, DST, SRI, 
WNT5A, FXYD3, PPIL1, ITLN1, CLU, PSMA7, TIMP1, 
B3GNT8, REG1A, CSE1L, OSBPL1A, ENTPD5, ANGPTL1, 
NDRG2, DEFB1, FN1, CPNE8, S100P, CPNE5, MYO1D, 
EPHX2, SLC6A14, SPPL2A, ATAD2, ABCB1, ENDOD1, 
SLC6A19, MUC4, LCN2, TST, LYVE1, PLCG2, MYH11, 
FABP4, SLC13A2, HSPD1, ANTXR1, MYLK, PRPH, 
FIGNL1, SLC5A1, IGFBP6, CLDN5, PRDX4, FAM63A, 
AMN, DES, GSN, ACOT11, PDE8A, RHOF, AHNAK, 
AKR1C1, CDK1, ACADM, CILP, MPP6, PADI2, PIGR, 
MAN1A1, PRKCB, CFL2, SCIN, CA4, WASL, CA2, CA1, 
CTSG, UGP2, CPM, ADH6, OAF, PBLD, UGT1A6, MTM1, 
UGT1A9, HSPA2, ATIC, PAFAH1B3, PLCD1, SCNN1G, 
NEDD4L, SLC39A5, SCNN1B, COL8A1, HBB, MYOC, 
DPT, GSTA1, SECTM1, RNASE1, TNXB, OLR1, TNXA, 
SLC12A2, KL, NFASC, KLK1, GDPD3, FUCA1, ANXA3, 
SMPD1, DSC2, GDF15, ATP8A1

(Continues)
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Category Term p Value Genes

GOTERM_CC_
DIRECT

GO:0005615~extracellular space 2.08E‐12 EDN3, CTHRC1, RETNLB, MMP9, LTBP4, SELENBP1, 
MMP3, CXCL11, CXCL12, CXCL10, REG3A, ACTG2, 
OGN, SERPINE2, SOSTDC1, FAP, TGFBI, SERPINE1, 
CFH, COL12A1, IL1B, CFI, CFD, LGI1, MTUS1, SPON1, 
SPARCL1, C10ORF99, PRELP, SCGB2A1, TNFAIP6, 
ADAMTS9, CD36, TACSTD2, VEGFA, COL1A2, STC1, 
RELN, COL1A1, WNT5A, ODAM, ENPP2, CLU, CCL8, 
FAM132A, CHEK1, GREM2, SERPINH1, ABI3BP, TIMP1, 
SIAE, ANGPTL1, DEFB1, OLFM1, SPP1, FN1, BMP3, 
BMP2, CFB, LGALS4, IL1RN, S100A11, LMCD1, TINAG, 
LGALS9, MUC4, C2ORF40, TST, LCN2, LAMA1, TNFSF11, 
NPY, SRPX2, S100B, SFRP1, SFRP4, NLGN4X, POP1, 
HSPD1, PYY, AREG, TPSAB1, SST, PLAU, IGFBP6, 
PRDX4, SPINK2, ANPEP, AMN, CKB, MTHFD2, SMPDL3B, 
GSN, SMPDL3A, GPX3, SEMA3D, LOXL2, ANGPT2, 
GHR, EGFL6, CILP, PIGR, IL6R, SLIT3, CHGA, SEMA4G, 
SERPINB5, CFL2, VCAN, CA2, CTSG, CXCL1, CPM, 
SORD, CXCL5, VPREB3, TNC, CXCL3, CXCL2, CXCL9, 
CXCL6, KIT, CCL28, PCSK2, CCL23, CCL20, AGT, PTN, 
PCSK9, C2, THBS1, MYOC, SCG2, DPT, CES3, SECTM1, 
CES2, TNXB, TNFSF4, KL, SPARC, GCG, DKK2, FBLN1, 
CCL13, SULF1, SMPD1, CMTM7, MEP1B, CP, GDF15

GOTERM_CC_
DIRECT

GO:0031012~extracellular matrix 3.99E‐09 FGFR2, LTBP4, TNC, CLU, CCT2, EDIL3, MMRN1, ABI3BP, 
MMP1, OGN, SERPINE2, TGFBI, SERPINE1, COL12A1, 
COL8A1, LOXL2, THBS1, THBS2, MYOC, DPT, SPON1, 
FN1, COCH, HAPLN1, TNXB, COL4A1, RAN, CILP, 
LMCD1, CCT6A, MMP14, COL5A2, FLNB, MMP11, PRELP, 
LAMA1, ADAMTS9, FBLN1, BGN, SFRP1, ZG16, COL1A2, 
VCAN, COL1A1, HSPD1, TPSAB1, MFAP4, CTSG

GOTERM_CC_
DIRECT

GO:0005578~proteinaceous extracel-
lular matrix

1.12E‐07 WNT5A, CTHRC1, MAMDC2, MMP9, LTBP4, MMP28, 
MMP3, MMP1, TIMP1, OGN, TGFBI, MYOC, DPT, 
SPON1, FN1, COCH, HAPLN1, TNXB, TNXA, SPARCL1, 
OLFML2B, CILP, SPARC, COL5A2, COL4A6, MMP12, 
MUC4, SLIT3, MMP11, COL4A5, PRELP, LAMA1, 
ADAMTS9, FBLN1, BGN, SFRP1, ZG16, VEGFA, COL1A2, 
VCAN, RELN, CHL1

GOTERM_CC_
DIRECT

GO:0009986~cell surface 8.51E‐07 TLR2, TLR3, IQGAP2, LPAR1, SRPX, CD44, ANK3, CD46, 
FAP, RSPO2, CHRNA1, CEACAM1, GHR, TMEM206, 
CRYAB, NRXN1, IL6R, SLC7A11, ADAMTS9, BGN, CD36, 
TNFRSF10B, BACE2, VEGFA, CA4, SLITRK6, CTSG, 
AOC3, WNT5A, FGFR2, CPM, FGFR3, TNFRSF12A, CLU, 
HMMR, SLC11A2, FOLR2, HSPA2, P2RY1, PCSK9, PTN, 
SLC39A6, THBS1, FCER1A, BMP2, CAPN5, TNFSF4, MET, 
ITGA2, ABCB1, SPARC, FZD5, CD1D, CD55, PROM2, 
SRPX2, SFRP1, NLGN4X, SULF1, SFRP4, AREG, ANTXR1, 
HSPD1, SCARA5, PLAU

GOTERM_MF_
DIRECT

GO:0015020~glucuronosyltransferase 
activity

8.82E‐08 CSGALNACT1, UGT1A7, UGT1A10, UGT1A6, UGT1A9, 
UGT2B17, UGT1A8, UGT1A3, UGT1A5, UGT1A4, UGT2A3, 
UGT2B15, UGT1A1

GOTERM_MF_
DIRECT

GO:0001972~retinoic acid binding 6.55E‐06 UGT1A7, UGT1A10, UGT1A6, UGT1A9, UGT2B17, UGT1A8, 
UGT1A3, UGT1A4, UGT2B15, UGT1A1

GOTERM_MF_
DIRECT

GO:0008009~chemokine activity 8.97E‐06 CXCL1, CCL13, CCL23, CXCL5, CCL20, CXCL3, CXCL2, 
CXCL9, CCL8, CXCL6, CXCL11, CXCL12, CCL28, CXCL10

T A B L E  1   (Continued)

(Continues)
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glucuronosyl transferase activity. Cell component analysis 
showed that these DEGs were particularly involved in ex-
tracellular exosome, extracellular space, extracellular ma-
trix, proteinaceous extracellular matrix, and cell surface. 
Similarly, changes in molecular function of DEGs were sig-
nificantly enriched in glucuronosyl transferase activity, reti-
noic acid binding, chemokine activity, transferase activity, 
transferring hexosyl groups, and CXCR chemokine receptor 
binding. Additionally, the results of KEGG pathway analysis 
revealed that these DEGs were mainly enriched in Pentose 
and glucuronate interconversions, Ascorbate and aldarate 
metabolism, Drug metabolism‐cytochrome P450, Retinol 
metabolism, and Steroid hormone biosynthesis (Figure 2 & 
Table 1).

3.3  |  PPI network construction and 
module analysis
Based on the STRING database, a PPI network of DEGs 
with 482 nodes and 2,368 interactions was established using 
the Cytoscape software (Figure 3). The most significant 
modules were extracted from this PPI network by MCODE 
(Figure 4a). The results of signaling pathway enrichment 
analysis suggested that the module genes were mainly en-
riched in cell cycle, DNA replication, oocyte meiosis, p53 
signaling pathway, and progesterone‐mediated oocyte matu-
ration (Table 2). The BP analysis showed that the module 

genes were significantly related to DNA replication, DNA 
strand elongation, and DNA‐dependent DNA replication 
(Figure 4b)

3.4  |  Analysis and validation of hub genes
In order to validate the correlation between hub genes expres-
sion and the clinical characteristics of CRC, HPA database, 
and the cBioPortal for Cancer Genomics database were used 
for further analysis. The mining of GEPIA database also dem-
onstrated that DEGs exhibited significant differences in ex-
pression between CRC and normal tissues. This result further 
confirmed that the expression level of these hub genes was 
closely correlated with the onset of CRC. A total of 270 CRC 
patients were available from GEPIA database for the overall 
survival analysis and divided into high expression and low 
expression groups. It was found that all the four hub genes 
were upregulated (Figure 5a). Together, the expression level 
of AURKA, CCNB1, CCNF, and EXO1 could represent the 
important prognostic biomarkers for predicting the survival 
of CRC patients (Figure 5b). AURKA, CCNB1, CCNF, 
and EXO1 were selected as hub genes for further analysis. 
The full names and function roles for these hub genes were 
shown in Table 3. The immunohistochemical staining results 
from HPA database indicated significantly higher positivity 
for AURKA, CCNB1, CCNF, and EXO1(Not found in HPA 
database) in cancer tissues than in adjacent normal tissues 

Category Term p Value Genes

GOTERM_MF_
DIRECT

GO:0016758~transferase activity 
transferring hexosyl groups

7.61E‐05 UGT1A7, UGT1A6, MGAT4A, UGT1A9, UGT1A8, UGT1A3, 
UGT1A4, UGT2A3, UGT2B15, UGT1A1

GOTERM_MF_
DIRECT

GO:0045236~CXCR chemokine 
receptor binding

1.11E‐04 CXCL1, CXCL5, CXCL3, CXCL2, CXCL6, CXCL12

KEGG_PATHWAY hsa00040:Pentose and glucuronate 
interconversions

3.08E‐10 SORD, KL, UGDH, UGT1A1, UGT1A7, UGT1A10, UGT1A6, 
UGT1A9, UGT2B17, UGT1A8, UGT1A3, AKR1B10, 
UGT1A5, UGT1A4, UGT2A3, UGT2B15, UGP2

KEGG_PATHWAY hsa00053:Ascorbate and aldarate 
metabolism

1.83E‐07 UGT1A7, UGT1A10, UGT1A6, UGT1A9, UGT2B17, UGT1A8, 
UGT1A3, UGT1A5, UGT1A4, UGDH, UGT2A3, UGT2B15, 
UGT1A1

KEGG_PATHWAY hsa00982:Drug metabolism ‐ cy-
tochrome P450

3.48E‐07 GSTA1, MAOA, MAOB, ADH1C, ADH1B, ADH6, UGT1A1, 
FMO4, UGT1A7, UGT1A10, UGT1A6, FMO5, UGT1A9, 
UGT2B17, UGT1A8, UGT1A3, UGT1A5, UGT1A4, UGT2A3, 
UGT2B15

KEGG_PATHWAY hsa00830:Retinol metabolism 3.13E‐06 ADH1C, ADH1B, ADH6, DHRS9, UGT1A1, RDH5, UGT1A7, 
UGT1A6, UGT1A10, UGT1A9, UGT2B17, UGT1A8, 
UGT1A3, UGT1A5, UGT1A4, UGT2A3, UGT2B15, RETSAT

KEGG_PATHWAY hsa00140:Steroid hormone 
biosynthesis

1.70E‐‐05 HSD3B2, HSD17B2, UGT1A1, UGT1A7, UGT1A6, UGT1A10, 
UGT1A9, UGT2B17, UGT1A8, UGT1A3, UGT1A5, UGT1A4, 
HSD11B2, UGT2A3, UGT2B15, AKR1C1

Abbreviations: CRC, Colorectal cancer; DEGs, Differentially expressed genes.

T A B L E  1   (Continued)
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(Figure 6a). A network of the module genes and their co‐ex-
pression genes was constructed using cBioPortal online plat-
form (Figure 6b).

3.5  |  Identification of related active 
small molecules
To screen and identify candidate small molecules for po-
tential therapeutic drugs in CRC, we uploaded upregu-
lated and downregulated DEGs groups into the CMap 
database for Gene Set Enrichment Analysis and then 

F I G U R E  3   Protein–protein interaction networks construction

T A B L E  2   The pathway enrichment analysis of module genes

pathway ID pathway description

false 
discovery 
rate

hsa4110 Cell cycle 2.87E‐07

hsa3030 DNA replication 4.61E‐05

hsa4114 Oocyte meiosis 0.00258

hsa4115 p53 signaling pathway 0.0128

hsa4914 Progesterone‐mediated 
oocyte maturation

0.0175
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F I G U R E  4   (a)The top three most significant modules extracted from PPI network and KEGG pathway analysis of module genes. (b)The 
biological process of module genes analyzed by BiNGO. The color depth of nodes represents the corrected p‐value. The size of nodes represents 
the number of genes involved. PPI, protein–protein interaction; KEGG, Kyoto Encyclopedia of Genes and Genomes
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matched them with small molecule treatment. This pro-
cedure aimed to find some small molecules that could re-
verse the changes of gene expression in CRC. Table 4 and 

Figure 6c listed the top 15 most significant small mol-
ecules with their enrichment scores and p value. Among 
these molecules, DL‐thiorphan, repaglinide, MS‐275, and 

F I G U R E  5   The expression level and prognostic value of hub genes according to the GEPIA database. GEPIA, Gene Expression Profiling 
Interactive Analysis
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quinostatin showed higher negative correlation and the 
potential to treat CRC.

4  |   DISCUSSION

Although many studies on CRC development are available, 
more efforts are needed to identify driver genes and candi-
date drugs. This study integrated two gene profile datasets 
and utilized bioinformatics methods to analyze these data-
sets, and identified 1,179 commonly changed DEGs (428 
upregulated and 751 downregulated). Pathway enrichment 
analysis indicated that that the module genes were mainly 
enriched in cell cycle, DNA replication, oocyte meiosis, p53 
signaling pathway, and progesterone‐mediated oocyte matu-
ration. The PPI network was constructed including 482 nodes 
and 2,368 edges. AURKA, CCNB1, CCNF, and EXO1 were 
clearly related to the prognosis of patients. In addition, small 
molecules that can provide new insights in CRC therapeutic 
studies were identified.

Many researchers have found that four key genes were in-
volved in cell cycle, participating in tumorigenesis and tumor 

proliferation. AURKA has been studied in a wide range of 
human malignancies and is associated with poor prognosis 
in several malignancies, including cervical squamous cell 
carcinoma, hepatocellular carcinoma, and nonsmall cell lung 
carcinoma (Ma et al., 2017; Wang et al., 2018; Zheng et al., 
2018). Besides, Yang et al., (2017) reported that AURKA 
as a transactivating co‐factor in the induction of the c‐Myc 
oncoprotein in breast cancer stem cells (BCSCs). In CRC, 
AURKA is critical for chromosome 20q amplification‐as-
sociated malignant transformation in colorectal adenomas 
(Chuang et al., 2016). CCNB1 acts as a central protein of 
cell cycle. Owing to its function, it is found that CCNB1 is 
generally abnormal in tumors. CCNB1 was associated with 
pathologic grade and metastasis of tumors in cases of human 
breast and ovarian cancer (Fei et al., 2018). Several literatures 
found that the expression of CCNB1 was significantly asso-
ciated with pathologic grade, metastasis, and prognosis of 
tumors (Ding et al., 2018; Zuryn, Krajewski, Klimaszewska‐
Wisniewska, Grzanka, & Grzanka, 2019). CCNF, capable of 
forming Skp1‐Cul1‐F‐box protein ubiquitin ligase complex, 
is implicated in controlling centrosome duplication and pre-
venting genome instability. Gagat, Krajewski, Grzanka, and 

T A B L E  3   The full name, functional roles, p‐value, and LogFC of hub genes

gene symbol Summary GSE33113 GSE44076

AURKA The protein encoded by this gene is a cell cycle‐regulated kinase that appears 
to be involved in microtubule formation and/or stabilization at the spindle 
pole during chromosome segregation. The encoded protein is found at the 
centrosome in interphase cells and at the spindle poles in mitosis. This gene 
may play a role in tumor development and progression. A processed pseu-
dogene of this gene has been found on chromosome 1, and an unprocessed 
pseudogene has been found on chromosome 10. Multiple transcript variants 
encoding the same protein have been found for this gene.

p value = 3.87e‐07, 
LogFC = 1.60

p Value = 4.11e‐51, 
LogFC = 1.65

CCNB1 The protein encoded by this gene is a regulatory protein involved in mitosis. 
The gene product complexes with p34(cdc2) to form the maturation‐pro-
moting factor (MPF). The encoded protein is necessary for proper control of 
the G2/M transition phase of the cell cycle.

p 
Value = 2.41e−05, 
LogFC = 1.31

p Value = 3.56e−37, 
LogFC = 1.71

CCNF This gene encodes a member of the cyclin family. Cyclins are important 
regulators of cell cycle transitions through their ability to bind and activate 
cyclin‐dependent protein kinases. This member also belongs to the F‐box 
protein family which is characterized by an approximately 40 amino acid 
motif, the F‐box. The F‐box proteins constitute one of the four subunits 
of the ubiquitin protein ligase complex called SCFs (SKP1‐cullin‐F‐box), 
which function in phosphorylation‐dependent ubiquitination. The F‐box 
proteins are divided into three classes: Fbws containing WD−40 domains, 
Fbls containing leucine‐rich repeats, and Fbxs containing either different 
protein–protein interaction modules or no recognizable motifs. The protein 
encoded by this gene belongs to the Fbxs class and it was one of the first 
proteins in which the F‐box motif was identified.

p Value = 1.80e‐06, 
LogFC = 1.03

p Value = 2.58e‐44, 
LogFC = 1.32

EXO1 This gene encodes a protein with 5' to 3' exonuclease activity as well as an 
RNase H activity. It is similar to the Saccharomyces cerevisiae protein Exo1 
which interacts with Msh2 and which is involved in mismatch repair and 
recombination. Alternative splicing of this gene results in three transcript 
variants encoding two different isoforms.

p value = 4.39e‐10, 
LogFC = 2.43

p value = 1.20e‐43, 
LogFC = 1.23
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F I G U R E  6   (a) Representative immunohistochemistry staining results reveal the protein level expression of hub genes in CRC and normal 
tissues. (b) The network of module genes and their co‐expression genes constructed by cBioPortal. Nodes with thick outline: hub genes; Nodes with 
thin outline: co‐expression genes. (c) Pop plot of top 20 identified small molecules that could reverse the gene expression of CRC. CRC, Colorectal 
cancer
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Grzanka (2018) revealed that high expression of CCNF in 
melanoma patients was associated with worse overall sur-
vival. Additionally, with gene network reconstruction, CCNF 
was regarded as one of the main drivers in cell cycle net-
work in gastric cancer (Zhao et al., 2019). But Fu et al. (2013) 
found that CCNF was downregulated in HCC, which was an 
independent poor prognostic marker for overall survival. 
However, the function of CCNF in CRC is not clear.

The contribution of EXO1 in the safeguarding stability of 
the genome during DNA replicative and postreplicative pro-
cesses is well‐established. EXO1 activity contributes to sev-
eral DNA repair processes. EXO1 has been associated with 
different types of cancers owning to its mutations, including 
colon, breast, ovarian, lung, pancreatic, and gastric tract can-
cer (Bau et al., 2009; Hansen et al., 2015; Jin et al., 2008; Sun, 
Zheng, & Shen, 2002). Nevertheless, the overexpression of 
EXO1 has also been reported in several other cancers associ-
ated with poor prognosis, which in part is related to increased 
DNA repair activity (Axelsen, Lotem, Sachs, & Domany, 
2007; Dai et al., 2018; de Sousa et al., 2017; Muthuswami 
et al., 2013). In this study, AURKA, CCNB1, CCNF, and 
EXO1 were significantly upregulated in CRC compared with 
normal samples, and in CRC patients, the survival rate was 
positively correlated with the high expression of these genes.

Several small molecules with potential therapeutic ef-
ficacy against CRC were identified. The most significant 
small molecules in our result have been reported to display 
anticancer activity. DL‐thiorphan is served as the specific 
neutral endopeptidase (NEP) inhibitor, which is widely 
used to differentiate NEP enzyme activity. NEP enzyme is 
a membrane‐bound metallopeptidase that plays key roles 

in wound repair (Muangman, Tamura, & Gibran, 2005). 
DL‐thiorphan may be the target and candidate agent for 
Type 2 Diabetes Treatment (Wang, Zhao, Shang, & Xia, 
2014). Besides, thiorphan binding to CD10 might inter-
fere with the processing of neuropeptide hemoregulatory 
factors and thus influence the progenitor cell proliferation 
in acute leukemia (Feng et al., 2011). However, there are 
insufficient evidences indicating DL‐thiorphan can be di-
rectly used in anticancer. Moreover, repaglininde is a new 
class of oral antidiabetic agents, which stimulates insulin 
release within a few minutes by inhibiting ATP‐sensitive 
potassium channels of the beta‐cell membrane via bind-
ing to a receptor distinct from that of sulphonylureas. A 
previous study revealed that repaglininde may have direct 
antitumor effects and have been shown to suppress various 
types of cancer cells in cell culture and in animal models 
(Stanovic et al., 2000). On the other hand, El Sharkawi et 
al reported that repaglininde may have cytotoxic effects 
against hepatic, breast, and cervical carcinoma cells (El 
Sharkawi, Shemy, & Khaled, 2014). Thus, we might sup-
pose that these identified drugs could play certain roles to 
combat CRC. However, further studies were still required 
to clarify the role of these candidate small molecules in the 
pathogenesis of CRC.

5  |   CONCLUSION

Using bioinformatics analysis, 1,179 DEGs were identi-
fied, which were significantly enriched in several pathways, 
mainly associated with cell cycle, oocyte meiosis, DNA rep-
lication, p53 signaling pathway, and progesterone‐mediated 
oocyte maturation. We also identified key genes including 
AURKA, CCNB1, CCNF, and EXO1 that might play impor-
tant roles in CRC and that might represent novel biomarkers 
in CRC prognosis and therapy. Additionally, a group of small 
molecules was identified that might be exploited as adjuvant 
drugs for improved therapeutics for CRC. However, further 
investigations are required to validate the predicted drugs.
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T A B L E  4   List of the top 15 most significant small molecule 
drugs that could reverse the tumoral status of colorectal cancer (CRC)

cmap name enrichment p

DL‐thiorphan −0.932 0.00972

repaglinide −0.864 0.00062

MS–275 −0.857 0.04066

quinostatin −0.853 0.04298

1,4‐chrysenequinone −0.85 0.04519

triflusal −0.847 0.00717

trazodone −0.82 0.0117

piperidolate −0.817 0.0121

latamoxef −0.816 0.01232

ronidazole −0.765 0.02646

pargyline −0.76 0.00676

gliclazide −0.751 0.00774

tyloxapol −0.746 0.00824

acepromazine −0.744 0.00851

methylergometrine −0.741 0.00881
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