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The prediction of protein–protein interactions (PPIs) in plants is vital for probing the cell function.
Although multiple high-throughput approaches in the biological domain have been developed
to identify PPIs, with the increasing complexity of PPI network, thesemethods fall into laborious
and time-consuming situations. Thus, it is essential to develop an effective and feasible
computational method for the prediction of PPIs in plants. In this study, we present a network
embedding-based method, called DWPPI, for predicting the interactions between different
plant proteins based on multi-source information and combined with deep neural networks
(DNN). The DWPPI model fuses the protein natural language sequence information (attribute
information) and protein behavior information to represent plant proteins as feature vectors and
finally sends these features to a deep learning–based classifier for prediction. To validate the
prediction performance of DWPPI, we performed it on threemodel plant datasets:Arabidopsis
thaliana (A. thaliana), mazie (Zea mays), and rice (Oryza sativa). The experimental results with
the fivefold cross-validation technique demonstrated that DWPPI obtains great performance
with the AUC (area under ROC curves) values of 0.9548, 0.9867, and 0.9213, respectively. To
further verify the predictive capacity of DWPPI, we compared it with some different state-of-
the-art machine learning classifiers. Moreover, case studies were performed with the
AC149810.2_FGP003 protein. As a result, 14 of the top 20 PPI pairs identified by DWPPI
with the highest scores were confirmed by the literature. These excellent results suggest that
the DWPPI model can act as a promising tool for related plant molecular biology.
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INTRODUCTION

Prediction of protein–protein interactions (PPIs) in plants is of great biological importance
(Fukao, 2012). Cells receive endogenous signals to regulate their gene expression under a special
signaling pathway. In this process, proteins play an essential role in regulating and mediating the
biological activities of plant cells (Lehti-Shiu and Shiu, 2012). In addition, the identification of
PPIs not only helps understand how proteins perform their biological functions but also
provides essential information for rational drug design. Traditional biological experimental
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methods, such as mass spectrometry (Woods et al., 2011),
tandem affinity purification (Rohila et al., 2009), and yeast-two
hybrid (Fang et al., 2002) were used. Nevertheless, these
conventional approaches are costly, time-consuming, and
prone to high false-positive rates. Thus, the development of
novel computational models to identify potential PPIs would
be of enormous value to plant genomics and genetics.

Recently, many bioinformatic methods have been proposed
for identifying PPIs. These approaches can be roughly split
into three categories: docking-based methods (Yan et al.,
2017), structure-based methods (Hayashi et al., 2018), and
sequence-based methods (Pan et al., 2021). Typically, the first
two techniques perform better than the sequence-based
methods. However, docking- and structure-based methods
usually need the structural details of proteins. Problems
arise when these prior data do not exist. Moreover, with the
evolution of genome sequencing technology, a vast number of
protein sequences have been discovered. Against this
backdrop, the sequence-based approaches have attracted
increasing attention. Most of the computational approaches
adopt the machine learning algorithms such as support vector
machine (Guo et al., 2008; Romero-Molina et al., 2019;
Chakraborty et al., 2021), random forest (Li et al., 2012;
Wang et al., 2019; Yang et al., 2020), and K-nearest
neighbor (Ambert and Cohen, 2011; Ning et al., 2019).
Some studies have also combined machine learning
techniques with feature descriptors of protein sequences to
predict PPIs, such as the Moran and Geary autocorrelation
descriptor (Chen et al., 2020), conjoint Triad descriptor (Shen
et al., 2007), and multi-scale local feature descriptors (You
et al., 2015). These feature descriptors aim to summarize the
information of 20 canonical amino acid sequences for PPI
prediction.

Unlike the traditional machine learning approaches, deep
learning-based approaches can not only extract high-
dimensional features directly from the primary sequence
(Ekbal et al., 2016; Zeng et al., 2020; Wang J. et al., 2021)
but also capture their non-linear dependencies to increase
prediction accuracy. Therefore, deep learning algorithms
have been widely applied to predict associations between
different biomolecules in recent years. For example, Czibula
et al. (2021) introduced a method called AutoPPI to predict
PPIs that used two autoencoders, which correspond to three
kinds of neural network architectures. Qiang et al. (2020)
presented an approach named CPPred-FL that used
multiple feature descriptors to identify cell-penetrating
peptides. CPPred-FL introduced a novel feature
representation learning scheme to capture features from
different perspectives. Huang et al. (2021) proposed a
method, called MVMTMDA, for predicting
microRNA–disease associations (MDAs). This model creates
a multi-view representation of microRNAs that can predict
MDAs via an end-to-end multitasking technique. Yuan et al.
(2021) developed a deep graph-based framework named
GraphPPIS for identifying PPIs. GraphPPIS transformed the
prediction problem of PPI sites as a graph node classification
task, which can be solved via deep learning techniques.

Recently, some studies have indicated that the information of
network data is useful in prediction problems, including position,
degree, and neighboring nodes in the graph. For example, Lim
et al. (2019) presented a graph neural network, which used a
distance-aware graph attention technique to predict drug-target
interactions. Zhao et al. (2020) predict PPIs that combined the
spatial relationship of protein sequence with the potential
sequential feature of the ontological annotation semantics. Xu
et al. (2020) developed a method called PPI-GE, which predicts
PPIs by combining the contact graph energy and physicochemical
graph energy. Xiao and Deng (2020) proposed a new node
embedding approach to predict PPIs that captures the
topological information from higher-order neighborhoods of
PPI network nodes. Li et al. (2021) built a novel model called
GAEMDA that used a graph neural network-based encoder to
detect the miRNA-disease associations. Wang L. et al. (2021)
presented a novel framework named NMFCDA to identify
CircRNA-disease association by combining kernel similarity
information, disease semantic information, and protein
sequence information. Zheng et al. (2019) built a model called
MLMDA to predict MDAs. This model combined miRNA
functional similarity, Gaussian interaction profile kernel
similarity information and disease semantic similarity with
deep auto-encoder neural network and random forest classifier
for the MDAs prediction. Guo et al. (2019) proposed a
computational approach named LDASR to identify potential
associations between lncRNAs and diseases. The method
abstracted feature vectors for lncRNA and disease from
multiple similarity matrices and the rotational forest algorithm
is used for carrying the prediction.

Inspired by these graph embedding methods, we propose a
novel efficient computational approach called DWPPI to predict
potential protein–protein interactions in plants. This model
employed two critical information: the original attribute
information of the protein sequence, and the behavior
information of the PPI graph network. To be specific, we first
constructed a plants protein–protein bipartite graph to
summarize the associations between these proteins, in which
each plant protein is represented by a node, and each link
represents their association. Then, we employed a graph
embedding algorithm method, Deepwalk, to capture behavior
information from the links, and used a word embedding
algorithm, word2vec to encode the protein sequence for
extracting attribute information. Thirdly, the behavior and
attribute information were combined to form the fusion
matrix, which is finally fed into a deep neural network (DNN)
to predict potential plant-protein pairs. For evaluating the
performance of the proposed method, we tested it on three
model plant PPI datasets (including Arabidopsis thaliana, Zea
mays, and Oryza sativa) based on fivefold cross validation (5-fold
CV). As a result, DWPPI obtained 89.47, 95.00, and 85.63%
prediction accuracy with the AUC of 0.9548, 0.9867, and 0.9213
on the three datasets, respectively. In comparison with different
feature descriptors and machine learning-based classifiers,
DWPPI also yields good predictive performance. Besides, we
also tested a case study on the AC149810.2_FGP003 protein of
the Zea mays dataset. Finally, 14 of the top 20 plant–protein
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interaction pairs with the highest prediction scores were
confirmed in the published literature. These experimental
results further demonstrated that our model brings new
insights for discovering and exploring the intermolecular
interactions.

RESULTS

Evaluation Metrics
In this article, 5-fold CV was used to access the predictive
performance of the DWPPI model. First, all the plant–protein
pairs were randomly divided into five parts, which were disjoint
and roughly equal. Second, four of the parts were used as the
training set to train DWPPI, and the remaining one was adopted
as the test set to yield the prediction results. Lastly, different
sections were selected in turn as the training set, and step 2 was
repeated until all sections were taken once and only once as the
test set. The final experimental results were obtained by averaging
the performance of five replicates. In this work, five parameters
such as accuracy (Acc), Sensitivity (Sen), Specificity (Spec),
Precision (PR.), and Matthew correlation coefficient (MCC)
were performed to assess the predictive performance, which
can be defined as:

ACC. � TN + TP

TN + TP + FP + FN
(1)

Sen. � TP

FN + TP
(2)

Spec. � TN

FP + TN
(3)

PR. � TP

FP + TP
(4)

MCC � TN × TP − FN × FP������������������������������������������(ΤΝ + FP) × (TP + FN)×(TN × FN)×(TP + FP)√
(5)

In the above formulas, TP, TN, FP, and FN represent the
possible classification results including true positive, true
negative, false positive, and false negative, respectively. The
receiver operating characteristic (ROC) curves and precision-
recall (PR) curves were adopted to evaluate the prediction ability
of DWPPI. In addition, the area under ROC curves (AUC) was
also computed to summarize the AUC value in a simpler way.

Performance Evaluation Using Fivefold
Cross Validation
To access the capabilities of DWPPI, we performed it on the A.
thaliana, Zea mays, and Oryza sativa datasets, respectively. To
obtain better predictive stability and accuracy, we combined the
behavior feature and attribute feature as the multiple feature to
predict PPIs in plants. Table 1 summarizes the experimental
results on the A. thaliana dataset, from which we can observe that
the average ACC of fivefold CV method is 89.47%, the Sen is
91.47%, the Spec is 87.48%, the PR is 87.97%, the MCC is 79.02%,
and AUC value is 0.9548, respectively. Their standard deviations

are 0.32, 0.27, 0.88, 0.72, and 0.61% and 0.0034, respectively.
Among the five sets of predictive performance, the lowest
accuracy rate came to 88.97% and the best result rate of up to
89.85%. The experimental results of 5-fold CV on the Zea mays
dataset are listed in Table 2. Here, it can be observed that the
average ACC, Sen, Spec, PR, MCC, and AUC value obtained by
DWPPI are 95.00, 96.30, 93.69, 93.85, 90.02% and 0.9867,
respectively. The standard deviations are 0.38, 0.38, 0.70, 0.63,
0.75% and 0.0025, respectively. Table 3 lists the prediction results
of the Oryza sativa dataset. The average ACC, Sen, Spec, PR,
MCC and AUC value by 5-fold CV are 85.63, 86.38, 84.89, 85.11,
71.28%, and 0.9213, respectively. Their standard deviations are
0.17, 0.13, 0.23, 0.21, 0.35% and 0.0019, respectively. Figures 1–3
show the ROC and PR curves generated by the DWPPI model on
the A. thaliana, Zea mays, and Oryza sativa PPI datasets,
respectively.

Performance Comparison of Different
Classifiers on DWPPI
In the prediction framework of the DWPPI model, we adopted
the deep neural network (DNN) to classify the interaction
between different plant proteins. In order to validate the effect
of DNN on the DWPPI model, we made a comparison of the
DNN model with some different classifier models. More
concretely, we keep the multiple feature of the DWPPI model
unchanged and experimented with some different classifiers
instead of DNN, including logistic regression (LR) and
decision trees (DT). The experimental results produced by
these classifiers on the three plant PPI datasets are
summarized in Table 4. It can be observed from Table 4 that
the proposed model with the DNN as the classifier obtained
significantly higher ACC and AUC values compared to other
classifier models. For visual comparison, we present the ACC and
AUC values as a histogram in Figure 4. These results indicated
that DNN classifiers are applicable for the plant PPI prediction.
The main reason for this performance is that the proposed deep
learning framework can effectively mine the deep information
embedded in the PPI network and significantly help increase the
model performance.

Comparison of theMultiple FeatureWith the
Attribute Feature and Behavior Feature
To further evaluate the efficiency of the proposed feature
representation, we also performed experiments on the DNN
model that only used the signal behavior or attribute feature
via 5-fold CV. Table 5 provides the comparison results of the
multiple feature with the feature that only used the behavior or
attribute feature. In detail, the average predictive accuracy using
the behavior information on A. thaliana, Zea mays, and Oryza
sativa datasets was 82.33, 92.02, and 83.04%, and the yielded AUC
values were 0.9078, 0.9627, and 0.9070, respectively. The average
prediction results of using the attribute information on these
datasets were 72.87, 90.41, and 80.41%; the obtained AUC values
were 0.7632, 0.9476, and 0.8660, respectively. Taking the A.
thaliana dataset as an example, the ACC gap between multiple
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and behavior features is 7.14%. Similarity, the ACC gap between
multiple and attribute features is 16.6%. Compared with the
results obtained by the multiple feature, we can conclude that
employing the behavior or attribute feature alone cannot obtain
better prediction results. All these experimental results
demonstrated that the proposed multiple feature could help
predict potential interaction between plant–protein pairs.

Case Study
To further evaluate the predictive ability of DWPPI, we
performed a case study based on the Zea mays dataset. In
the experiment, the AC149810.2_FGP003 protein was chosen
to construct the case study, and all known protein–protein
interactions provided by the Zea mays dataset were used to
train DWPPI. The testing set was the PPI pairs consisting of

TABLE 1 | Prediction performance on the A. thaliana dataset with the multiple feature.

Testing set ACC. (%) Sen. (%) Spec. (%) PR. (%) MCC. (%) AUC

1 89.85 91.27 88.44 88.76 79.74 95.71
2 89.63 91.14 88.12 88.47 79.30 95.51
3 89.48 91.46 87.50 87.97 79.02 95.55
4 89.44 91.71 87.18 87.73 78.97 95.74
5 88.97 91.76 86.18 86.91 78.07 94.91
Average 89.47 ± 0.32 91.47 ± 0.27 87.48 ± 0.88 87.97 ± 0.72 79.02 ± 0.61 0.9548 ± 0.0034

TABLE 2 | Prediction performance on the Zea mays dataset with the multiple feature.

Testing set ACC. (%) Sen. (%) Spec. (%) PR. (%) MCC. (%) AUC

1 95.38 96.49 94.28 94.4 90.79 98.83
2 94.94 95.98 93.9 94.02 89.90 98.69
3 94.94 95.87 94 94.11 89.89 98.74
4 95.30 96.79 93.8 93.98 90.63 98.84
5 94.42 96.35 92.48 92.76 88.90 98.25
Average 95.00 ± 0.38 96.30 ± 0.38 93.69 ± 0.70 93.85 ± 0.63 90.02 ± 0.75 0.9867 ± 0.0025

TABLE 3 | Prediction performance on the Oryza sativa dataset with the multiple feature.

Testing set ACC. (%) Sen. (%) Spec. (%) PR. (%) MCC. (%) AUC

1 85.46 86.24 84.68 84.92 70.93 91.99
2 85.59 86.3 84.88 85.09 71.19 92.08
3 85.55 86.35 84.75 84.99 71.11 91.96
4 85.92 86.57 85.28 85.46 71.85 92.42
5 85.64 86.44 84.85 85.09 71.3 92.22
Average 85.63 ± 0.17 86.38 ± 0.13 84.89 ± 0.23 85.11 ± 0.21 71.28 ± 0.35 0.9213 ± 0.0019

FIGURE 1 | ROC and PR curves yielded by the DWPPI model on the A. thaliana dataset with the multiple feature.
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the AC149810.2_FGP003 protein. After yielding the predicted
results, we verified the top 20 PPI pairs with the highest predicted
scores in the newly published literature. As shown in Table 6, 14
of the top 20 predicted proteins are verified in the experimental

data provided by the PPIM dataset. The point to note is that
the other six protein pairs of the unknown interaction are not
proved by the literature, and there is no denying the possibility of
interaction between them.

FIGURE 2 | ROC and PR curves yielded by the DWPPI model on the Zea mays dataset with the multiple feature.

FIGURE 3 | ROC and PR curves yielded by the DWPPI model on the Oryza sativa dataset with the multiple feature.

TABLE 4 | Comparison results of different classifiers in three model plant PPI datasets.

Plant Classifier ACC. (%) Sen. (%) PR. (%) MCC. (%) AUC

A. thaliana LR 68.84 67.12 69.52 37.72 0.7639
DT 81.81 81.92 81.74 63.62 0.8179
Our method 89.47 91.47 87.97 79.02 0.9548

Zea mays LR 86.70 85.63 87.49 73.41 0.9267
Dt 92.60 92.78 92.44 85.20 0.9296
Our method 95.00 96.30 93.85 90.02 0.9867

Oryza sativa Loss 77.65 79.23 76.82 55.34 0.8476
DT 73.78 70.07 74.62 47.58 0.7385
Our method 85.63 86.38 85.11 71.28 0.9213
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MATERIALS AND METHODS

Data Collection
To evaluate the predictive performance of the DWPPI model, we
applied it on three publicly available and widely used model plant
datasets, Arabidopsis thaliana (A. thaliana), maize (Zea mays),
and rice (Oryza sativa). Concretely, A. thaliana holds an
esteemed position in the field of plant research and it makes a
major contribution to the development of the plant protection,

and increases the production of crops. The A. thaliana dataset
was collected from public databases including IntAct (Kerrien
et al., 2012), TAIR (Rhee et al., 2003), and BioGRID (Oughtred
et al., 2019). After discarding the redundant PPIs, we yielded
28,110 PPI pairs from 7,437 different A. thaliana proteins.
Although some negative sampling schemes had been
developed previously, there is no single gold standard for
constructing the non-interaction samples. The most
widespread method is to select pairs randomly from non-

FIGURE 4 | Comparison results of different classifiers with the DWPPI model (A) is the predicted AUC values of different classifiers on three plants PPIs datasets.
(B) is the predicted ACC values of different classifiers on the three plants PPIs datasets.

TABLE 5 | Prediction performance on the three plant PPI dataset with different information.

Dataset Feature ACC. (%) Sen. (%) Spec. (%) PR. (%) MCC. (%) AUC

A. thaliana Behavior 82.33 ± 1.09 90.40 ± 1.38 74.16 ± 3.16 77.83 ± 1.99 65.48 ± 1.87 0.9078 ± 0.0088
Attribute 72.87 ± 0.93 59.26 ± 4.16 86.48 ± 2.89 81.58 ± 2.28 47.63 ± 1.35 0.7632 ± 0.0048
Multiple 89.47 ± 0.32 91.47 ± 0.27 87.48 ± 0.88 87.97 ± 0.72 79.02 ± 0.61 0.9548 ± 0.0034

Zea mays Behavior 92.02 ± 0.43 93.61 ± 1.10 90.43 ± 0.91 90.73 ± 0.73 84.09 ± 0.86 0.9627 ± 0.0029
Attribute 90.41 ± 0.77 91.07 ± 2.10 89.75 ± 0.74 89.89 ± 0.50 80.85 ± 1.59 0.9476 ± 0.0060
Multiple 95.00 ± 0.38 96.30 ± 0.38 93.69 ± 0.70 93.85 ± 0.63 90.02 ± 0.75 0.9867 ± 0.0025

Oryza sativa Behavior 83.04 ± 0.09 89.59 ± 1.00 76.49 ± 1.07 79.22 ± 0.57 66.67 ± 0.20 0.9070 ± 0.0035
Attribute 80.41 ± 1.60 83.51 ± 2.98 77.32 ± 0.89 78.63 ± 0.92 60.97 ± 3.32 0.8660 ± 0.0209
Multiple 85.63 ± 0.17 86.38 ± 0.13 84.89 ± 0.23 85.11 ± 0.21 71.28 ± 0.35 0.9213 ± 0.0019

TABLE 6 | Prediction of the top 14 predicted proteins based on known interactions on the Zea mays dataset.

Protein Evidence Protein Evidence

GRMZM2G032222_P01 PPIM AC193500.3_FGP003 PPIM
GRMZM2G068028_P01 PPIM AC215639.3_FGP002 PPIM
AC209860.3_FGP004 unconfirmed GRMZM2G143128_P01 unconfirmed
GRMZM2G069772_P01 PPIM GRMZM2G147450_P01 unconfirmed
GRMZM2G072806_P01 PPIM GRMZM2G013042_P01 PPIM
GRMZM2G125266_P01 unconfirmed GRMZM2G013448_P04 PPIM
GRMZM2G096815_P01 PPIM GRMZM2G172322_P01 unconfirmed
GRMZM2G141383_P01 unconfirmed GRMZM2G020631_P01 PPIM
GRMZM2G000531_P03 PPIM GRMZM2G026793_P01 PPIM
GRMZM2G004382_P01 PPIM GRMZM2G020631_P01 PPIM
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interacted samples. The number of possible non-interaction
pairs is 55,280,859 (7437 × 7437 − 28110), and we randomly
selected 28,110 pairs as the negative samples for the A. thaliana
dataset. Consequently, the whole A. thaliana dataset consisted
of whole 56,220 protein pairs. We also tested DWPPI on the
maize (Zea mays) and rice (Oryza sativa) datasets, which are
two of world’s most economically important crops. For the Zea
mays dataset, we collected 81,989 positive samples covering
7,199 different maize proteins from the PPIM database (Zhu
et al., 2016). Similarly, we randomly selected 81,989 protein
pairs from different subcellular localizations as the negative
samples. Finally, Oryza sativa was constructed by 103,028
samples covering 3,760 types of rice proteins from the PRIN
database (Gu et al., 2011). The number of proteins and
interactions for these three model plant datasets are
summarized in Table 7.

Behavior Information
As a widely used graph-embedding approach, Deepwalk
(Perozzi et al., 2014) was applied in the plant interaction
network to represent the potential relationship of the
vertices. In this work, let G represent the protein interaction
network with group of vertices X and a set of edge Y, which is
G � (X, Y). Deepwalk consists of two main parts: 1) Random
walk (RW), 2) the skip-gram algorithm (Mikolov et al.,
2013b). The RW algorithm applies a random vertex Xj to
the graph G as the root of RW WXj. In this part, we fixed
the length t of the RW. Before reaching the maximum length
t, the walk sequence will randomly choose the neighbors of
the final passed node. For each sequence, the maximum co-
occurrence probability of the vertices within T, and it can be
defined as follows:

Pr({Xj−w,/, vj+w}∖Xj

∣∣∣∣∣ϕ(Xj)) � Π
i�j−w,i ≠ j

j+w
Pr(Xi

∣∣∣∣∣ϕ(Xj)), (6)

where j − w and j + w represent the left and right context of the
wordXj, T denotes the size of the window. Moreover, each vertex
Xi has been mapped to its current representation vector
ϕ(Xi) ∈ Rd.

The skip-gram algorithm was used to iterate over all detected
matches of the sequence in window T. For each j, ϕ(Xj)
represents the vertex Xj maps to the representation space;
ϕ ∈ R|X|×σ is described as a matrix, the sample of all vertices is
represented as |X|, and σ denotes the embedding size. After
definingXj a representation in space, the probability of neighbors
in the walk sequences should to be maximized. For convenience,
we utilized the Hierarchical Softmax to factorize Pr(Xi|ϕ(Xj)).
The prediction tasks can be transformed as a hierarchy problem

by assigning the vertices to the leaves of the binary tree. To
accelerate the training time and maximize the specific path, the
nodes of the Huffman tree can represent the vertices in the
sequence. The Pr(Xi|ϕ(Xj)) can be expressed as follows:

pr(Xi

∣∣∣∣∣ϕ(Xj)) � Π
k�1

[log|X|]
1/(1 + e−ϕ(Xj)•φ(bk)), (7)

where φ(bk) ∈ Rd represents parent nodes of tree node bk. The
sequence of tree nodes (b0, b1, . . . , blog|X|) can be used to
represent the path of Xi, where blog|X| � Xi, and b0 � root. By
allocating paths to frequent vertices in the RW, the Huffman tree
that we adopted can accelerate the training process.

The embedding matrix ϕ could be yielded by applying the
Deepwalk algorithm to the plant–protein interaction network.
Each row of ϕ is a σ-dimensional vector, which will corresponded
to a topological representation for each plant protein node. Thus,
the cosine distance similarity between two vectors can be
expressed as the similarity of two protein nodes Xi and Xj,
which can be formulated as follows:

Sim(Xi, Xj) � ∑σ
k�1

ϕ(Xi, k)ϕ(Xj, k)����������∑σ
k�1

ϕ(Xi, k)2
√ ����������∑σ

k�1
ϕ(Xj, k)2√ , (8)

where ϕ(Xi, k) and ϕ(Xj, k) are the k-th components of the
vector ϕ(Xi) and ϕ(Xj). Based on Eq. 3, a topological similarity
matrix SimP can be built to represent the protein nodes in the PPI
interaction network.

Attribute Representation
In the DWPPI model, the word2vec algorithm (Mikolov et al.,
2013a) was used to embed the protein sequence for capturing the
attribute information of plant proteins. There are two main
models in word2vec: 1) continuous bag-of-words model
(CBOW) and 2) continuous skip-gram model (Skip-Gram).
The difference between the CBOW and Skip-Gram model is
that CBOW uses the context to predict the current words, while
Skip-Gram applies the current word to predict the context. If the
training data are not very big, the Skip-Gram method will be
more efficient. In our experiment, considering the size of our
plant PPI dataset, we selected the CBOW model of the word2vec
algorithm to learn more frequent words and speed up the
training time.

The amino acid sequences of these plant proteins were
encoded as matrixes via the word2vec algorithm to extract the
attribute information of plant nodes. The k-mers (k consecutive
amino acids) method was used to regard the sequence as a word,
and each protein sequence will be expressed as multiple k-mers.
As shown in Figure 5, given a sequence MNLLLFFL, the unit of
the 4-mers are MNLL, NLLL, LLLF, LLFF, and LFFL. To speed up
the computation, the CBOW-based word2vec algorithm was
selected to study the appearance pattern of the k-mers. Here,
the protein sequences and k-mers correspond to the sentences
and words in a natural language, respectively. In this work, the
trained word2vec model will generate 64-dimensional embedding

TABLE 7 | Number of entries of the three different plant PPI datasets.

Plant Protein number Interaction number

Arabidopsis thaliana (A. thaliana) 7437 28110
Zea mays (Mazie) 7199 81989
Oryza sativa (Rice) 3760 51514
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vectors in each k-mer to construct the embedding matrix of each
protein. In the previous study, the 4-mer had been proved that it
can achieve the optimal prediction accuracy via the 5-fold CV
method.

Deep Neural Network
Deep learning supports highly flexible architectures. In recent
years, deep learning-based techniques have been widely used
in the field of bioinformatics, such as recurrent neural network
(RNN) (Kavuluru et al., 2017), deep belief network (DBN)
(Wen et al., 2017), convolutional neural network (CNN)
(Rifaioglu et al., 2020), and so on. Different deep learning
architectures are appropriate for different problems. For
example, RNN is suitable for exploring the sequential
information, DBN is always used to account for high-
dimensional correlations of biological data, and CNN is
capable of extracting input complex features at different
spatial scales (Lecun et al., 2015). Considering the
interactions in plant proteins and the possible high
dimension of behavior and attribute information, we used
DNN as the architecture to predict potential PPIs in plants.

DNN is composed of an input layer, multiple hidden layers,
and an output layer. Typically, the neural networks are fed
data from the input layer, and then they will be transformed
through the hidden layers in a non-linear way and the final
result will be calculated to the output layer. The neurons in the
hidden and output layers will be linked to all neurons in the
previous layer. Each neuron computes a weighted sum of its
inputs and utilizes a nonlinear activation function to derive its
outputs P(x) (Angermueller et al., 2016). In this article, we
selected the rectified linear unit (ReLU) (Xu et al., 2015) and
sigmoid (Zhang and Woodland, 2016) as the activation
function. In our experiments, we used the Deepwalk and
word2vec algorithm to extract 64-dimensional behavior
features and attribute features. Then, these two embedding
matrices were fused together as the input data for the DNN. In
order to accelerate the training process and avoid overfitting,
the Adam algorithm (Kingma and Ba, 2014) and the dropout
technique (Nair and Hinton, 2010) were also adopted in our
model. We also employed cross-entropy as the loss function

and ReLU as the activation function to get better results.
Additionally, the batch normalization method was also used
to speed up the training time and low sensitivity to
initialization. The following equations can express the
calculation of the loss:

Tm
i1 � F1(Ri1Xi1 + bi1)(i � 1, . . . , n;m � 1, 2), (9)

Tm
ij � F1(RijTi(j−1) + bij) (i � 1,/, n; j � 2,/, t1;m � 1, 2),

(10)
T3
ik � F1(Rik(T1

it1
⊕ T2

it1
) + bik) (i � 1,/, n; k � t1 + 1), (11)

T3
ik � F1(RikTik−1) + bik) i � 1,/, n; k � t1 + 2,/, t2), (12)

L � −1
n
∑n
i�1

γi ln(F2(Rit2Tit2 + bit2))[
+(1 − γi) ln(1 − F2(Rit2Tit2 + bit2))], (13)

where h1 and h2 represent the depth of individual and fused
networks, n denotes the quantity of PPI pairs that need to be
trained, and m indicates the individual network. Moreover, F1

represents the ReLU function, F2 denotes the sigmoid function, ⊕
is the concatenation operator, T is the output of hidden layer, and
γ is the corresponding desired output. X is the batch training
inputs, and R represents the weight matrix among the input and
output layer, b is the bias.

CONCLUSION

Predicting protein–protein interactions in plants help study
the gene function of plans and also help understand essential
roles thatthey play in a variety of biological processes.
Systematically predicting potential plant–protein pairs will
help increase crop yields. Compared to traditional wet
experimental approaches, the dry experimental methods
based on soft computing help analyze large-scale genetic
data to detect new interactions between them. Thanks to
the development of computing and storage capabilities of
computers, the computational method helps quickly achieve
scientific research results without the need for cell staining and
pipettes. Moreover, the computational approaches effectively

FIGURE 5 | The framework of the word2vec model in the 4-mer case.
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remove false positive signals, reduce unreliable results, and
increase the chance of finding real but weak signals.

In this work, we used a natural language processing algorithm
to describe the attribute information of protein nodes, and a
graph embedding technique was used to represent the behavior
information of protein links. Then, we combined the behavior
and attribute information as the multiple feature to further
improve the prediction power of the DWPPI model. The deep
learning-based DNN classifier was adopted to train and predict
these features. The presented DWPPI model integrates these
algorithms organically and takes full advantage of their
superiority, thus yielding excellent results in the experiment.
In the 5-fold CV experiment, when performed on the model
plant PPI datasets, Arabidopsis thaliana, Zea mays, and Oryza
sativa, the proposed model obtains 89.47, 95.00, and 85.63%
prediction accuracy with 0.9548, 0.9867, and 0.9213 AUC values,
respectively. In further studies, we will investigate more natural
language processing methods for problems of potential
protein–protein interaction prediction in plants.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: Publicly available datasets were analyzed in
this study. This data can be found here: http://arabidopsis.org/;

http://www.ebi.ac.uk/intact; http://www.thebiogrid.org/; http://
comp-sysbio.org/ppim; http://bis.zju.edu.cn/prin/.

AUTHOR CONTRIBUTIONS

Conceptualization, methodology, and software, JP; validation, formal
analysis, L-PL; investigation, W-ZH; resources, J-XG; data curation
and visualization, C-QY; writing—original draft preparation, JP;
writing—review and editing, L-PW; supervision, JP; project
administration, Z-YZ; funding acquisition, Z-HY. All authors have
read and agreed to the published version of the manuscript.

FUNDING

This work is supported by the Science and Technology
Innovation 2030-New Generation Artificial Intelligence Major
Project (No.2018AAA0100103), and in part by the NSFC
Program, under Grant 61873212, 62072378, and 62002297.

ACKNOWLEDGMENTS

The authors would like to thank all anonymous reviewers for
their constructive comments.

REFERENCES

Ambert, K. H., and Cohen, A. M. (2011). K-information Gain Scaled Nearest
Neighbors: a Novel Approach to Classifying Protein-Protein Interaction-
Related Documents. Ieee/acm Trans. Comput. Biol. Bioinform 9, 305–310.
doi:10.1109/TCBB.2011.32

Angermueller, C., Pärnamaa, T., Parts, L., and Stegle, O. (2016). Deep Learning for
Computational Biology. Mol. Syst. Biol. 12, 878. doi:10.15252/msb.20156651

Chakraborty, A., Mitra, S., De, D., Pal, A. J., Ghaemi, F., Ahmadian, A., et al. (2021).
Determining Protein-Protein Interaction Using Support Vector Machine: A
Review. IEEE Access.

Chen, C., Zhang, Q., Yu, B., Yu, Z., Lawrence, P. J., Ma, Q., et al. (2020). Improving
Protein-Protein Interactions Prediction Accuracy Using XGBoost Feature
Selection and Stacked Ensemble Classifier. Comput. Biol. Med. 123, 103899.
doi:10.1016/j.compbiomed.2020.103899

Czibula, G., Albu, A.-I., Bocicor, M. I., and Chira, C. (2021). AutoPPI: An Ensemble
of Deep Autoencoders for Protein-Protein Interaction Prediction. Entropy 23,
643. doi:10.3390/e23060643

Ekbal, A., Saha, S., and Bhattacharyya, P. (2016). “A Deep Learning Architecture
for Protein-Protein Interaction Article Identification,” in 2016 23rd
International Conference On Pattern Recognition (ICPR): IEEE), 3128

Fang, Y., Macool, D., Xue, Z., Heppard, E., Hainey, C., Tingey, S., et al. (2002).
Development of a High-Throughput Yeast Two-Hybrid Screening System to
Study Protein-Protein Interactions in Plants.Mol. Gen. Genomics 267, 142–153.
doi:10.1007/s00438-002-0656-7

Fukao, Y. (2012). Protein-Protein Interactions in Plants. Plant Cel Physiol. 53,
617–625. doi:10.1093/pcp/pcs026

Gu, H., Zhu, P., Jiao, Y., Meng, Y., and Chen, M. (2011). PRIN: a Predicted rice
Interactome Network. BMC bioinformatics 12.1 (2011), 1–13. doi:10.1186/
1471-2105-12-161

Guo, Y., Yu, L., Wen, Z., and Li, M. (2008). Using Support Vector Machine
Combined with Auto Covariance to Predict Protein-Protein Interactions from
Protein Sequences. Nucleic Acids Res. 36, 3025–3030. doi:10.1093/nar/gkn159

Guo, Z.-H., You, Z.-H., Wang, Y.-B., Yi, H.-C., and Chen, Z.-H. (2019). A
Learning-Based Method for LncRNA-Disease Association Identification
Combing Similarity Information and Rotation forest. IScience 19, 786–795.
doi:10.1016/j.isci.2019.08.030

Hayashi, T., Matsuzaki, Y., Yanagisawa, K., Ohue, M., and Akiyama, Y. (2018).
MEGADOCK-web: an Integrated Database of High-Throughput Structure-
Based Protein-Protein Interaction Predictions. BMC bioinformatics 19, 62–72.
doi:10.1186/s12859-018-2073-x

Huang, Y. A., Chan, K. C. C., You, Z. H., Hu, P., Wang, L., and Huang, Z. A. (2021).
Predicting microRNA-Disease Associations from lncRNA-microRNA
Interactions via Multiview Multitask Learning. Brief Bioinform 22, bbaa133.
doi:10.1093/bib/bbaa133

Kavuluru, R., Rios, A., and Tran, T. (2017). Extracting Drug-Drug Interactions
with Word and Character-Level Recurrent Neural Networks", in: 2017 IEEE
International Conference on Healthcare Informatics (ICHI): IEEE).doi:10.
1109/ichi.2017.15

Kerrien, S., Aranda, B., Breuza, L., Bridge, A., Broackes-Carter, F., Chen, C., et al.
(2012). The IntAct Molecular Interaction Database in 2012. Nucleic Acids Res.
40, D841–D846. doi:10.1093/nar/gkr1088

Kingma, D. P., and Ba, J. (2014). Adam: A Method for Stochastic Optimization.
arXiv preprint arXiv:1412.6980.

Lecun, Y., Bengio, Y., and Hinton, G. (2015). Deep Learning. nature 521, 436–444.
doi:10.1038/nature14539

Lehti-Shiu, M. D., and Shiu, S.-H. (2012). Diversity, Classification and Function of
the Plant Protein Kinase Superfamily. Phil. Trans. R. Soc. B 367, 2619–2639.
doi:10.1098/rstb.2012.0003

Li, B.-Q., Feng, K.-Y., Chen, L., Huang, T., and Cai, Y.-D. (2012). Prediction of
Protein-Protein Interaction Sites by Random forest Algorithm with mRMR
and IFS.

Li, Z., Li, J., Nie, R., You, Z. H., and Bao, W. (2021). A Graph Auto-Encoder Model
for miRNA-Disease Associations Prediction. Brief Bioinform 22. doi:10.1093/
bib/bbaa240

Lim, J., Ryu, S., Park, K., Choe, Y. J., Ham, J., and Kim, W. Y. (2019). Predicting
Drug-Target Interaction Using a Novel Graph Neural Network with 3D

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org March 2022 | Volume 10 | Article 8075229

Pan et al. Prediction of Protein–Protein Interactions

http://arabidopsis.org/
http://www.ebi.ac.uk/intact
http://www.thebiogrid.org/
http://comp-sysbio.org/ppim
http://comp-sysbio.org/ppim
http://bis.zju.edu.cn/prin/
https://doi.org/10.1109/TCBB.2011.32
https://doi.org/10.15252/msb.20156651
https://doi.org/10.1016/j.compbiomed.2020.103899
https://doi.org/10.3390/e23060643
https://doi.org/10.1007/s00438-002-0656-7
https://doi.org/10.1093/pcp/pcs026
https://doi.org/10.1186/1471-2105-12-161
https://doi.org/10.1186/1471-2105-12-161
https://doi.org/10.1093/nar/gkn159
https://doi.org/10.1016/j.isci.2019.08.030
https://doi.org/10.1186/s12859-018-2073-x
https://doi.org/10.1093/bib/bbaa133
https://doi.org/10.1109/ichi.2017.15
https://doi.org/10.1109/ichi.2017.15
https://doi.org/10.1093/nar/gkr1088
https://doi.org/10.1038/nature14539
https://doi.org/10.1098/rstb.2012.0003
https://doi.org/10.1093/bib/bbaa240
https://doi.org/10.1093/bib/bbaa240
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Structure-Embedded Graph Representation. J. Chem. Inf. Model. 59,
3981–3988. doi:10.1021/acs.jcim.9b00387

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Efficient Estimation of
Word Representations in Vector Space. arXiv preprint arXiv:1301.3781.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013b).
“Distributed Representations of Words and Phrases and Their
Compositionality,” in Advances in Neural Information Processing Systems),
3111

Nair, V., and Hinton, G. E. (2010). “Rectified Linear Units Improve Restricted
Boltzmann Machines,” in Icml.

Ning, Q., Ma, Z., and Zhao, X. (2019). dForml(KNN)-PseAAC: Detecting
Formylation Sites from Protein Sequences Using K-Nearest Neighbor
Algorithm via Chou’s 5-step Rule and Pseudo Components. J. Theor. Biol.
470, 43–49. doi:10.1016/j.jtbi.2019.03.011

Oughtred, R., Stark, C., Breitkreutz, B.-J., Rust, J., Boucher, L., Chang, C., et al.
(2019). The BioGRID Interaction Database: 2019 Update. Nucleic Acids Res. 47,
D529–D541. doi:10.1093/nar/gky1079

Pan, J., Li, L.-P., Yu, C.-Q., You, Z.-H., Ren, Z.-H., and Tang, J.-Y. (2021). FWHT-
RF: A Novel Computational Approach to Predict Plant Protein-Protein
Interactions via an Ensemble Learning Method. Scientific Programming.

Perozzi, B., Al-Rfou, R., and Skiena, S. (2014). “Deepwalk: Online Learning of
Social Representations,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining), 701–710.

Qiang, X., Zhou, C., Ye, X., Du, P.-F., Su, R., and Wei, L. (2020). CPPred-FL: a
Sequence-Based Predictor for Large-Scale Identification of Cell-
Penetrating Peptides by Feature Representation Learning. Brief.
Bioinformatics 21, 11–23.

Rhee, S. Y., Beavis, W., Berardini, T. Z., Chen, G., Dixon, D., Doyle, A., et al. (2003).
The Arabidopsis Information Resource (TAIR): a Model Organism Database
Providing a Centralized, Curated Gateway to Arabidopsis Biology, Research
Materials and Community. Nucleic Acids Res. 31, 224–228. doi:10.1093/nar/
gkg076

Rifaioglu, A. S., Nalbat, E., Atalay, V., Martin, M. J., Cetin-Atalay, R., and Doğan, T.
(2020). DEEPScreen: High Performance Drug-Target Interaction Prediction
with Convolutional Neural Networks Using 2-D Structural Compound
Representations. Chem. Sci. 11, 2531–2557. doi:10.1039/c9sc03414e

Rohila, J. S., Chen, M., Chen, S., Chen, J., Cerny, R. L., Dardick, C., et al. (2009).
Protein-protein Interactions of Tandem Affinity Purified Protein Kinases from
rice. PloS one 4, e6685. doi:10.1371/journal.pone.0006685

Romero-Molina, S., Ruiz-Blanco, Y. B., Harms, M., Münch, J., and Sanchez-Garcia,
E. (2019). PPI-detect: A Support Vector Machine Model for Sequence-based
Prediction of Protein–Protein Interactions. J. Comput. Chem. 40, 1233–1242.

Shen, J., Zhang, J., Luo, X., Zhu, W., Yu, K., Chen, K., et al. (2007). Predicting
Protein-Protein Interactions Based Only on Sequences Information. Proc. Natl.
Acad. Sci. 104, 4337–4341. doi:10.1073/pnas.0607879104

Wang, J., Zou, Q., and Lin, C. (2021a). A Comparison of Deep Learning-Based Pre-
processing and Clustering Approaches for Single-Cell RNA Sequencing Data.
Brief. Bioinform. doi:10.1093/bib/bbab345

Wang, L., You, Z.-H., Zhou, X., Yan, X., Li, H.-Y., and Huang, Y.-A. (2021b).
NMFCDA: Combining Randomization-Based Neural Network with Non-
negative Matrix Factorization for Predicting CircRNA-Disease Association.
Appl. Soft Comput. 110, 107629. doi:10.1016/j.asoc.2021.107629

Wang, X., Yu, B., Ma, A., Chen, C., Liu, B., and Ma, Q. (2019). Protein-protein
Interaction Sites Prediction by Ensemble Random Forests with Synthetic
Minority Oversampling Technique. Bioinformatics 35, 2395–2402. doi:10.
1093/bioinformatics/bty995

Wen, M., Zhang, Z., Niu, S., Sha, H., Yang, R., Yun, Y., et al. (2017). Deep-
Learning-Based Drug-Target Interaction Prediction. J. Proteome Res. 16,
1401–1409. doi:10.1021/acs.jproteome.6b00618

Woods, A. G., Sokolowska, I., Yakubu, R., Butkiewicz, M., Lafleur, M., Talbot, C.,
et al. (2011). “Blue Native page and Mass Spectrometry as an Approach for the
Investigation of Stable and Transient Protein-Protein Interactions,” in

Oxidative Stress: Diagnostics, Prevention, and Therapy (American Chemical
Society), 341–367. doi:10.1021/bk-2011-1083.ch012

Xiao, Z., and Deng, Y. (2020). Graph Embedding-Based Novel Protein Interaction
Prediction via Higher-Order Graph Convolutional Network. PloS one 15,
e0238915. doi:10.1371/journal.pone.0238915

Xu, B., Wang, N., Chen, T., and Li, M. (2015). Empirical Evaluation of Rectified
Activations in Convolutional Network. arXiv preprint arXiv:1505.00853.

Xu, D., Xu, H., Zhang, Y., Chen, W., and Gao, R. (2020). Protein-protein
Interactions Prediction Based on Graph Energy and Protein Sequence
Information. Molecules 25, 1841. doi:10.3390/molecules25081841

Yan, Y., Zhang, D., Zhou, P., Li, B., and Huang, S.-Y. (2017). HDOCK: a Web
Server for Protein-Protein and Protein-DNA/RNA Docking Based on a Hybrid
Strategy. Nucleic Acids Res. 45, W365–W373. doi:10.1093/nar/gkx407

Yang, X., Yang, S., Li, Q., Wuchty, S., and Zhang, Z. (2020). Prediction of Human-
Virus Protein-Protein Interactions through a Sequence Embedding-Based
Machine Learning Method. Comput. Struct. Biotechnol. J. 18, 153–161.
doi:10.1016/j.csbj.2019.12.005

You, Z.-H., Chan, K. C. C., and Hu, P. (2015). Predicting Protein-Protein
Interactions from Primary Protein Sequences Using a Novel Multi-Scale
Local Feature Representation Scheme and the Random forest. PloS one 10,
e0125811. doi:10.1371/journal.pone.0125811

Yuan, Q., Chen, J., Zhao, H., Zhou, Y., and Yang, Y. (2021). Structure-aware
Protein–Protein Interaction Site Prediction Using Deep Graph Convolutional
Network. Bioinformatics.

Zeng, M., Zhang, F., Wu, F. X., Li, Y., Wang, J., and Li, M. (2020). Protein-protein
Interaction Site Prediction through Combining Local and Global Features with
Deep Neural Networks. Bioinformatics 36, 1114–1120. doi:10.1093/
bioinformatics/btz699

Zhang, C., and Woodland, P. C. (2016). “DNN Speaker Adaptation Using
Parameterised Sigmoid and ReLU Hidden Activation Functions,” in 2016
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP): IEEE), Shanghai, China, March 20–25, 2016, 5300–5304. doi:10.
1109/icassp.2016.7472689

Zhao, L., Wang, J., Hu, Y., and Cheng, L. (2020). Conjoint Feature Representation
of GO and Protein Sequence for PPI Prediction Based on an Inception RNN
Attention Network.Mol. Ther. - Nucleic Acids 22, 198–208. doi:10.1016/j.omtn.
2020.08.025

Zheng, K., You, Z. H.,Wang, L., Zhou, Y., Li, L. P., and Li, Z.W. (2019). MLMDA: a
Machine Learning Approach to Predict and Validate MicroRNA-Disease
Associations by Integrating of Heterogenous Information Sources. J. Transl
Med. 17, 260–314. doi:10.1186/s12967-019-2009-x

Zhu, G., Wu, A., Xu, X.-J., Xiao, P.-P., Lu, L., Liu, J., et al. (2016). PPIM: a Protein-
Protein Interaction Database for maize. Plant Physiol. 170, 618–626. doi:10.
1104/pp.15.01821

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Pan, You, Li, Huang, Guo, Yu, Wang and Zhao. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org March 2022 | Volume 10 | Article 80752210

Pan et al. Prediction of Protein–Protein Interactions

https://doi.org/10.1021/acs.jcim.9b00387
https://doi.org/10.1016/j.jtbi.2019.03.011
https://doi.org/10.1093/nar/gky1079
https://doi.org/10.1093/nar/gkg076
https://doi.org/10.1093/nar/gkg076
https://doi.org/10.1039/c9sc03414e
https://doi.org/10.1371/journal.pone.0006685
https://doi.org/10.1073/pnas.0607879104
https://doi.org/10.1093/bib/bbab345
https://doi.org/10.1016/j.asoc.2021.107629
https://doi.org/10.1093/bioinformatics/bty995
https://doi.org/10.1093/bioinformatics/bty995
https://doi.org/10.1021/acs.jproteome.6b00618
https://doi.org/10.1021/bk-2011-1083.ch012
https://doi.org/10.1371/journal.pone.0238915
https://doi.org/10.3390/molecules25081841
https://doi.org/10.1093/nar/gkx407
https://doi.org/10.1016/j.csbj.2019.12.005
https://doi.org/10.1371/journal.pone.0125811
https://doi.org/10.1093/bioinformatics/btz699
https://doi.org/10.1093/bioinformatics/btz699
https://doi.org/10.1109/icassp.2016.7472689
https://doi.org/10.1109/icassp.2016.7472689
https://doi.org/10.1016/j.omtn.2020.08.025
https://doi.org/10.1016/j.omtn.2020.08.025
https://doi.org/10.1186/s12967-019-2009-x
https://doi.org/10.1104/pp.15.01821
https://doi.org/10.1104/pp.15.01821
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

	DWPPI: A Deep Learning Approach for Predicting Protein–Protein Interactions in Plants Based on Multi-Source Information Wit ...
	Introduction
	Results
	Evaluation Metrics
	Performance Evaluation Using Fivefold Cross Validation
	Performance Comparison of Different Classifiers on DWPPI
	Comparison of the Multiple Feature With the Attribute Feature and Behavior Feature
	Case Study

	Materials and Methods
	Data Collection
	Behavior Information
	Attribute Representation
	Deep Neural Network

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


