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Multicenter sharing is an effective method to increase the data size for glioma research, but the data inconsistency among different
institutions hindered the efficiency.This paper proposes a histogram specification with automatic selection of reference frames for
magnetic resonance images to alleviate this problem (HSASR).The selection of reference frames is automatically performed by an
optimized grid search strategy with coarse and fine search. The search range is firstly narrowed by coarse search of intraglioma
samples, and then the suitable reference frame in histogram is selected by fine search within the sample selected by coarse search.
Validation experiments are conducted on two datasets GliomaHPPH2018 and BraTS2017 to perform glioma grading. The results
demonstrate the high performance of the proposed method. On the mixed dataset, the average AUC, accuracy, sensitivity, and
specificity are 0.9786, 94.13%, 94.64%, and 93.00%, respectively. It is about 15% higher on all indicators compared with those
without HSASR and has a slight advantage over the result of a manually selected reference frame by radiologists. Results show that
our methods can effectively alleviate multicenter data inconsistencies and lift the performance of the prediction model.

1. Introduction

Glioma is a prevalent fatal brain disease and the most
malignant, which accounts for approximately 24.7% of all
primary brain and other central nervous system tumors and
74.6% of malignant tumors [1]. The World Health Orga-
nization’s guidelines for glioma diagnosis and treatment are
divided into four levels, namely, I–II and III–IV for low-
grade glioma (LGG) and high-grade glioma (HGG) [2]. In
clinical applications, biological behavior, treatment options,
and prognoses of patients with glioma of different grades are
clearly different. Therefore, the accurate preoperation
grading of Glioma is important. Magnetic Resonance Im-
aging (MRI) is characterized by multidirectional tomogra-
phy and multiparameter high-resolution soft-tissue imaging
and is widely used to evaluate the tumor heterogeneity [3].
MRI is commonly used in glioma grading because it can

accurately display the location and size, and it correlates well
with histological characteristics. In medical research, high
quality data is difficult to obtain in a single institution, so it
needs to be shared through multicenter. However, the
difference of multicentre data is a serious challenge.

In the acquisition of multicenter gliomaMRI data, due to
differences in acquisition equipment and parameters result
significant differences in data samples in terms of specifi-
cation, size, contrast, and brightness. Differences among the
data lead to deviations in the grading effect of glioma [4].
Figure 1 shows the differences among multicenter data.
Figure 1(a) shows that some of the data contain skulls and
the others do not contain. Figure 1(b) shows that these data
have different scales and number of slices. A previous study
indicated that pixel size and slice thickness remarkably affect
space and strength characteristics of the calculation [5, 6].
Therefore, voxel size must be unified to reduce the error in
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calculating characteristics. Figure 1(c) presents six images
with different contrasts. These differences are due to de-
viation in acquisition equipment and parameters.

In order to alleviate the inconsistency of contrast of
multicenter data, it is necessary to enhance the image data
appropriately. Histogram correction is a commonly used
technique in image enhancement [7]. Among them, histo-
gram equalization (HE) and normalization techniques [8, 9]
are often used to adjust the overall brightness of images.This
type of methods mainly expands the range of gray value in
the histogram without adjusting its intensity. These methods
only enhance the overall image and improve its brightness,
but the contrast between tumors and other tissues is not
considerably enhanced [10, 11]. Histogram specification
(HS) can change the frequency of grayscale values and
enhance any local brightness [12, 13], but it mainly adjusts
the local brightness according to the reference frame. In
general, the reference frame is selected by a radiologist.
However, this process consumes a considerable amount of
time and the final reference frame may not be the best
choice. Therefore, it is an urgent problem to automatically
search for the best reference frame of histogram instead of
searching by a radiologist.

This paper presents a histogram specification with au-
tomatic selection of reference frames for magnetic resonance
images, called HSASR, specifically used to replace radiolo-
gists manually selecting reference frames. This method can
enhance the consistency of tumor intensity in the whole
medical image. In this work, we apply HSASR to the pre-
processing of multicenter glioma data, and the effectiveness
of this method is proved by Glioma grading experiment. The
results showed that this method had certain practical value
in glioma grading research.

The main contributions of this study are as follows:

(1) This paper proposes a histogram specification with
automatic selection of reference frames (HSASR).
This method can automatically select the suitable
reference frame of histogram instead of radiologists
during image enhancement, so as to enhance the
consistency of brain tumors image contrast.

(2) This paper proposes a set of image standardization
algorithms to make the preprocessed multicenter
data have better consistency, improve the adapt-
ability of data, and improve the accuracy of the
glioma prediction model.

2. Related Works

In recent years, researchers have gradually adopted multi-
center data to replace single institution in clinical medical
research. However, multicenter data also faced many
challenges. Berenguer et al. [14] carried out a test-retest
phantom study of individual image acquisition parameters.
The impact of image parameters on the image cannot be
analyzed because of the difference of the model or machine
manufacturer. Therefore, variations because of the use of
images were eliminated by exclusively scanning phantoms.
In addition, Hugo et al. [15] indicated that multicenter
structure MRI studies have stronger statistical efficacy than
single-institution studies. However, central differences in
contrast sensitivity and spatial uniformity lead to differences
in tissue classification or image registration that may reduce
or completely offset the enhanced statistical efficacy of
multicenter data. Therefore, maintaining data in a standard
environment is important. Nyul et al. [16] mentioned some
problems in the original MRI scale preprocessing method
and attempted to use the median value and other percentile
numerical methods, such as landmark, to solve these
problems; they obtained robust results after preprocessing.
The validity of the standardized new landmark was also
mentioned in the study, after which the image brightness
level and contrast consistency were significantly improved.
Bakas et al. [17, 18] focused on the data preprocessing
method, which has a certain enlightening effect on the
preprocessing method of this study.

In preprocessing, contrast enhancement of multicenter
data image is an important challenge. It was shown that a
high-contrast medical image could lead to a better in-
terpretation of the different adjacent tissues in the imaged
body part [19, 20]. Accordingly, the resulting enhanced
image, which is in terms of signal intensities of different
tissues, can facilitate the automated segmentation, feature
extraction, and classification of these tissues. Existing image
enhancement techniques (empirical or heuristic) are re-
markably related to a particular image and usually aimed at
improving image contrast. However, no unified standard is
available to measure the quality effect of image enhancement
[21–24].

Image enhancement can be divided into two categories:
spatial domain method and frequency domain method.
Image enhancement in spatial domain usually corrects

512 × 512 × 18

(a)

(b)

(c)

C5 C6

C1

C4

C2 C3

320 × 320 × 18 240 × 240 × 155

Figure 1: Multicenter data. (a) Space of dataset is uneven. (b)
Volume pixel of data element is not uniform. (c) Dataset contrast
brightness is not uniform, and C1–C6 are randomly selected data
samples.
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histogram. Histogram equalization is a commonly used
global grayscale image enhancement technique, and the
grayscale value is uniformly redistributed based on the
cumulative density function of the histogram [25]. However,
equalization fails to consider the intensity of the grayscale
value. The average brightness of the image can make the
regions with large original intensity fade, whereas dark areas
will brighten after image equalization. Sengee et al. [26]
suggested an extension method of BBHE based on the
neighbourhood metric. This method involved a few steps:
first, a large histogram was divided into the subregion using
the neighbourhood metric and process independently. This
method results in boundary noise and possibly uneven
histogram brightness in two parts. In addition, MedGA [24]
was an enhancementmethod that HE combined with genetic
algorithm to directly improve the histogram frequency of
images and has achieved obvious results. However, this
method could only be limited to the presence of two
grayscale regional tissues and not enhance complex brain
tumors.

3. Materials and Methods

3.1. Data Collection. Glioma data used in the study were
obtained from two separate sources, BraTS2017 and Glio-
maHPPH2018 datasets. The BraTS2017 dataset came from a
variety of scanning instruments from 19 medical in-
stitutions. BraTS2017 dataset includes 210 HGG data and 75
LGG data; the data was already segmented when it was
acquired. GliomaHPPH2018 dataset was obtained from
multiple equipment of different models from multiple
manufacturers, including 4 Siemens equipment (1 1.5t
equipment, 3 3T equipment) and 4GE equipment (2 1.5t
equipment, 2 3T equipment), as shown in Table 1. The
magnetic resonance data collected on these devices are
different from each other. After data inspection, there are up
to 186 default inspection protocols for the devices, and
contrast-enhanced T1-weighted imaging (CET1) was used in
this study, including 35 CET1 sequences (see Table 2), layer
thickness of 5mm to 6.5mm, repetition time of 220–
1970ms, echo time of 2.46–28.60ms, and resolution of
256× 256×18, 320× 290×18, 320× 320×18, 384× 384×18,
448× 408×18, and 512× 512×18. The GliomaHPPH2018
dataset includes 161HGG data and 77 LGG data. A three-
dimensional region of interest (ROI) for all the tumors in
GliomaHPPH2018 was depicted by two senior radiologists
in Henan provincial people’s hospital. The ROIs were seg-
mented slice-by-slice on the axial plane using the CET1
sequences. After discussion between the two radiologists, the
final decision is made to select the optimal segmentation file.

3.2. Histogram Specification. HS, an effective image en-
hancement technique, is an extension of histogram equal-
ization that can effectively alleviate the problems of
histogram equalization. Let r� rij􏽮 􏽯be an H×W discrete
input digital image with L gray levels, and let L� {0, 1, . . .,
L − 1}. The histogram or gray level probability density of an
image is defined as follows:

Pr(l) �
Nl

N
, ∀l ∈ L, (1)

where N�H×W and N is the number of pixels with a gray
level. The cumulative distribution function (CDF) of Pr is
presented as follows:

sr(x) �􏽘

x

j�0
Pr(j) �􏽘

x

j�0

Nj

N
, ∀x ∈ L. (2)

Similarly, if the specified reference image is z, then the
gray cumulative distribution function is

vz(y) �􏽘

y

i�0
Pz(i) �􏽘

l

i�0

Mi

M
, ∀y ∈ L, (3)

whereM andN are the number of pixels with gray level L. HS
attempts to obtain transformation function y� F(x) and
maps gray level x in the original image to gray level y, such
that the transformed image can have a histogram similar to
the reference histogram. To preserve the inherent in-
formation of the original image, function F should be a
monotonically increasing function. This function can be
obtained by using the following equation:

vz(y) � sr(x). (4)

Therefore, the gray level of the map can be obtained by
using

y � v
− 1
z sr(x)􏼂 􏼃, (5)

where v− 1z is the inverse of vz.
In the discrete case, the inverse function usually does not

exist. The inverse function is usually replaced by the best
objective function to approximate the y of a particular gray
level x as follows:

y � argmin
k

sr(x) − vz(k)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (6)

Equation (6) represents the absolute value of the dif-
ference between the original image’s cumulative histogram
and gray level functions of the specified reference histogram,
and then the minimum value is selected as the y value. With
this transformation rule, each gray level x can be mapped to
y. Therefore, the mapped image will be similar to the desired
histogram.

The reference frame in the histogram is usually selected
by the doctor. However, the selected reference image may
not be suitable, thereby consuming a considerable amount of
the radiologist’s time. To solve this problem, an optimized
grid search strategy with coarse and fine search is proposed
to select the suitable reference frame automatically.

3.3. HSASR. In this study, an improved grid search method
is proposed to solve the problem of selecting a specified
reference image. The grid search is generally used to divide
grids of the same length in a certain spatial range based on
the proposed coordinate system. Each coordinate point
represents a parameter, and these searched parameters are
calculated and analysed based on the step size. Finally,
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optimal parameters are considered the output. Given that
this method must traverse all the corresponding points in
the grid, many unnecessary invalid calculations are gener-
ated, resulting in an exponential increase in time.

To reduce time consumption, this study improves the
directional grid optimization search based on data charac-
teristics. On the basis of the characteristics of glioma itself,
the method is improved by using coarse segmentation and
subdivision. Horizontal and vertical searches are used for
coarse segmentation and subdivision, respectively. The
specific steps of the improved method are as follows:

(1) The number of clusters N and the number of slices K
of each tumor are determined. Each cluster is set to i,
and the initialization step size is K/2. A 2D grid is
established by using N and K, and the grid nodes are
the corresponding reference slices of N and K.

(2) In the coarse search, each time it searched by step
size from the beginning of each set (horizontally), the
median slice in each cluster was selected as the
reference frame. Then, 30% of data in all datasets are

randomly selected for histogram specification (the
same sample is selected each time), and then the
performance of data after histogram specification is
tested.

(3) Select the sets of all the best area under the curve
(AUC) values according to threshold T and perform
the next fine search.

(4) Fine search: in the optimal cluster, the search is
initiated from the middle section (two pointers are
set to point to the middle section), and pointer 1
searches upward successively. If reference frames
do not contain tumors, then the search is stopped.
If the difference between the current and previous
values is greater than T, then the search is stopped,
and the optimal value is selected. At the same time,
similar to the previous step, pointer 2 is searched
downward.

(5) The optimal reference slice map is the final output. If
multiple optimal values exist, then selection is made
based on accuracy and specificity indicators. If

Table 1: GliomaHPPH2018MR acquisition equipment list.

Number Manufacturer Model Magnetic field strength Amount
1 GE OPTIMA MR360 1.5 T 1
2 GE Signa HDxt 1.5 T 1
3 GE DISCOVERY MR750 3T 2
4 SIEMENS Sempra 1.5 T 1
5 SIEMENS Prisma 3T 1
6 SIEMENS TrioTim 3T 1
7 SIEMENS Verio 3 T 1
Note: amount is for number of machines.

Table 2: CET1 sequence collection parameter statistics.

Number Manufacturer Magnetic field Model D-spacing Layer thickness Resolution Voxel size
1 GE 1.5 OPTIMA MR360 6.5 5.5 512× 512×18 0.4688\0.4688
2 GE 1.5 OPTIMA MR360 7 6 512× 512×18 0.4688\0.4688
3 GE 1.5 OPTIMA MR360 7.5 6 256× 256×18 0.9375\0.9375
4 GE 1.5 OPTIMA MR360 7.5 6 512× 512×18 0.4688\0.4688
5 GE 1.5 OPTIMA MR360 8 6 512× 512×18 0.4688\0.4688
6 GE 1.5 Signa HDxt 7 6 512× 512×18 0.4688\0.4688
7 GE 1.5 Signa HDxt 7 6 512× 512×18 0.5273\0.5273
8 GE 1.5 Signa HDxt 7.5 6 512× 512×18 0.4688\0.4688
9 GE 1.5 Signa HDxt 7.5 6.5 512× 512×18 0.4688\0.4688
10 GE 1.5 Signa HDxt 8 6 512× 512×18 0.4688\0.4688
11 GE 3 DISCOVERY MR750 6.5 5 512× 512×18 0.4688\0.4688
12 GE 3 DISCOVERY MR750 7 6 512× 512×18 0.4688\0.4688
13 GE 3 DISCOVERY MR750 7.5 6 512× 512×18 0.4688\0.4688
14 SIEMENS 1.5 Sempra 7.2 6 448× 408×18 0.5134\0.5134
15 SIEMENS 3 Prisma 7.2 6 320× 320×18 0.7188\0.7188
16 SIEMENS 3 Prisma 7.2 6 384× 384×18 0.5989\0.5989
17 SIEMENS 3 Prisma 7.8 6 320× 320×18 0.7188\0.7188
18 SIEMENS 3 TrioTim 6.6 6 320× 320×18 0.7188\0.7188
19 SIEMENS 3 TrioTim 6.6 6 320× 320×18 0.75\0.75
20 SIEMENS 3 TrioTim 7.2 6 256× 256×18 0.8984\0.8984
21 SIEMENS 3 TrioTim 7.2 6 256× 256×18 0.9375\0.9375
22 SIEMENS 3 TrioTim 7.2 6 320× 290×18 0.7188\0.7188
23 SIEMENS 3 TrioTim 7.2 6 320× 320×18 0.7188\0.7188
24 SIEMENS 3 TrioTim 7.2 6 320× 320×18 0.75\0.75
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several optimal reference frames existed, then the
first optimal reference frame is selected as the final
reference frame.

Algorithm 1 describes the HSASR algorithm. The pa-
rameter T in Step 1 prevents the collection of additional
optimal values from being missed. The T in Step 2 saves
search time. Figure 2 presents the 2D diagram of the im-
proved optimization grid search. In this study, N represents
the number of data samples, K denotes the number of slices
of each sample, and K/2 is the middle slice of the sample.
First, a horizontal coarse search is performed. The pale blue
circles indicate the performance values of intermediate slices
in each cluster. The optimal clusters are selected for lon-
gitudinal fine search, the middle slice is considered the initial
value, and both ends are searched simultaneously. The
vertical circles and dark blue squares represent the perfor-
mance values in the optimal set and the selected final ref-
erence frame, respectively.

3.4. Experiments. Figure 3 shows the overall process of
multicenter data grading prediction. First, data are im-
ported, data preprocessing is performed, features are
extracted by using the feature calculation method, features
are selected, and model training is finally conducted.
Contribution points of this study are in the preprocessing
stage. The HSASR method proposed is the most important
part of preprocessing.

3.5. Preprocessing. Storage formats of multicenter data are
often inconsistent. Data formats of this study include NIfTI
and DICOM format files. Therefore, to standardize multi-
center data formats, this study adopts the format conversion
method based on the Convert3D tool to unify all data sample
formats into the NIfTI format. The majority of patients in
the GliomaHPPH2018 dataset have 18 DICOM files with
CET1 sequence, and a small number of patients have 36 files.
After format conversion, all slices of each patient’s CET1

(i) Input: Mixed dataset F, data sample number N, number of each sample slice K
(ii) Output: Optimal reference sliceFK
(1) Step1: Coarse search
(2) Function HSBM (n, F1, l1)//Histogram specification based on brain MRI
(3) {
(4) F1�Random (range (0, N), F∗ 30%)//Random selection of 30% of dataset
(5) For each n ∈ F do
(6) For each n1 ∈ F1 do
(7) cdfFn1 � histFn1 · cumsum( )
(8) cdfFnk/2 � histFn · cumsum( )
(9) Calculate: hist � argminm |(cdfFnk/2/shape(Fnk/2)) − ((cdfFn1/shape(Fn1))(m))|(10) End for
(11) Calculate: Auc(nK/2) � roc auc score(Lableoriginal − Lablepredict)
(12) End for
(13) }
(14) F2 � Sort max(AucFk/2)
(15) F2C �Max(F2)
(16) For each c ∈ F2 do
(17) if |F2C − Auc(c)|≤T then
(18) Select c⟶ F3
(19) end
(20) End for
(21) Select the optimal set F3
(22) Step 2 Fine search
(23) Initializes Pointers l1, l2
(24) For each n ∈ F3//Search both ends
(25) l1 � k/2
(26) For l1 ≤ k and exit(tumorl1++); l1 + + do
(27) HSBM (n, F1, l1)
(28) End for
(29) End for
(30) For each n ∈ F3
(31) l2 � k/2
(32) For l2 ≤ k and exit(tumorl2++); l2 + + do
(33) HSBM (n, F1, l2)
(34) End for
(35) End for
(36) Output: select the first optimal slice FK

ALGORITHM 1: HSASR algorithm pseudocode description.
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sequence are converted into the NIfTI format file, thereby
providing convenience in subsequently unifying data
processing.

Furthermore, to unify the multicenter data in pre-
processing, maintaining the consistency of brain tissue
structure is also important.TheGliomaHPPH2018 dataset in
this study contained skull images, which are removed at the
time of acquisition in the BraTS2017 dataset.This situation is
not only a certain impact on HS but also introduced diffi-
culties in combining the two datasets due to the gap between
them. In this study, the FSL tool is firstly used in location
registration, and then the skulls are removed based on the
bet script. In this study, 238 data skulls are removed, and
brain tissues and regions of interest are relatively intact.

In addition, spatial consistency of the data image is
maintained.Multiple voxel ranges occur in both datasets. On
the basis of Convert3D, we adopt the shortest distance in-
terpolation resampling technology to carry out scale
resampling in each data sample.The size of each data sample
is unified to 240× 240×155, and the label sample is also
converted into a file of the same size. In addition, the dis-
tance between unified slices is 1mm, and the original po-
sition was [0, − 239, 0].

To solve the problem of inconsistent brightness and
contrast of multicenter data, this paper proposes a histogram
specification with automatic selection of reference frames for
magnetic resonance images. On the basis of the character-
istics of glioma itself, this paper puts forward an optimized

k/2

Optimal slice as reference
Intermediate slice as reference

Single sample slice as reference

Figure 2: Diagram of the optimized grid search (note: k/2 represents the middle slice of the cluster).
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Figure 3: Flowchart of multicenter data grading prediction.
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grid search strategy with coarse and fine search. First, in
coarse search, all data samples are selected as the object of
reference selection in this study. Each file is considered a
collection, and the step size is set to the middle number of
the collection (78), starting from the beginning of every
collection each time. The middle slice (78) of each collection
is used as the reference slice of HS, 30% of image samples are
randomly selected from all data, and image enhancement is
carried out via HS and subsequently imported into the
model verification process of this study. T is set to 1%, and
the set with the highest AUC value and AUC value error less
than 1% is selected. Furthermore, the study carries out fine

search, the step size is changed to 1, data are searched from
the middle number upward and downward, and the search is
over according to the end condition.

3.6. Feature Engineering. All the data being processed are
imported into feature calculation. For each region of in-
terest, 557 radiomics features are calculated through Pyr-
adiomics (Pyradiomics is a tool for the computational
characteristics of medical images). In this study, 9 spatial
geometric features are included, which are only calculated in
the original space. Eighteen first-order statistical features

MRI without HSASR MRI with HSASR

L1

L4

H1

H4 H5 H6

H2 H2H1

H4 H5 H6

H3 H3

L5 L6 L4 L5 L6

L2 L3 L1 L2 L3

Figure 4: MRI comparison map before and after HSASR.

Table 3: Results of the first three glioma grading experiments.

Training Testing
Without HSASR With HSASR

AUC ACC (%) SEN (%) SPE (%) AUC ACC (%) SEN (%) SPE (%)
GH BT 0.6850 59.93 58.45 64.00 0.9507 90.88 90.18 82.67
BT GH 0.7605 72.68 81.98 53.25 0.9146 85.90 89.87 77.63
(80%)
(GH+BT) + (20%)
(GH+BT)

0.8252 78.17 85.42 61.67 0.9786 94.13 94.64 93.00

(80%)GH+ (20%)GH 0.8394 81.25 82.06 76.32 0.9556 89.36 87.20 94.71
(80%)BT+ (20%)BT 0.8512 79.12 80.19 74.99 0.9934 95.61 97.35 92.65
Note: GH is for GliomaHPPH2018, and BT stands for BraTS2017. BT represents 80% of the data as training and 20% as testing. GH alone represents
80% of GH data as training and 20% of GH as testing. BT alone represents 80% of BT dataset as training and 20% of BT as testing.
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and 43 texture features are calculated in the original data and
eight wavelet decomposition spaces, respectively. For all
image histological features, model training is conducted
directly after the processing of missing values.

The calculated features are imported into the model
script of this study for prediction.Themodel script is divided
into two parts, namely, feature selection and classifier. Five
selectionmethods and nine classifiers are combined to set up
the classifier, and the training and testing sets are imported
into the model for prediction. For the designs of experiment
2 and 3 in the next section, 80% and 20% of data are selected
from the data table as training and testing sets, respectively.
The prediction is then repeated 10 times. The average value
of final results is obtained, and the classifier and selection
methods with the best results are finally selected with the
rating device. The selection methods used in the study are
SelectKBest (f_classif ) for classifying the tag features be-
tween tasks for ANOVA f values, principal component
analysis (PCA), kernel principal component analysis
(KPCA), independent component correlation algorithm
(ICA), and factor analysis (FA). The classifiers used in this
study are decision tree (DT), random forest (RF), bagging
(BAG), binary search tree (BSA), naive Bayes (NB), mul-
tilayer perception (MLP), support vector machine (SVM),
logistic (LR), and k-nearest neighbour (KNN). For the two
separate datasets in experiment 1, the stable training model
is selected by using a tenfold cross-validation scheme, and
then the grading prediction is finally performed.

3.7. Experimental Comparison Designs. To verify the effec-
tiveness of processed multicenter data, this study proposed
the following process designs:

(1) Take the processed GliomaHPPH2018 and
BraTS2017 datasets as the training and testing sets,
respectively. Then, use the two unpreprocessed
datasets as contrast experiments.

(2) Mix together 521 data samples from Glio-
maHPPH2018 and BraTS2017, preprocess the data,
carry out feature selection and model training, and
analyze the results.

(3) Use single sequences from the processed and un-
processed GliomaHPPH2018 and BraTS2017 as
comparison experiment.

(4) Make comparison experiments between this research
method and common image enhancement methods
on the mixed dataset. Finally, compare these results
with the untreated data. In addition, to verify the
effectiveness of HSASR, compare the research results
with the reference diagram results selected by
radiologists.

4. Results and Discussion

4.1. Analysis of Image Enhancement. The purpose of weak-
ening the multicenter data is to relieve the differences between
groups and retain individual characteristics. That is to say,
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Figure 5: ROC plot.

Table 4: Results of the contrast experiment.

Training Testing Method AUC ACC (%) SEN (%) SPE (%)
(80%) (GH+BT) + (20%) (GH+BT) HE 0.9176 86.19 90.44 76.05
(80%) (GH+BT) + (20%) (GH+BT) Handpicked 0.9447 89.90 90.35 88.88
(80%) (GH+BT) + (20%) (GH+BT) Our method 0.9786 94.13 94.64 93.00
Note: GH is for GliomaHPPH2018, and BT is for BraTS2017. GH+BT represents 80% of the data as training and 20% as testing.
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Figure 6: Confusion matrix of mixed dataset.
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Figure 7: Heat map without HSASR.

Table 5: Performance comparison with similar works.

Author and reference Architecture/method Output class Data Maximum ACC (%)
Khawaldeh et al. [27] AlexNet + Preprocessing 3 130 91.16
Chen et al. [28] CAD+Preprocessing 2 274 91.27
Our method HSASR 2 523 94.13
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under the premise of retaining tumor morphological char-
acteristics, the image data of differentmedical institutions have
similar contrast and brightness. In this study, contrast and
brightness of multicenter glioma data images are significantly
improved after image enhancement in preprocessing. Figure 4
shows the MRI results of the CET1 sequence in 12 patients.
The left-hand side of Figure 4 presents that the first and second
rows are LGG without HSASR, and the third and fourth rows
are HGG without HSASR. All processed glioma data are
shown on the right side of the figure. The examples show on
the left and right sides had a one-to-one correspondence.
From the perspective of image, the range of contrast and
brightness of data without HSASR in Figure 4 are relatively
complex and the tumor area is fuzzy and difficult to distin-
guish. The data after HSASR are consistent in contrast and
brightness, the tumor area is significantly enhanced, and basic
features (tumor morphology and lesion range) of the original
image can be retained.

4.2.PerformanceofGliomaGrading. This paper aims to reflect
the effectiveness of these methods indirectly by using model
prediction indicators. To validate the effect of the processed
multicenter data further, this section conducts the verification of
grading results based on the following indicators: AUC, ac-
curacy (ACC), sensitivity (SEN), and specificity (SPE).

Experiment 1 in Table 3 presents the results of Glio-
maHPPH2018and BraTS2017 datasets as the training and
testing set, respectively. The results show that the data with
HSASR is better predicted, and the indexes are significantly
improved compared with the unprocessed data, as shown in
Figure 5. Figure 5(a) shows the ROC curve in which
BraTS2017 is a training set and GliomaHPPH2018 is a
testing set, and Figure 5(b) shows the ROC curve in which
the testing set and the training set interchange. It can be
observed from the figure that when testing set and training
set swap, the better results can also be obtained. The results
show that the data processed by the HRASR method have
good adaptability and can alleviate the difference among
multicenter data images.

Experiment 2 in Table 3 presents the results of the mixed
dataset. The calculated characteristics are imported into the
proposed grading model for 10 iterations of random pre-
diction, and the average value is subsequently obtained.
Finally, the model with the best average performance is
selected as the final model. The results show that AUC after
processing generally increased by more than 15%, and other
indicators also improve significantly. Experiment 3 in Ta-
ble 3 shows that the data processed by HSASR on a single
dataset also achieve a good grading effect.

Experiment 4 in Table 4 shows the comparison exper-
iment conducted by three different methods on the mixed
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Figure 8: Heat map with HSASR.
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dataset. These methods include the HE method, reference
frame method of manual selection by radiologists, and the
method proposed in this paper. The results show that
compared with the other twomethods, the method proposed
in this paper significantly improves the grading effect of
glioma. The reference frame selected by radiologists based
on experience shows significant improvement in glioma
grading, but it can be seen from the results that the per-
formance of the selected reference frame is worser than that
of the automatically selected.

Table 5 gives the performance comparison of similar
work in the references using glioma dataset. In [27], after
data preprocessing, they used a modified version of AlexNet
for classifying MR brain images into three classes like
healthy brain, LGG, and HGG. However, the amount of data
of this work is so small that cannot verify the robustness of
the proposed method. Reference [28] also involved data
preprocessing, but our data is twice as large, and the result
verified by the grading model is better than this method.

Figure 6 is the confusion matrix corresponding to the
final model of mixed glioma data in experiment 2, and
LGG and HGG represent the low-level label and high-level
label, respectively. Figure 6(a) shows the confusion matrix
before processing, and Figure 6(b) shows the predicted
data distribution after processing. Figure 6 shows a sig-
nificant decrease in the number of glioma predicted in-
correctly after preprocessing. Meanwhile, in order to
intuitively evaluate the performance differences of the
model before and after preprocessing, Figures 7 and 8 list
the performance heat maps of grading prediction before
and after preprocessing, respectively. The horizontal and
vertical coordinates and corresponding results represent
the classifier, feature selection or dimension reduction
method, and the maximum average AUC value, re-
spectively. These data indicate that the overall perfor-
mance of the data after preprocessing is about 15% higher
than that without HSASR processing.

Figure 9 illustrates the experimental results of the grid
search in this study. In this study, five reference slices with the
highest performance indexes were selected from two datasets
via rough search, and the reference slices with the best per-
formance were screened out. The N axis, K, circle, and square
denoted the number of samples, the number of slices in each
sample set, the value of AUC of the reference image selected by
the HSASR, and the predicted performance value of the
reference image selected by the doctor, respectively. The ob-
tained performance of the reference frame selected by the
method is both low and high, indicating that the difference in
reference objects had a significant impact on the result of
grading. The proposed method can replace radiologists in
choosing the best reference frame and save a considerable
amount of time. Hence, the proposed method has certain
application value in clinical trials.

5. Conclusions

Inconsistencies among data prevent multicenter data from
playing to its shared advantage. This paper proposes a
histogram specification method with automatic selection of
reference frames for magnetic resonance images to alleviate
the problem of contrast inconsistencies among multicenter
data. The core of histogram specification is to change the
local brightness of the image according to the reference
frame, but the reference frame of traditional histogram
specification is usually manually selected by radiologists.
This method not only increases the workload of radiologists,
but also cannot guarantee the optimal reference frame. In
the method of this paper, the search range is firstly narrowed
by coarse search intraglioma samples, then the suitable
reference frame in histogram is selected by fine search within
sample selected by coarse search. Finally, the effectiveness
and feasibility of the proposed method are verified by a
grading experiment based on two datasets. The results show
that multicenter data processed by this method have good
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Figure 9: Diagram of the proposed method (Note: the red circle and blue square represent the AUC of machine and manually selected
reference images, respectively. The black square represents optimal reference frame).
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adaptability, which improves the grading results and has
certain practical value for clinical prediction.

Data Availability

The datasets used in this paper are public dataset
(BraTS2017) and Henan Provincial People’s Hospital
(GliomaHPPH2018) dataset; BraTS2017 can be obtained
through the following URL: https://www.med.upenn.edu/
sbia/brats2017/data.html.
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